CRIM, Machine Learning and Big Data: A Case Study on the Coimbra Manuscripts

Cory McKay
Marianopolis College, Canada

María Elena Cuenca
Universidad de Salamanca, Spain

Counterpoints: Renaissance Music and Scholarly Debate in the Digital Domain
Tours, France
November 15, 2019.
Topics

- Introduction to “features”
 - jSymbolic

- Musical style in the anonymous and doubtfully attributed mass movements of the Coimbra manuscripts
 - Qualitative analysis
 - Quantitative experiments

- Workshop
 - General discussion questions
 - CRIM data and the jSymbolic features
Big questions to think about

- What **existing** needs of music scholars can be addressed by computational approaches?
- What **new, different opportunities** for scholarship do computational approaches present?
- What **challenges and pitfalls** do computational approaches pose?
- How can we stimulate **collaboration and discussion** between domain experts (e.g. musicologists and data scientists)?
What is a “feature”?

- A piece of information that measures a characteristic of something (e.g. a piece of music) in a simple and consistent way
- Represented as a simple number
 - Can be a single value, or can be a set of related values (e.g. a histogram)
- Provides a summary description of the characteristic being measured
 - Usually macro, rather than local
- Can be extracted from pieces in their entirety, or from segments of pieces
Example: A basic feature

- **Range (1-D):** Difference in semitones between the highest and lowest pitches

- **Value of this feature:** 7
 - G - C = 7 semitones
Example: A histogram feature

- **Pitch Class Histogram:** Consists of 12 values, each representing the fraction of all notes belonging to an enharmonic pitch class.

- Graph on right shows feature values.
- Pitch class counts:
 - C: 3, D: 10, E: 11, G: 2
- Most common note is E:
 - 11/26 notes
 - Corresponds to a feature value of 0.423 for E

![Musical notes and graph](image)
Josquin’s *Ave Maria* . . . *virgo serena*

- **Range:** 34 (semitones)
- **Repeated notes:** 0.181 (18.1%)
- **Vertical perfect 4ths:** 0.070 (7.0%)
- **Rhythmic variability:** 0.032
- **Parallel motion:** 0.039 (3.9%)
Ockeghem’s Missa *Mi-mi* (Kyrie)

- Range: 26 (semitones)
- Repeated notes: 0.084 (8.4%)
- Vertical perfect 4ths: 0.109 (10.9%)
- Rhythmic variability: 0.042
- Parallel motion: 0.076 (7.6%)

![Missa Mi-mi: PC Histogram](image)
Feature value comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>Ave Maria</th>
<th>Missa Mi-mi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>34</td>
<td>26</td>
</tr>
<tr>
<td>Repeated notes</td>
<td>0.181</td>
<td>0.084</td>
</tr>
<tr>
<td>Vertical perfect 4(^{th})s</td>
<td>0.070</td>
<td>0.109</td>
</tr>
<tr>
<td>Rhythmic variability</td>
<td>0.032</td>
<td>0.042</td>
</tr>
<tr>
<td>Parallel motion</td>
<td>0.039</td>
<td>0.076</td>
</tr>
</tbody>
</table>

Ave Maria: PC Histogram

![Ave Maria: PC Histogram](image1)

Missa Mi-mi: PC Histogram

![Missa Mi-mi: PC Histogram](image2)
Comparing features

- Comparing pairs of pieces like this in terms of features can be very revealing
 - Especially when that comparison involves hundreds or thousands of features, not just six

- Things get even more interesting, however, when comparisons are made between hundreds or thousands of pieces, not just two
 - Especially when the music is aggregated into groups, which can then be contrasted collectively
 - e.g. comparing composers, genres, regions, time periods, etc.
How can we use features? (1/3)

- Manual analysis to look for patterns
- Applying statistical analysis and visualization tools to study features extracted from large collections of music
 - Highlight patterns
 - Measure how similar various types of music are
 - Study the relative musical importance of various features
 - Observe unexpected new things in the music
- Perform sophisticated content-based searches of large musical databases
 - e.g. find all pieces with less than X amount of chromaticism and more than Y amount of contrary motion
 - e.g. the SIMSSA DB
How can we use features? (2/3)

