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Lecture contents

m Introduction to music information retrieval
Automatic classification

m Overview of the JMIR software

m Multimodal classification experiments
Empirical results

m |Symbolic
m Other JMIR components
As time and interest permit
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Goals of MIR

m Extract meaningful information from or
about music

m Facilitate music analysis, organization and
access
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Main sources of information
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m Symbolic recordings
e.g. MIDI

m Audio recordings
e.g. MP3

m Cultural data
e.g. web data, metadata tags, etc.

m Lyrics
m Others
Album art, videos, etc.
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A (very partial) list of MIR tasks

m Automatic transcription
m Automatic music analysis
Harmonic analysis, structural segmentation, etc.
m Query by example
m Optical music recognition (OMR)
m Fingerprinting (song identification)
m |nterfaces and visualizations
m Similarity
Recommendation, hit prediction, etc.

m Automatic classification
Genre, mood, artist, composer, instrument, etc.
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Automatic music classification

m Typical procedure:

Collect annotated training / testing data
= With appropriate ontologies

Extract features
Reduce feature dimensionality

Train a classification model
= Typically supervised

Validate the model

m Most significant challenges:
Acquiring sufficiently large annotated datasets
Designing features that encapsulate relevant data
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Overview of the JMIR software

m |MIR Is software suite designed for
performing research in automatic music
classification

m Primary tasks performed:
Feature extraction
Machine learning
Data storage file formats

Dataset management
= Acquiring, correcting and organizing metadata
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Characteristics of JMIR

Has a separate software component to address
each important aspect of automatic music
classification

Each component can be used independently
Can also be used as an integrated whole

m Free and open source

m Architectural emphasis on providing an
extensible platform for iteratively developing new
techniques and algorithms

m Interfaces designed for both technical and non-
technical users

m Facilitates multimodal research
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JMIR components

JAudio: Audio feature extraction

jSymbolic: Feature extraction from MIDI files
JWebMiner: Cultural feature extraction

jLyric: Extracts features from lyrical transcriptions
ACE: Meta-learning classification engine

ACE XML: File formats
Features, feature metadata, instance metadata and ontologies

lyrickFetcher: Lyric mining

Codaich, Bodhidharma MIDI and SLAC: datasets
MusicMetaManager: Metadata management
jSongMiner: Metadata harvesting

JMIRUTtllities: Infrastructure for conducting experiments
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Efficacy of multimodal approaches?

m Can combining features extracted from audio,
symbolic, cultural and/or lyrical sources
significantly improve automatic music
classification performance?

Intuitively, they each seem to contain very different
kinds of information

m Can this help us break the seeming music
classification performance ceiling of 70% to 80%
for reasonably-sized taxonomies?

m This was studied empirically (McKay et al. 2010)

A follow-up on a similar earlier study (McKay 2010)
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Experimental methodology

m Extracted features from separate audio, symbolic,
cultural and lyrical sources of data
Corresponding to the same musical pieces
Using the JMIR feature extractors
m Compared ACE-based genre classification
performance of each of the 15 possible subsets of
these 4 feature groups

Audio, Symbolic + Audio, Cultural, Symbolic +
Cultural + etc.

Applied dimensionality reduction

10-fold cross-validation
m With reserved validation set

Wilcoxon signed-rank significance tests were used
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Musical dataset used: SLAC

m The SLAC Dataset was assembled for this
experiment
Symbolic Lyrical Audio Cultural

250 recordings belonging to 10 genres
m Collapsible to 5 genres

Audio and MIDI versions of each recording
m Acquired separately

Accompanying metadata that could be used
to extract cultural features from the web

Lyrics mined with lyricFetcher
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Results: 5-genre taxonomy

m All feature groups Classification Performance on 5-Genre
involving cultural o fexonomy .
features achieved | g : nirwwmimi
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Results: 10-genre taxonomy

m SAC achieved the Classification Performance on 10-Genre
g : T
best classification axonomy
accuracy of 89%

m All feature groups
that included
cultural features
achieved 81% or
higher

m Symbolic features Zf-:%_____________
alone performed at s (el L EIEL B R BRI
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Discussion: Combining feature types

. Combining features Average Classification Performance
typeS tended tO Based on the Number of Feature Types
Increase | - ——5 Genres —&—10 Genres
classification % w /%/(./J
performance on R
average S o - /§/$

