Combining Symbolic and Audio Musical Data: A Music Classification Perspective

Cory McKay
Marianopolis College
Montreal, Canada
Topics

- Introduction to automatic music classification
- Audio vs. symbolic data
- Improving classification performance
 - Experimental results
- Gaining insights into music
 - Experimental results
- Conclusions and next steps

Time permitting:
- Building a combined symbolic and audio dataset
 - OMR
- Musical creation using symbolic and audio data
 - Melomics
Automatic music classification

- Learn some way of mapping “features” extracted from an “instance” to one or more “classes”
 - Instance: an item to be classified
 - e.g. a song
 - Features: representative information extracted from an instance
 - e.g. amount or chromatic motion in a song, spectral flux, etc.
 - Class: a category of interest
 - e.g. a genre, mood, artist, user tag, etc.
 - Ideally organized into some kind of class ontology

- This mapping is typically learned using some form of machine learning
Audio vs. symbolic data

- Symbolic and audio music have traditionally been studied by distinct research communities
 - Often with entirely different backgrounds
 - Often with relatively little inter-communication

- This is true even at the ISMIR conference
 - Where the two communities arguably interact more than anywhere else

- This is a unfortunate
 - Each community has valuable insights that could benefit the other
The world according to audiophites

- Symbolic music is a **sparse representation** missing essential musical information
 - It contains little or no **timbral** information
 - And audiophites tend to emphasize timbre research
 - It holds relatively little explicit **expressive** information
 - Which audiophites tend to see as a primary focus of music

- Audio, on the other hand, contains everything that we hear
 - And, to most audiophites, **all of music is contained in what we hear**

- The main use of symbolic data is to generate audio data for experimental use
The world according to symbolicphites

- A piece of music is an **abstract entity**
 - A particular performance is only one of many possible interpretations of this essential entity

- **Timbre** and **emotion** are important, but they are primarily interpretation-specific performance choices
 - They are not the essential aspects of abstract pieces
 - And they are, to an extent, implicit in the score
 - e.g. instrumentation

- The main use of audio data is as something to extract symbolic data from
Bridging the symbaudic gap (1/2)

- Considered objectively, each of the representations contains information that the other does not
 - Symbolic data provides precise pitch and rhythm information that is independent of the interpretation
 - Audio data provides timbral and expressive information that is dependent on the interpretation
- This kind of information gain is very valuable for music classification (among other things)
 - And both abstract pieces and particular interpretations are fundamentally important to the human experience of music
- So, why not extract features from both symbolic and audio representations?
Furthermore, it is well-established that features that highlight information with high discriminatory power tend to outperform broader features.

- Even if the former are encapsulated in the latter.
- This is true physiologically and neurologically as well (e.g. the basilar membrane).

So, once again, combining symbolic and audio versions of pieces can improve classification performance.

- Even if the information in one representation were in fact fully encapsulated in the other (which it usually is not).

This all makes intuitive sense, but we need some empirical support…
Genre classification experiment

- McKay et al. (2010) performed genre classification experiments comparing the relative performance of different types of features.
- Used the SLAC dataset, which includes separately acquired:
 - Symbolic data
 - Lyrical data
 - Audio data
 - Cultural data
- Experimented with two genre taxonomies:
 - One with 5 classes and one with 10 classes
- All feature extraction and machine learning was done with jMIR music classification framework.
Experiment results: SA

Classification Performance on 5-Genre Taxonomy

Classification Performance on 10-Genre Taxonomy
Experiment results: SLAC

Classification Performance on 5-Genre Taxonomy

Class: S, A, SA, SLAC

Classification Performance on 10-Genre Taxonomy

Class: S, A, SA, SLAC
Experiment conclusions

- This experiment demonstrates with statistical significance that (for both the 5-genre and 10-genre experiments):
 - Combining features extracted from separate symbolic and audio data improved performance relative to individual performance
 - Adding features extracted from separate cultural and lyrical data improved results still further

- This supports the earlier philosophical arguments that a multimodal approach can significantly improve classification performance
Gaining insights into music (1/3)

- Classifying music is often considered a means to a mostly commercial end
 - e.g. recommendation, auto-tagging, etc.
- Unfortunately, relatively little attention is paid in the MIR community to what you can learn about music by classifying it
 - What makes one class of music different from another can be of significant musicological, music theoretical and psychologically importance
 - Automatic music classification provides a sorely missing empirical method for trying to better understand complex musicological issues like genre
Gaining insights into music (2/3)

- McKay and Fujinaga (2005) took a preliminary step in this direction by using genetic algorithms to evolve good feature weightings to classify MIDI music by genre
 - Using the Bodhidharma symbolic music classification system
- It turned out that 46% of feature weightings were assigned to instrumentation-based features
 - 24% were assigned to features based on pitch statistics
 - The remaining 30% were divided between features associated with rhythm, melody, texture and dynamics

- Theoretical conclusions:
 - Concerns associated with instrumentation should play a greater role in musicological genre studies

- Practical conclusions:
 - Audio classification systems could benefit from instrument identification modules
Gaining insights into music (3/3)

- Traditionally
 - Musicologists and music theorists tend to emphasize symbolic music
 - Engineers and psychologists tend to emphasize audio

- Valuable insights could be gained by combining knowledge, expertise and research from these different fields
 - And different types of data
Conclusions

- Combining symbolic and audio data has the potential to significantly increase classification performance
 - Reliable pitch and rhythm + timbre and expression
 - Abstract musical piece + particular realizations
 - Could potentially also benefit other areas of MIR research, including those related to similarity

- Collaborations between symbolic and audio researchers also holds great general potential for the sharing of knowledge and methodologies
 - Traditionally disjoint training across disciplines
 - Could help us learn to understand music better
Where to proceed from here

- There are many excellent tools for extracting features from both audio and symbolic data
 - These can easily be adapted to be processed by the machine learning framework of one’s choice
- **jMIR** is specifically designed to facilitate this kind of multimodal research
 - jAudio extracts features from audio
 - jSymbolic extracts features from MIDI
 - jWebMiner, jLyrics, jSongMiner, etc. extract information from other kinds of data
 - ACE provides metalearning functionality to process features extracted from diverse sources
 - jmir.sourceforge.net