- Use **supervised machine learning** to classify music
 - Done by training models on **pre-labelled** data
 - Can study music using whatever categories (“classes”) one is interested in
 - e.g. composer, genre, style, time period, culture, region, etc.
 - Sample applications we have already explored:
 - Identify the composers of unattributed musical pieces
 - Explore the stylistic origins of genres (e.g. madrigals)
 - Delineate regional styles (e.g. Iberian vs. Franco-Flemish)
How can we use features? (3/3)

- Use **unsupervised machine learning** to cluster music
 - Done by training models on **unlabelled** data
 - Can study how the model groups pieces based on statistical **similarity**
 - And then see if we can find meaning in these groups
Benefits of features

- Can quickly perform consistent empirical studies involving huge quantities of music
- Can be applied to diverse types of music in consistent ways
- Permit simultaneous consideration of thousands of features and their interrelationships
 - One can statistically condense many features into more interpretable low-dimensional spaces when needed
- No need to formally specify any queries or heuristics before beginning analyses
 - Unless one wants to, of course
- Help to avoid potentially incorrect ingrained assumptions and biases
jSymbolic: Introduction

- **jSymbolic** is a software platform for extracting features from symbolic music
 - Part of the much larger (multimodal) *jMIR* package
- Compatible with **Macs, PCs and Linux computers**
- Free and **open-source**
jSymbolic: Features extracted

- The current release version (2.2) extracts 246 unique features
 - 1497 distinct values when multi-dimensional features (e.g. histograms) are expanded
- Characteristics examined include:
 - Pitch statistics
 - Melody / horizontal intervals
 - Chords / vertical intervals
 - Texture
 - Rhythm
 - Instrumentation
 - Dynamics
jSymbolic: User interfaces

- Graphical user interface
- Command line interface
- Java API
jSymbolic: Manual

- Extensive manual includes:
 - Detailed feature descriptions
 - Detailed instructions on installation and use

- There is also a step-by-step tutorial with worked examples
jSymbolic: Extensibility

- jSymbolic is specifically designed such that music scholars can design their own features and work with programmers to then very easily add these features to the jSymbolic infrastructure
 - Fully open source
 - Modular plug-in feature design
 - Automatically handles feature dependencies and scheduling
 - Very well-documented code
The Coimbra research project

- Computational approaches, expert theoretical analyses and historical studies can complement one another extremely well.

- There are many additional opportunities for joint future research of this kind in a wide range of musical domains.
The Coimbra research project

P-Cug MM 9, ff. 1v-2r
Polyphonic repertoires in Portugal

Polyphonic repertoires in Portugal

Polyphonic repertoires in Portugal

- The Anatomy of Late 15th- and Early 16th-Century Iberian Polyphonic Music project at the Lisbon Nova University and CESEM (FCT-funded project, PTDC/CPC-MMU/0314/2014, led by João Pedro d’Alvarenga).
Objective

- To provide insights on whether there was circulation of foreign repertoire or not, and on the possible prevalence of Franco-Dutch repertoires in the manuscripts copied in Coimbra.
- To present an initial analysis of the anonymous and doubtfully attributed masses and loose movements.
- To discuss a statistical analysis of these works using the jSymbolic software.
Number and percentages of masses and works of Franco-Flemish, Iberian or unknown origin