<

m However, there 5" P
were exceptions s T 7

e.g. LC performed g

significantly less S &

well than C in the 5 i

10-genre - | | |
experlment 1 Numb2er of FeatureSTypes ‘
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Discussion: Feature type dominance

. C.U”!;.ral felatures f d 10-Genre Classification Performance of
signi Icant y OUtper orme Feature Sets Including and not Including
other feature types Cultural Features

u FOI’ the 10'genre taxonomy, —=— With Cultural Features —&— Without Cultural Features
all groups including cultural 100
features outperformed all
groups of the same size
that did not include cultural
features

m Symbolic features were
useful in general
Symbolic groups all

performed at 70% or
above

SAC was the best group
overall, at 89% 35

85 — ————— -
_4

70 /
65 T /%
60 —

Average Classification Accuracy (%)

1 2 3 4
Number of Feature Types
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Experimental conclusions

m Excellent overall genre classification results
were obtained

89% on 10 genres, compared to the best MIREX
audio-only result to date of 80% on 10 genres

As a side note, JMIR holds the MIREX record (2005)
for symbolic-only genre classification in a separate
experiment

m 84% on a 9-class taxonomy

m 46% on a 38-class taxonomy

m Combining feature types tended to improve
results

m Cultural features dominated
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Important research question

m Should research efforts be focused on
fingerprinting and cultural feature extraction
rather than bothering with extracting content-
based features?

Assuming reliable fingerprinting, this could result
In very high classification results

m However, this marginalizes the musicological
and music theoretical insights about musical
categories that can be achieved from
content-based analysis

m Cultural features are also of no or limited
utility for brand new music

[FBLY Centre for Interdisciplinary Research IEIE Y
in Music Media and Technology MARIE%{\LIE(QEPL LIS




" caryeiay - MIR
Introduction to jSymbolic

m Extracts features e F T
from MIDI files

m 111 implemented

features
By far the largest |- |
existing symbolic
feature s
catalogue e e e ;

Many are original |- : s
m An additional 49 — -
features are e S— . —

Sloie Saiinis

proposed but not | PO
yet implemented e e

| Pliny Sequints Stop Mayhach Featuie Waluis Sam Palkc

m Features saved e
tO ACE XML WA Ei o Exiuact Fustures
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J]Symbolic feature types (1/2)

m Instrumentation:

What types of instruments are present and which are given
particular importance relative to others?

Found experimentally to be the most effective symbolic feature
type (McKay & Fujinaga 2005)
m Texture:

How many independent voices are there and how do they
Interact (e.g., polyphonic, homophonic, etc.)?

m Rhythm:
Time intervals between the attacks of different notes
Duration of notes
What kinds of meters and rhythmic patterns are present?
Rubato?
m Dynamics:
How loud are notes and what kinds of dynamic variations occur?
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J]Symbolic feature types (2/2)

m Pitch Statistics:

What are the occurrence rates of different pitches and pitch
classes?

How tonal is the piece?
How much variety in pitch is there?

m Melody:
What kinds of melodic intervals are present?
How much melodic variation is there?
What kinds of melodic contours are used?
What types of phrases are used?

m Chords (planned):
What vertical intervals are present?

What types of chords do they represent?
How much harmonic movement is there?
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More on j]Symbolic

m Easy to add new features
Modular plug-in design

Automatic provision of all other feature values to each
new feature

Dynamic feature extraction scheduling that
automatically resolves feature dependencies

m A variety of histogram aggregators are used
Beat histograms
Pitch and pitch class histograms (including wrapped)
Instrumentation histograms
Melodic interval histograms

Vertical interval histograms and chord type
histograms
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Beat histogram example

m Beat histograms use
autocorrelation to calculate
the relative strengths of
different beat periodicities
within a signal

m | Wanna Be Sedated by The
Ramones (top)

Several harmonic peaks with
large spreads around them

m ‘Round Midnight by
Thelonious Monk (bottom)

Only one strong peak, with a
large low-level spread

[FBLY Centre for Interdisciplinary Research
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Chopin’s Nocturne in B, Op. 32, No. 1
A £

