

Evaluating the performance of lyrical features relative to and in combination with audio, symbolic and cultural features

Cory McKay

Central question investigated

- What kinds of information are most useful in automatically classifying music?
 - □ High-level symbolic musical data?
 - □ Low-level audio data?
 - Cultural data available on-line?
 - □ Lyrics?
 - □ Some combination of these?

Presentation overview

- State of the art of automatic genre classification
- Overview of the jMIR toolkit
 Harvesting lyrics with lyricFetcher
 Extracting features with jLyrics
 Experimental results
 Conclusions and future research
- Conclusions and future research

Genre classification

Genre classification is used here as a case study Its difficulty makes it a good evaluative test case Genre labels can be broad: □ Jazz, classical, rock, rap, etc. Genre labels can be narrow □ Microsound, chiptunes, glitch,

IDM, etc.

How well can we do?

- The MIREX contest provides the best available way to compare performance
- Best audio genre classification accuracies to date:
 - □ 6 classes: 82.9% (2005)
 - 10 classes: 79.9% (2010)
- Differences between datasets make it different to fairly compare results, but:
 - There is no evidence of significant improvement from year to year

Note: 2005b involved 6 genres and all other runs involved 10 genres

Software tools used: jMIR

- jMIR is software suite designed for performing music classification research
 - Feature extraction
 - Machine learning
 - Dataset management
 - Data storage formats
- Priorities:
 - Encourage multimodal research
 - Increase accessibility of automatic music classification technologies
 - Standardize and facilitate communication of algorithms and data between research groups
- jMIR is free and open-source
 - Implemented in Java for platform independence

jMIR components

- jAudio: Audio feature extraction
 - □ 26 core features + metafeatures and aggregators
- jSymbolic: Feature extraction from MIDI files
 - □ 111 mostly original features
- jWebMiner: Cultural feature extraction
 - □ Based on web co-occurrence page counts and user tags
- IvricFetcher and jLyric: Lyric harvesting and feature extraction
- ACE: Meta-learning classification system
 - Experiments with dimensionality reduction and machine learning algorithms
- jMIR also includes other components:
 - □ ACE XML
 - Codaich and Bodhidharma MIDI
 - jMusicMetaManager and jSongMiner
 - jMIRUtilities

jSongMiner

- Software for automatically acquiring formatted metadata about songs, artists and albums
- Designed for use with the Greenstone digital library software
 May also be used for other purposes, such as cultural feature extraction
- Identifies music files
 - Uses Echo Nest fingerprinting functionality and embedded metadata
- Mines a wide range of metadata tags from the Internet and collates them in a standardized way
 - □ Data extracted from The Echo Nest, Last.FM, etc.
 - Over 100 different fields are extracted
 - Data may be formatted into unqualified and/or qualified Dublin Core fields if desired
- Saves the results in ACE XML or text
 - □ Can also be integrated automatically into a Greenstone collection

lyricFetcher

- IyricFetcher automatically harvests lyrics from online lyrics repositories
 - □ LyricWiki and LyricsFly
 - Queries based on lists of song titles and artist names
- Post-processing is applied to the lyrics in order to make remove noise and make them sufficiently consistent for feature extraction
 - Deals with situations where sections of lyrics are abridged using keywords such as "chorus", "bridge", "verse", etc.
 - □ Filters out keywords that could contaminate the lyrics
- Ruby implementation

jLyrics

Extracts features from lyrics stored in text files

- Automated Readability Index
- Average Syllable Count Per Word
- Contains Words
- Flesh-Kincaid Grade Level
- Flesh Reading Ease
- Function Word Frequencies
- Letter-Bigram Components
- Letter Frequencies
- Letters Per Word Average
- Letters Per Word Variance
- Lines Per Segment Average
- Lines Per Segment Variance
- Number of Lines

- Number of Segments Number of Words Part-of-Speech Frequencies Punctuation Frequencies Rate of Misspelling Sentence Count Sentence Length Average Topic Membership Probabilities Vocabulary Richness Vocabulary Size Word Profile Match Words Per Line Average
- Words Per Line Variance
- Can also automatically generate word frequency profiles for particular classes if training data is provided
- Central framework implemented in Java
 Other technologies used by third-party components

CIR Centre for Interdisciplinary Research in Music Media and Technology

Experiment performed

- Can combining features extracted from audio, symbolic, cultural and/or lyrical sources significantly improve automatic music classification performance?
 - Intuitively, they each seem to contain very different kinds of information
- Can this help us break the seeming genre classification performance ceiling?