<table>
<thead>
<tr>
<th>Sources</th>
<th>No. of masses</th>
<th>No. of Franco-Flemish works</th>
<th>No. of Iberian works</th>
<th>No. of anonymous works</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Cug MM 2 [c.1530-1535]?</td>
<td>12/12 = 100%</td>
<td>11/12 = 91%</td>
<td>0/12 = 0%</td>
<td>1/12 = 1,5% (only one mass movement)</td>
</tr>
<tr>
<td>P-Cug MM 6 [c.1540-c.1555]</td>
<td>1/22 = 4,5%</td>
<td>0/22 = 0%</td>
<td>4/22 = 18,1%</td>
<td>18/22 = 81,8%</td>
</tr>
<tr>
<td>P-Cug MM 7 Mid-16th century</td>
<td>1/24 = 4,1%</td>
<td>0/24 = 0%</td>
<td>0/24 = 0%</td>
<td>24/24 = 100%</td>
</tr>
<tr>
<td>P-Cug MM 9 [c.1545-c.1550]</td>
<td>6/40 = 15%</td>
<td>5/40 = 12,5%</td>
<td>7/40 = 17,5%</td>
<td>28/40 = 70%</td>
</tr>
<tr>
<td>P-Cug MM 12 [c.1540-c.1550]</td>
<td>8/64 = 12,5%</td>
<td>3/64 = 4,6%</td>
<td>30/64 = 46,8%</td>
<td>31/64 = 48,4%</td>
</tr>
<tr>
<td>P-Cug MM 32 Mid-16th century (c.1540-c.1555) and late 16th century</td>
<td>0/74 = 0%</td>
<td>7/74 = 9,4%</td>
<td>21/74 = 28,3%</td>
<td>46/74 = 62,1%</td>
</tr>
</tbody>
</table>
Anonymous and doubtfully attributed mass movements of the Coimbra Manuscripts selected as a case study

<table>
<thead>
<tr>
<th>No.</th>
<th>ff.</th>
<th>Work</th>
<th>Vv</th>
<th>Autorship attributions</th>
<th>Concordant sources</th>
<th>Edited and observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1v-7r</td>
<td>[Missa Salve regina] Kyrie, Gloria</td>
<td>4/5</td>
<td>(Do Pregador)</td>
<td>P-Cug MM 9, ff. 104v-105r</td>
<td>Cuenca’s edition</td>
</tr>
<tr>
<td>2</td>
<td>8v-18r</td>
<td>Credo, Sanctus, Benedictus, Agnus Dei</td>
<td></td>
<td></td>
<td></td>
<td>Cuenca’s edition</td>
</tr>
<tr>
<td>3</td>
<td>19v-22r</td>
<td>[Missa] Kyrie, Gloria, Sanctus, Agnus Dei</td>
<td>4</td>
<td></td>
<td></td>
<td>Cuenca’s edition</td>
</tr>
<tr>
<td>4</td>
<td>73v-80r</td>
<td>[Missa] Kyrie, Gloria</td>
<td>4</td>
<td></td>
<td></td>
<td>Cuenca’s edition</td>
</tr>
<tr>
<td></td>
<td>Page</td>
<td>Title</td>
<td>Number</td>
<td>Notes</td>
<td>Cuenca’s edition</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>--</td>
<td>--------</td>
<td>--</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>80v</td>
<td>(1) Et incarnatus</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>81r</td>
<td>(2) Et incarnatus</td>
<td>4</td>
<td></td>
<td>Cuenca’s edition</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>81v-88r</td>
<td>Credo, Sanctus</td>
<td>4/5</td>
<td>[Tordesillas]</td>
<td>Cuenca’s edition</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>88v-89r</td>
<td>Agnus</td>
<td>4</td>
<td>Tordesillas? Doubtful Agnus Dei. Identical beginning, but from bar 7 onwards it’s different.</td>
<td>Cuenca’s edition</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>90v-91r</td>
<td>[Missa] Kyrie</td>
<td>4</td>
<td>DE:RIBEIRA E-TZ Ms. 2-3, ff. cxciv-clxxir, ‘Tordesillas’. This Kyrie is part of the mass attributed to Tordesillas</td>
<td>Cuenca’s edition</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>93v-94r</td>
<td>Credo (opening of S and T parts), 94r blank</td>
<td></td>
<td>[Tordesillas] = no. 7 f. 94r, different hand: ‘Este Credo e os Sanctus ficam a tras a folhas 8i não tem Agnus’. (= no. 8)</td>
<td>Kreitner’s Tordesillas</td>
<td></td>
</tr>
<tr>
<td>Masses and Mass movements in P-Cug MM 9 [mid or late 1540s]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missa De leirea [Leiria?]</td>
<td>4</td>
<td>(unicum)</td>
<td>Cuenca’s edition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missa A batalha (K G S A)</td>
<td>4</td>
<td>[Janequin]</td>
<td>P-Cug MM 6, ff. 28v-32r [Credo]; I-CFm Cod. LIII, ff. 167v–177r; I-Bc Q.25, ff. 1r-4v; A-Wn Mus.Hs. 15499 Mus, ff. 63v–88r; I-CMac P(E), ff. 54v–63r.</td>
<td>Cuenca’s edition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missa, Bruxel (K G S A)</td>
<td>4</td>
<td>[Diego Bujel? or “from Brussels”?]</td>
<td>(unicum)</td>
<td>Cuenca’s edition</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Masses and Mass movements in *P-Cug* MM 9 [mid or late 1540s]

