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Central question investigated 

 What kinds of information are most useful 

in automatically classifying music? 

High-level symbolic musical data? 

Low-level audio data? 

Cultural data available on-line? 

Lyrics? 

Some combination of these? 
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Presentation overview 

 State of the art of automatic genre 
classification 

 Overview of the jMIR toolkit 

Harvesting lyrics with lyricFetcher 

Extracting features with jLyrics 

 Experimental results 

 Conclusions and future research 
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Genre classification 

 Genre classification is used 

here as a case study 

 Its difficulty makes it a good 

evaluative test case 

 Genre labels can be broad: 

Jazz, classical, rock, rap, etc. 

 Genre labels can be narrow 

Microsound, chiptunes, glitch, 

IDM, etc. 
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How well can we do? 

 The MIREX contest provides 

the best available way to 

compare performance 

 Best audio genre classification 

accuracies to date: 

 6 classes: 82.9% (2005) 

 10 classes: 79.9% (2010) 

 Differences between datasets 

make it different to fairly 

compare results, but: 

 There is no evidence of 

significant improvement from 

year to year 
Note: 2005b involved 6 genres and 

all other runs involved 10 genres 
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Software tools used: jMIR 

 jMIR is software suite designed for performing music 
classification research 
 Feature extraction 

 Machine learning 

 Dataset management 

 Data storage formats 

 Priorities: 
 Encourage multimodal research  

 Increase accessibility of automatic music classification 
technologies 

 Standardize and facilitate communication of algorithms and data 
between research groups 

 jMIR is free and open-source 
 Implemented in Java for platform independence 
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7/41 

jMIR components 
 jAudio: Audio feature extraction 

 26 core features + metafeatures and aggregators 

 jSymbolic: Feature extraction from MIDI files 
 111 mostly original features 

 jWebMiner: Cultural feature extraction 
 Based on web co-occurrence page counts and user tags 

 lyricFetcher and jLyric: Lyric harvesting and feature extraction 

 ACE: Meta-learning classification system 
 Experiments with dimensionality reduction and machine learning 

algorithms 

 

 jMIR also includes other components: 
 ACE XML 

 Codaich and Bodhidharma MIDI 

 jMusicMetaManager and jSongMiner 

 jMIRUtilities 
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jSongMiner 
 Software for automatically acquiring formatted metadata about 

songs, artists and albums 

 Designed for use with the Greenstone digital library software 
 May also be used for other purposes, such as cultural feature extraction 

 Identifies music files 
 Uses Echo Nest fingerprinting functionality and embedded metadata 

 Mines a wide range of metadata tags from the Internet and collates 
them in a standardized way 
 Data extracted from The Echo Nest, Last.FM, etc. 

 Over 100 different fields are extracted 

 Data may be formatted into unqualified and/or qualified Dublin Core 
fields if desired 

 Saves the results in ACE XML or text 
 Can also be integrated automatically into a Greenstone collection 
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lyricFetcher 

 lyricFetcher automatically harvests lyrics from on-
line lyrics repositories 
 LyricWiki and LyricsFly 

 Queries based on lists of song titles and artist names 

 Post-processing is applied to the lyrics in order to 
make remove noise and make them sufficiently 
consistent for feature extraction 
 Deals with situations where sections of lyrics are 

abridged using keywords such as “chorus”, “bridge”, 
“verse”, etc. 

 Filters out keywords that could contaminate the lyrics 

 Ruby implementation 
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jLyrics 

 Extracts features from lyrics stored in text files 
 Automated Readability Index  Number of Segments 

 Average Syllable Count Per Word  Number of Words 

 Contains Words   Part-of-Speech Frequencies 

 Flesh-Kincaid Grade Level  Punctuation Frequencies 

 Flesh Reading Ease   Rate of Misspelling 

 Function Word Frequencies  Sentence Count 

 Letter-Bigram Components  Sentence Length Average 

 Letter Frequencies   Topic Membership Probabilities 

 Letters Per Word Average  Vocabulary Richness 

 Letters Per Word Variance  Vocabulary Size 

 Lines Per Segment Average  Word Profile Match 

 Lines Per Segment Variance  Words Per Line Average 

 Number of Lines   Words Per Line Variance 

 Can also automatically generate word frequency profiles for 
particular classes if training data is provided 

 Central framework implemented in Java 
 Other technologies used by third-party components 
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Experiment performed 

 Can combining features extracted from 

audio, symbolic, cultural and/or lyrical 

sources significantly improve automatic 

music classification performance? 