Experimental methodology

- Extracted features from separate audio, symbolic, cultural and lyrical sources of data
 - Corresponding to the same musical pieces
 - □ Using the jMIR feature extractors
- Compared ACE-based genre classification performance of each of the 15 possible subsets of these 4 feature groups
 - Audio, Symbolic + Audio, Cultural, Symbolic + Cultural + etc.
 - Applied dimensionality reduction
 - 10-fold cross-validation
 - With reserved validation set
 - Wilcoxon signed-rank significance tests were used

I R M T Centre for Interdisciplinary Research in Music Media and Technology

Musical dataset used: SLAC

- The SLAC Dataset was assembled for this experiment
 - Symbolic Lyrical Audio Cultural
 - □ 250 recordings belonging to 10 genres
 - Audio and MIDI versions of each recording
 - Acquired separately
 - Accompanying metadata that could be used to extract cultural features from the web
 Lyrics mined with lyricFetcher

Genres in SLAC

SLAC's 10 genres can be collapsed into 5 genres in order to separately evaluate performance on both moderate and small genre taxonomies

□ Also facilitates evaluation of misclassification severity

Blues: Modern Blues and Traditional Blues
Classical: Baroque and Romantic
Jazz: Bop and Swing
Rap: Hardcore Rap and Pop Rap
Rock: Alternative Rock and Metal

Difficulty of SLAC

- Performances of the same song in different genres
- Performances by the same artists in different genres
- 10-genre taxonomy includes pairs of relatively similar genres
- Diverse styles of music purposely chosen within each sub-genre
- These factors make SLAC harder than the typical MIREX datasets
 - More realistic, although still easier than real-world application would require

Comparison to 2008 experiment

- We performed a similar experiment in 2008
 - □ No lyrical features were used
 - Earlier versions of ACE and jWebMiner were used
- Results of these earlier experiments:
 - Combining feature types significantly improved classification results
 - No feature type dominated, although cultural features were particularly good at reducing misclassification seriousness

Results: 5-genre taxonomy

- All feature groups involving cultural features achieved classification accuracies of 99% to 100%
- Lyrical features alone underperformed with a classification accuracy of 69%

Results: 10-genre taxonomy

- SAC achieved the best classification accuracy of 89%
- All feature groups that included cultural features achieved 81% or higher
- Lyrical features alone again underperformed at 43%

Discussion: Combining feature types

- Combining features types tended to increase classification performance on average
- However, there were exceptions
 - e.g. LC performed significantly less well than C in the 10-genre experiment

Discussion: Cultural features

- Cultural features significantly outperformed other feature types
- For the 10-genre taxonomy, all groups including cultural features outperformed all groups of the same size that did not include cultural features
- This dominance of cultural features was not evident in the 2008 SAC experiments
 - jWebMiner 2.0 (used here) substantially improved the performance of cultural features by combining search engine data with Last.FM data

Discussion: Lyrical features

- Lyrical features significantly underperformed other feature types
 - Partly explained by the necessity of classifying instrumental music
- For the 10-genre taxonomy, all groups including lyrical features underperformed all groups of the same size that did not include lyrical features
- Lyrical features did improve results in most cases where cultural features were not involved, however
 - e.g. SLA performed better than S, L, A, SL, SA or AC

Conclusions

- We obtained excellent overall genre classification results
 - 89% on 10 genres, compared to the best MIREX audio-only result to date of 80% on 10 genres
- Combining feature types often improved results
- Cultural features dominated
 - The particular jWebMiner 2.0 combination of features extracted from both web content and Last.FM user tags was extremely effective
- Lyrical features can improve results, but performed poorly individually relative to other feature types

Future research questions

- Should we focus research efforts on fingerprinting and cultural feature extraction rather than bothering with extracting features from audio and lyrics?
 - Assuming reliable fingerprinting, this could result in very high classification results
 - However, this marginalizes the musicological and music theoretical insights about musical categories that can be achieved from content-based analysis

Can the performance of lyrical features be improved

- Better cleaning and standardization of raw lyrics
- More sophisticated features designed specifically with music in mind
 - The current jLyrics features consist of general-purpose text mining features

Acknowledgements

Funding, past and present:

- Centre for Open Software Innovation
- Andrew W. Mellon Foundation
- Social Sciences and Humanities Research Council of Canada
- Canadian Foundation for Innovation

Contact information:

- jmir.sourceforge.net
- cory.mckay@mail.mcgill.ca

Social Sciences and Humanities Research Council of Canada Conseil de recherches en sciences humaines du Canada

CIR Centre for Interdisciplinary Research MMT in Music Media and Technology