<table>
<thead>
<tr>
<th>18</th>
<th>88v-97r+[159v-165]r</th>
<th>Missa Da morte et fortuna (KGC)</th>
<th>4</th>
<th>[Jacquet de Berchem]</th>
<th>It’s not the same as E-Tc Ms. 28, ff. 70v-98r.</th>
<th>Cuenca’s edition (only Kyrie; the remaining movements can’t be seen because of ink corrosion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>98v-103r</td>
<td>[15] Missa (KGSA)</td>
<td>4</td>
<td>Verdeloth [?]</td>
<td>(unicum)</td>
<td>Cuenca’s edition (except tenor in S and the full Agnus Dei due to ink corrosion)</td>
</tr>
</tbody>
</table>

Masses and Mass movements in *P-Cug* MM 6 [mid or late 1540s]

<table>
<thead>
<tr>
<th>20</th>
<th>28v-32r</th>
<th>Credo</th>
<th>4</th>
<th>Cuenca’s edition</th>
</tr>
</thead>
</table>
Janequin’s *Missa La Bataille* (Agnus Dei III, bb. 66-71) in Moderne’s *Liber decem missarum* (1532)
Janequin’s *Missa La Bataille* (Gloria bb. 34-38) in Moderne’s *Liber decem missarum* (1532) (above) and in *P-Cug* MM. 9, 68v-76r
Berchem’s *Missa da morte et fortuna* (Kyrie, bb. 1-6)

Source: P-Cug 9, ff. 88v-97r

[Jacquet de Berchem]

María Elena Cuenca Rodríguez (ed.)
Elaborated cadence at the end of Kyrie in Missa no. 3 (bb. 55-58)
Peñalosa, Anchieta, Escobar, and Tordesillas’ archetypical melody for “Crucifixus” (Credo)

Peñalosa's *Por la mar* mass. Altus voice, bb. 97-100.

Peñalosa's *Adieu mes amours* mass. Superius voice, bb. 70-74; bassus in imitation.

Peñalosa's *Nunca fue pena mayor* mass. Superius, bb. 96-100; altus and bassus in imitation.

Peñalosa's *Ave María Peregrina* mass. Altus, bb. 118-122.

Anchieta's *De Nuestra Señora* mass. Superius, bb. 91-96.

Escobar's *Sine nomine* mass. Superius, bb. 87-103.

Tordesilla's *Sine nomine* mass. Tenor, bb. 98-103.
Prolonged cadence in Bruxel’s Sanctus from his mass (no. 17 in Table 2) (bb. 50-55)
Beginning of Sanctus in Verdelot’s Missa Philomena (above) and Mass no. 19 (below)
‘Et incarnatus’ from Credo no. 5 in *P-Cug* MM 12, ff. 80v
Agnus Dei no. 8 (above) and Tordesillas’s Agnus Dei from Missa Sine nomine in E-Tz 2-3 (below)
Elaborated cadence at the end of Kyrie no. 9
Elaborated cadence at the end of Kyrie in Missa no. 3 (bb. 55-58)
Ink corrosion in P-Cug MM 12, ff. 95v-96r (mass no. 12 in handout)
Quantitative Coimbra experiments

- We also performed a series of quantitative experiments using features, statistical analysis and machine learning.
Our dataset: 603 MIDI files