 Intuitively, they each seem to contain very 

different kinds of information 

 Can this help us break the seeming genre 

classification performance ceiling? 
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Experimental methodology 

 Extracted features from separate audio, symbolic, 
cultural and lyrical sources of data 
 Corresponding to the same musical pieces 

 Using the jMIR feature extractors 

 Compared ACE-based genre classification 
performance of each of the 15 possible subsets of 
these 4 feature groups 
 Audio, Symbolic + Audio, Cultural, Symbolic + 

Cultural + etc. 

 Applied dimensionality reduction 

 10-fold cross-validation 
 With reserved validation set 

 Wilcoxon signed-rank significance tests were used 
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Musical dataset used: SLAC 

 The SLAC Dataset was assembled for this 

experiment 

Symbolic Lyrical Audio Cultural 

250 recordings belonging to 10 genres 

Audio and MIDI versions of each recording 

 Acquired separately 

Accompanying metadata that could be used 

to extract cultural features from the web 

Lyrics mined with lyricFetcher 
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Genres in SLAC 

 SLAC’s 10 genres can be collapsed into 5 
genres in order to separately evaluate 
performance on both moderate and small genre 
taxonomies 
 Also facilitates evaluation of misclassification severity 

 

 Blues: Modern Blues and Traditional Blues 

 Classical: Baroque and Romantic 

 Jazz: Bop and Swing 

 Rap: Hardcore Rap and Pop Rap 

 Rock: Alternative Rock and Metal 
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Difficulty of SLAC 

 Performances of the same song in different genres 

 Performances by the same artists in different genres 

 10-genre taxonomy includes pairs of relatively 
similar genres 

 Diverse styles of music purposely chosen within 
each sub-genre 

 

 These factors make SLAC harder than the typical 
MIREX datasets 
 More realistic, although still easier than real-world 

application would require 
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Comparison to 2008 experiment 

 We performed a similar experiment in 2008 

No lyrical features were used 

Earlier versions of ACE and jWebMiner were 

used 

 Results of these earlier experiments: 

Combining feature types significantly improved 

classification results 

No feature type dominated, although cultural 

features were particularly good at reducing 

misclassification seriousness 
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Results: 5-genre taxonomy 

 All feature groups 

involving cultural 

features achieved 

classification 

accuracies of 99% 

to 100% 

 Lyrical features 
alone 
underperformed 
with a 
classification 
accuracy of 69% 
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Results: 10-genre taxonomy 

 SAC achieved the 

best classification 

accuracy of 89% 

 All feature groups 

that included 

cultural features 

achieved 81% or 

higher 

 Lyrical features 

alone again 

underperformed at 

43% 
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Discussion: Combining feature types 

 Combining features 
types tended to 
increase 
classification 
performance on 
average 

 However, there 
were exceptions 
 e.g. LC performed 

significantly less 
well than C in the 
10-genre 
experiment 
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Discussion: Cultural features 

 Cultural features 
significantly outperformed 
other feature types 

 For the 10-genre taxonomy, 
all groups including cultural 
features outperformed all 
groups of the same size 
that did not include cultural 
features 

 This dominance of cultural 
features was not evident in 
the 2008 SAC experiments 
 jWebMiner 2.0 (used here) 

substantially improved the 
performance of cultural 
features by combining 
search engine data with 
Last.FM data 
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Discussion: Lyrical features 

 Lyrical features significantly 
underperformed other 
feature types 
 Partly explained by the 

necessity of classifying 
instrumental music 

 For the 10-genre taxonomy, 
all groups including lyrical 
features underperformed all 
groups of the same size 
that did not include lyrical 
features 

 Lyrical features did improve 
results in most cases where 
cultural features were not 
involved, however 
 e.g. SLA performed better 

than S, L, A, SL, SA or AC 
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Conclusions 

 We obtained excellent overall genre classification 
results 
 89% on 10 genres, compared to the best MIREX 

audio-only result to date of 80% on 10 genres 

 Combining feature types often improved results 

 Cultural features dominated 
 The particular jWebMiner 2.0 combination of features 

extracted from both web content and Last.FM user 
tags was extremely effective 

 Lyrical features can improve results, but 
performed poorly individually relative to other 
feature types 
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Future research questions 

 Should we focus research efforts on fingerprinting and 
cultural feature extraction rather than bothering with 
extracting features from audio and lyrics? 
 Assuming reliable fingerprinting, this could result in very 

high classification results 

 However, this marginalizes the musicological and music 
theoretical insights about musical categories that can be 
achieved from content-based analysis 

 Can the performance of lyrical features be improved 
 Better cleaning and standardization of raw lyrics 

 More sophisticated features designed specifically with 
music in mind 
 The current jLyrics features consist of general-purpose text 

mining features 
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