S 8
o= =
Piano £ g £ g s 2 2 P g
R4 ———d 2 2
I ——— ——

m  Average Note To Note Dynamics Change: 6.03 m  Orchestral Strings Fraction: 0
m  Chromatic Motion: 0.0769 m  Overall Dynamic Range: 62
m  Dominant Spread: 3 m  Pitch Class Variety: 7
m  Harmonicity of Two Strongest Rhythmic Pulses: 1 = Range: 48
m Importance of Bass Register: 0.2 _
= Interval Between Strongest Pitch Classes: 3 m  Relative Strength of Most Common Intervals: 0.5
m  Most Common Pitch Class Prevalence: 0.433 m  Size of Melodic Arcs: 11
m Note Density: 3.75 m  Stepwise Motion: 0.231
= Number of Common Melodic Intervals: 3 = Strength of Strongest Rhythmic Pulse: 0.321
= Number of Strong Pulses: 5 m  Variability of Note Duration: 0.293
m Variation of Dynamics: 16.4
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Mendelssohn's Pianoj’rio No. 2
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m  Average Note To Note Dynamics Change: 1.46 m  Orchestral Strings Fraction: 0.56
m  Chromatic Motion: 0.244 m  Overall Dynamic Range: 22
= Dominant Spread: 2 _ m  Pitch Class Variety: 7
m  Harmonicity of Two Strongest Rhythmic Pulses: 1 _
: m  Range: 39
m Importance of Bass Register: 0.373 _ Is:
= Interval Between Strongest Pitch Classes: 7 - Rglatlve Stren.gth of Most Common Intervals: 0.8
m  Most Common Pitch Class Prevalence: 0.39 m  Size of Melodic Arcs: 7.27
m  Note Density: 29.5 m  Stepwise Motion: 0.439
= Number of Common Melodic Intervals: 6 m  Strength of Strongest Rhythmic Pulse: 0.173
= Number of Strong Pulses: 6 m Variability of Note Duration: 0.104
m Variation of Dynamics: 5.98
[ Centre for Interdisciplinary Research =R MARIANOPOLI
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Feature value comparison

Average Note To Note Dynamic Change 6.03 1.46
Overall Dynamic Range 62 22
Variation of Dynamics 16.40 5.98

Note Density 3.75 29.50
Orchestral Strings Fraction 0.00 0.56
Variability of Note Duration 0.293 0.104
Chromatic Motion 0.077 0.244
Range 48 39
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Work to be done on jSymbolic

m Implement more features
49 proposed
Many others possible

m \Windowed feature extraction

m Parsers for more symbolic formats
Humdrum, OSC, MusicXML, etc.

m Output feature values using additional file
formats

Especially Weka ARFF

[FBLY Centre for Interdisciplinary Research BEl )
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More detaills?

m JAudio: Audio feature extraction
m |\WebMiner: Cultural feature extraction

m |yricketcher and jLyric: Lyric harvesting and feature
extraction

m ACE: Meta-learning classification engine

m ACE XML: File formats
Features, feature metadata, instance metadata, ontologies

m Codaich, Bodhidharma MIDI and SLAC: datasets

m |MusicMetaManager and jSongMiner: Metadata
management and harvesting

m General guestions?
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JAudio: An audio feature extractor

Implemented jointly with Daniel
McEnnis

Extracts features from audio files
MP3, WAV, AIFF, AU, SND

28 bundled core features
Mainly low-level, some high-level

Can automatically generate new
features using metafeatures and
aggregators

e.g. the change in a feature value
from window to window

Includes tools for testing new
features being developed

Synthesize audio, record audio,
sonify MIDI, display audio, etc.

[FBLY Centre for Interdisciplinary Research
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JWebMiner: A cultural feature extractor

m Extracts cultural features from the web
using search engine web services

m Calculates how often particular strings __
co-occur on the same web pages e

e_g_ hOW Often doeS “J_ .S_ BaCh” CO— . [ Co-. nnnnnnnnnnnnnnnnnnnn .-cuossmbmm;nEm.mmu|
occur on a web page with "Baroque’, T 0 0 0 0 0 = N T
compared to “Prokofiev’? T

Results are processed to remove noise
m Additional options:

Can assign weights to particular sites

Can enforce filter words

Permits synonyms

m Also calculates features based on e
Last.FM user tags frequencies
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lyrickFetcher

m lyricketcher automatically harvests lyrics from on-
line lyrics repositories

LyricWiki and LyricsFly
Queries based on lists of song titles and artist names
m Post-processing is applied to the lyrics in order to

make remove noise and make them sufficiently
consistent for feature extraction

Deals with situations where sections of lyrics are
abridged using keywords such as “chorus”, “bridge”,
‘verse’, efc.