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Mass Movements</th>
<th>Motets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coimbra</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>Franco-Flemish</td>
<td>245</td>
<td>151</td>
</tr>
<tr>
<td>Iberian</td>
<td>78</td>
<td>91</td>
</tr>
</tbody>
</table>

- **Secure Franco-Flemish composers** *(from the Josquin Research Project)*:
 - Alexander Agricola, Antoine Busnois, Loyset Compère, Josquin des Prez, Jacob Obrecht, Johannes Ockeghem, Marbrianus de Orto, Pierre de la Rue

- **Secure Iberian composers** *(from the Anatomy of Late 15th- and Early 16th-Century Iberian Polyphonic Music project)*:
 - Alonso de Alba, Juan de Anchieta, Pedro de Escobar, Alonso Mondejar, Francisco de Peñalosa, Antonio de Ribera, Rivafrecha, Sanabria, Tordesillas, Juan de Urrede, Vasco Pires, Juan Illario, a few anonymous works

- All are 15th or early 16th century works
Feature extraction

- The same **553 features** were extracted from all these MIDI files
 - These served as the basis of all experiments described on the following slides
- The remaining **944 jSymbolic features** were excluded because of inconsistencies in data transcription and encoding
 - e.g. varying note durations
 - e.g. notes encoded as piano rather than voice
- These inconsistencies exist because the data was drawn from different sources
 - Each corpus used different preparation workflows
Experiment 1: Cross-validation

- Research questions:
 - How well are the secure Franco-Flemish and Iberian groups separated from one another stylistically?
 - Are these stylistic differences evident in both masses and motets?
 - Are the Coimbra mass movements statistically distinguishable from the Franco-Flemish and Iberian groups?

- Methodology:
 - Used machine learning to train classifiers to automatically distinguish between the different groups, based on the extracted jSymbolic features
 - Tested masses and motets separately, as well as together
Experiment 1: Classification accuracies

<table>
<thead>
<tr>
<th>Music Being Compared</th>
<th>Average Classification Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF and Ib, masses and motets</td>
<td>93.6%</td>
</tr>
<tr>
<td>FF and Ib, only motets</td>
<td>91.7%</td>
</tr>
<tr>
<td>FF and Ib, only masses</td>
<td>95.4%</td>
</tr>
<tr>
<td>FF, Ib and Coimbra, only masses</td>
<td>89.5%</td>
</tr>
<tr>
<td>FF, Ib and Coimbra, masses and motets</td>
<td>90.4%</td>
</tr>
</tbody>
</table>

- Rows 1 to 3 indicate that:
 - The Franco-Flemish and Iberian works are well-separated stylistically
 - This is true for both motets and masses, but mass movements are especially easily distinguishable (95.4%)
Experiment 1: Classification accuracies

<table>
<thead>
<tr>
<th>Music Being Compared</th>
<th>Average Classification Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF and Ib masses and motets</td>
<td>93.6%</td>
</tr>
<tr>
<td>FF and Ib only motets</td>
<td>91.7%</td>
</tr>
<tr>
<td>FF and Ib only masses</td>
<td>95.4%</td>
</tr>
<tr>
<td>FF, Ib and Coimbra only masses</td>
<td>89.5%</td>
</tr>
<tr>
<td>FF, Ib and Coimbra masses and motets</td>
<td>90.4%</td>
</tr>
</tbody>
</table>

Rows 4 and 5 suggest that:

- The Coimbra mass movements are also well-separated from the Franco-Flemish and Iberian music... or are they?
- Actually, we need to look at the confusion matrices to verify
 - The Coimbra mass movements only represent 6.3% of the dataset
 - Their particular performance can thus be obscured
Experiment 1: Confusion matrices

<table>
<thead>
<tr>
<th>True Label</th>
<th>Classified as Coimbra</th>
<th>Classified as FranFlem</th>
<th>Classified as Iberian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coimbra masses</td>
<td>27</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>FF masses</td>
<td>2</td>
<td>236</td>
<td>7</td>
</tr>
<tr>
<td>Iberian masses</td>
<td>8</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>Coimbra masses & motets</td>
<td>27</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>FranFlem masses & motets</td>
<td>7</td>
<td>377</td>
<td>12</td>
</tr>
<tr>
<td>Iberian masses & motets</td>
<td>7</td>
<td>21</td>
<td>141</td>
</tr>
</tbody>
</table>

- So, only some (a little under $\frac{3}{4}$) Coimbra mass movements are easily separable from the Franco-Flemish and Iberian music.
 - So there is something distinctive about them, but there is also overlap.
Experiment 1: Confusion matrices

<table>
<thead>
<tr>
<th>True Label</th>
<th>Classified as Coimbra</th>
<th>Classified as FranFlem</th>
<th>Classified as Iberian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coimbra masses</td>
<td>27</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>FF masses</td>
<td>2</td>
<td>236</td>
<td>7</td>
</tr>
<tr>
<td>Iberian masses</td>
<td>8</td>
<td>10</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>True Label</th>
<th>Classified as Coimbra</th>
<th>Classified as FranFlem</th>
<th>Classified as Iberian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coimbra masses & motets</td>
<td>27</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>FranFlem masses & motets</td>
<td>7</td>
<td>377</td>
<td>12</td>
</tr>
<tr>
<td>Iberian masses & motets</td>
<td>7</td>
<td>21</td>
<td>141</td>
</tr>
</tbody>
</table>

- For those that are “misclassified”, they are almost always (95.4% of the time) classified as Iberian!
 - This suggests that at least some of them are closer in style to Iberian than Franco-Flemish music
Experiment 2: Classifying individual Coimbra mass movements

- **Research question:**
 - Are the *individual* Coimbra mass movements more Iberian or Franco-Flemish in style?

- **Methodology:**
 - Trained two classification models on the secure Franco-Flemish and Iberian music (only)
 - One classifier was trained on both motets and mass movements
 - One classifier was trained on only mass movements
 - Used these trained models to classify each Coimbra mass movement separately
 - Each could only be classified as Franco-Flemish or Iberian (i.e. there was no longer a Coimbra class)
Experiment 2: Results

<table>
<thead>
<tr>
<th>Coimbra Mass Movement</th>
<th>Trained on Masses and Motets</th>
<th>Trained on Masses Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Missa Salve Regina, Benedictus, P-Cug 12</td>
<td>Franco-Flemish</td>
<td>Iberian</td>
</tr>
<tr>
<td>3. Missa Kyrie P-Cug 12</td>
<td>Franco-Flemish</td>
<td>Iberian</td>
</tr>
<tr>
<td>3. Missa Sanctus P-Cug 12, f. 26v</td>
<td>Franco-Flemish</td>
<td>Iberian</td>
</tr>
<tr>
<td>4. Missa Sine nomine anónima, Kyrie P-Cug 12</td>
<td>Franco-Flemish</td>
<td>Franco-Flemish</td>
</tr>
<tr>
<td>18. Missa Da Morte e fortuna, Berchem, Kyrie P-Cug 9</td>
<td>Franco-Flemish</td>
<td>Iberian</td>
</tr>
</tbody>
</table>

- **84.2%** (all but 6 / 38) of the Coimbra mass movements were classified as Iberian by **both** of the 2 classifiers
 - The 6 exceptions are shown on the table above
- **97.3%** (all but one) were classified as **Iberian** by the model specialized in mass movements
 - Recall that all the Coimbra pieces are mass movements
Experiment 2: Results

These results suggests that the Coimbra mass movements are, as a whole, more Iberian than Franco-Flemish in character.

Although results for individual mass movements should not be interpreted as perfectly authoritative, the overall pattern is clear and convincing.