Filters out keywords that could contaminate the lyrics
m Ruby implementation
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JLyrics

m Extracts features from lyrics stored in text files

m  Automated Readability Index Number of Segments

m  Average Syllable Count Per Word Number of Words

m  Contains Words Part-of-Speech Frequencies
m Flesh-Kincaid Grade Level Punctuation Frequencies

m  Flesh Reading Ease Rate of Misspelling

m  Function Word Frequencies Sentence Count

m Letter-Bigram Components Sentence Length Average

m Letter Frequencies Topic Membership Probabilities
m Letters Per Word Average Vocabulary Richness

m Letters Per Word Variance Vocabulary Size

m Lines Per Segment Average Word Profile Match

m Lines Per Segment Variance Words Per Line Average

= Number of Lines Words Per Line Variance

m Can also automatically generate word frequency profiles for
particular classes if training data is provided

m Central framework implemented in Java
Other technologies used by third-party components
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ACE: A meta-learning engine

Evaluates the relative
suitability of different
dimensionality reduction and
classification algorithms for a
given problem

Can also train and classify with

manually selected algorithms
Efvaluates algorithms in terms
o)

Classification accuracy

Consistency

Time complexity

Based on the Weka
framework, so new algorithms
can be added easily

[FBLY Centre for Interdisciplinary Research
in Music Media and Technology
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ACE XML: MIR research file formats

m Standardized file formats that can represent:
Feature values extracted from instances
Abstract feature descriptions and parameterizations
Instance labels and annotations
Class ontologies

m Designed to be flexible and extensible

Able to express types of information that are particularly
pertinent to music

m Allow JMIR components to communicate with each other
Can also be adopted for independent use by other software
m ACE XML 2.0 provides even more expressivity
e.g. potential for integration into RDF ontologies
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JMIR datasets

m Codaich is a MP3 research set

Carefully cleaned and labelled

The published 2006 version has 26,420 recordings
m Belonging to 55 genres
m IS constantly growing: currently 35,363 MP3s

m Bodhidharma MIDI has 950 MIDI recordings
38 genres of music
m SLAC consists of 250 matched audio recordings, MIDI

recordings, lyrical transcriptions and metadata that can
be used to extract cultural features

Useful for experiments on combining features from
different types of data

10 genres of music (in 5 pairs of similar genres)

[FBLY Centre for Interdisciplinary Research [FEE
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JMusicMetaManager: A dataset manager

Detects metadata
errors/inconsistencies and
redundant copies of
recordings

Detects differing metadata
values that should in fact be
the same

e.g. “Charlie Mingus” vs.

“Mingus, Charles”
Generates HTML inventory
and profile reports (39
reports in all)

Parses metadata from ID3
tags and iTunes XML

[FBLY Centre for Interdisciplinary Research
in Music Media and Technology
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£ jMusicMetaManager g@
Analysis Export  normation 3
Options | Report
58 iTune ¥ Use iTunes
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Browse Report Save W
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lllllllllllllllllllllllllllllllllllllllllllll
Remove all quotation marks ¥ Report artist breakdown
Reroe all single guotes and apostrophes ¥ Report composer breakedo el
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omert ™ and " 1o ¥ Report comment statistics
bz Al OCCur of . List artis e
Remove all spaces ! List composers by genre
v Report recordings missing key metadata
REORDERED WORD SUBSET SETTINGS: ¥| List artists with few recordings Cutoff (2-90): |6
| Check word ordering Min % Matches (1-100 |70 List composers with few recordings  Cutoff (2-00):
¥ Check word subsets Min % Matches (1-100k |20
MISCELLANEOQUS REPORTS:
EEEEEEEEEEEEE GS: Report exactly identical recording titles
BEGIN METADATA ANALYSIS
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jSongMiner

m Software for automatically acquiring formatted metadata about
songs, artists and albums

m Designed for use with the Greenstone digital library software

May also be used for other purposes, such as cultural feature extraction
m |dentifies music files

Uses Echo Nest fingerprinting functionality and embedded metadata

m Mines a wide range of metadata tags from the Internet and collates
them in a standardized way

Data extracted from The Echo Nest, Last.FM, MusicBrainz, etc.
Over 100 different fields are extracted

Data may be formatted into unqualified and/or qualified Dublin Core
fields if desired

m Saves the results in ACE XML or text
Can also be integrated automatically into a Greenstone collection

[FBLY Centre for Interdisciplinary Research IEIE
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