<table>
<thead>
<tr>
<th>Coimbra Mass Movement</th>
<th>Trained on Masses and Motets</th>
<th>Trained on Masses Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Missa Salve Regina, Benedictus, P-Cug 12</td>
<td>Franco-Flemish</td>
<td>Iberian</td>
</tr>
<tr>
<td>3. Missa Kyrie P-Cug 12</td>
<td>Franco-Flemish</td>
<td>Iberian</td>
</tr>
<tr>
<td>3. Missa Sanctus P-Cug 12, f. 26v</td>
<td>Franco-Flemish</td>
<td>Iberian</td>
</tr>
<tr>
<td>4. Missa Sine nomine anónima, Kyrie P-Cug 12</td>
<td>Franco-Flemish</td>
<td>Franco-Flemish</td>
</tr>
<tr>
<td>18. Missa Da Morte e fortuna, Berchem, Kyrie P-Cug 9</td>
<td>Franco-Flemish</td>
<td>Iberian</td>
</tr>
</tbody>
</table>
Experiment 3: Feature analysis

- Research question (putting the Coimbra mass movements aside for the moment):
 - Which particular musical characteristics best separate the Franco-Flemish and Iberian masses and motets?

- Methodology:
 - Used statistical analysis (absolute Pearson correlation co-efficient) to see which features are most strongly correlated with each type of music.
Experiment 3: Overall results

- **Motets:**
 - Differences between Iberian and Franco-Flemish music are primarily *melodic*
 - *Vertical* elements play a secondary role

- **Mass movements:**
 - Features differentiating Iberian music from Franco-Flemish music are *more varied* than in motets
 - *Vertical* aspects now play a greater role than *melodic* aspects
 - Other individual features like *range* and *diversity in the number of distinct pitches* are more important still

- **Mass movements and motets combined:**
 - *Melodic* features once again emerge as the most important
Experiment 3: MotetsOnlyNoCoimbra most discriminating features

- 0.640719 Prevalence_of_Most_Common_Melodic_Interval
- 0.545375 Mean_Melodic_Interval
- 0.535871 Direction_of_Melodic_Motion
- 0.519188 Melodic_Sevenths
- 0.509731 Voice_Separation
- 0.506414 Melodic_Interval_Histogram_10
- 0.494385 Melodic_Large_Intervals
- 0.489793 Melodic_Octaves
- 0.489793 Melodic_Interval_Histogram_12
- 0.488229 Melodic_Sixths
- 0.476709 Melodic_Interval_Histogram_9
- 0.473214 Wrapped_Vertical_Interval_Histogram_4
- 0.473127 Melodic_Interval_Histogram_16
- 0.468809 Vertical_Interval_Histogram_7
- 0.467444 Melodic_Interval_Histogram_17
- 0.462648 Melodic_Interval_Histogram_14
- 0.445186 Melodic_Interval_Histogram_8
- 0.442547 Melodic_Interval_Histogram_5
- 0.442547 Melodic_Perfect_Fourths
- 0.441235 Average_Interval_Spanned_by_Melodic_Arcs
Experiment 3: MassesOnlyNoCoimbra most discriminating features

- 0.695843 Range
- 0.632123 Number_of_Pitches
- 0.458177 Chord_Duration
- 0.456041 Relative_Size_of_Melodic_Intervals_in_Lowest_Line
- 0.450811 Pitch_Variability
- 0.416166 Vertical_Interval_Histogram_15
- 0.408743 Complete_Rests_Fraction
- 0.384314 Prevalence_of_Most_Common_Pitch
- 0.384138 Vertical_Interval_Histogram_27
- 0.377422 Number_of_Pitch_Classes
- 0.372288 Vertical_Interval_Histogram_19
- 0.360324 Partial_Rests_Fraction
- 0.343436 Vertical_Interval_Histogram_5
- 0.341496 Number_of_Common_Pitches
- 0.339544 Prevalence_of_Dotted_Notes
- 0.329670 Wrapped_Vertical_Interval_Histogram_3
- 0.324811 Wrapped_Vertical_Interval_Histogram_5
- 0.324811 Vertical_Perfect_Fourths
- 0.323448 Total_Number_of_Notes
- 0.320974 Relative_Note_Density_of_Highest_Line
Experiment 3:
MassesAndMotetsNoCoimbra most discriminating features

- 0.44709 Prevalence_of_Most_Common_Melodic_Interval
- 0.41496 Direction_of_Melodic_Motion
- 0.41302 Mean_Melodic_Interval
- 0.41007 Melodic_Sevenths
- 0.40328 Melodic_Interval_Histogram_10
- 0.40238 Vertical_Interval_Histogram_27
- 0.39769 Melodic_Large_Intervals
- 0.38499 Melodic_Interval_Histogram_12
- 0.38499 Melodic_Octaves
- 0.38236 Melodic_Interval_Histogram_16
- 0.37937 Melodic_Interval_Histogram_17
- 0.37482 Melodic_Interval_Histogram_14
- 0.3745 Voice_Separation
- 0.37384 Melodic_Sixths
- 0.37093 Melodic_Interval_Histogram_9
- 0.35815 Total_Number_of_Notes
- 0.35737 Partial_Rests_Fraction
- 0.35694 Average_Interval_Spanned_by_Melodic_Arcs
- 0.35501 Melodic_Interval_Histogram_13
- 0.35398 Number_of_Pitches
Experiment 3: Caveats

- The Pearson correlation co-efficient only considers features individually
 - In practice, how features vary in groups can be more important
 - We will leave a more sophisticated analysis to future research
- Many **Rhythmic features** were excluded from this study
 - Due to transcription and encoding inconsistencies in the data
 - Informal initial studies we performed suggest that rhythm may indeed play an important role
 - Studies are needed with more consistently encoded data
- **jSymbolic** does not (yet!) measure features based on:
 - Cadences
 - Imitation
 - Text
Final comments (1/3)

- The Coimbra manuscripts, and Portugal, were strongly influenced by international styles (and vice versa?):
 - Spanish-style repertoires
 - Northern-style masses
Final comments (2/3)

- Influences include:
 - Foreign masses circulated in Portugal
 - Iberian composers influenced by Northern styles

- The Coimbra works were adapted to the performative context of the Santa Cruz chapel
 - As happened in the case of Janequin's mass
Franco-Flemish elements in the polyphony seem to have been received mostly through Spanish masses

- Which were influenced by Burgundian and French composers

This Spanish-influenced merged style was transmitted to Portugal through numerous anonymous and doubtfully attributed masses
Future related research

- Learn more about the reception of French works by Janequin, Verdelot, or Richafort
 - And their influence on Iberian polyphony
- Extend this case study to other genres
 - e.g. motets, hymns, or anonymous lamentations in Portuguese manuscripts
 - Others are doing promising work already
Thanks for your attention!

- E-mail: cory.mckay@mail.mcgill.ca
- E-mail: elenacrodi@usal.es
General discussion questions

- What musical questions and problems can be most interestingly addressed by machine learning?
 - Both in general and with respect to the CRIM project?
- How can music scholars work interactively with machine learning algorithms in ways that the algorithms benefit from their expertise and they benefit from computational processing?
 - Can scholars use “opaque” models trained by machine learning (e.g. from deep learning), or are only less powerful but more transparent machine learning algorithms (e.g. decision trees) useful?
- What additional statistical analysis tools outside of machine learning can scholars make use of?
- What kinds of musical features would scholars most like to see computationally extracted from music?
- How can existing frameworks like CRIM, jSymbolic, music21 and Humdrum be improved to meet the needs of music scholars, both in general and with respect to machine learning?
 - Is there a need for new kinds of frameworks?
Working with the CRIM corpus (1/2)

- How can we use these methods to explore the CRIM corpus?
- What patterns of similarity might be revealed?
 - Could these methods reveal clusters of music that we might expect?
 - e.g. associate the component movements of Masses with one another
 - Could these methods reveal meaningful patterns that we might not anticipate?
 - And how can we evaluate what these patterns mean, and if they are useful?
- How can we use the CRIM observational metadata and relationships to inform machine learning?
Working with the CRIM corpus (2/2)

- The jSymbolic features have been pre-extracted from the CRIM data:
 - Posted as CSV files, for ease of access
 - https://drive.google.com/open?id=1MoyAyM01-gZNZTDlbZc8bp4rYfS2vInN

- Exists in two versions:
 - Full version: all features
 - Safe(r) version: features resilient to inconsistent data encoding practices

- Please feel free to download jSymbolic and use it to explore and experiment with this data