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Topics

◼ Context: Computation and musicology

◼ Intro to features and machine learning

◼ jSymbolic

◼ Sample research with jSymbolic

Sidebar: Avoiding encoding bias

◼ jMIR, SIMSSA and MIRAI

◼ Demo of jSymbolic and Weka
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Software and statistics

◼ Automated software tools and statistical 

analysis techniques allow us to:

Study huge quantities of music very quickly

◼ More than any human could reasonably look at

Empirically validate (or repudiate) our 

theoretical predictions

Do purely exploratory studies of music

See music from fresh perspectives
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Human involvement is crucial

◼ Of course, computers certainly cannot replace the 
expertise and insight of musicologists and 
theorists
 Computers instead serve as powerful tools and 

assistants that allow us to greatly expand the scope
and empirical supportability of our work

◼ Computers do not understand or experience music 
in ways at all similar to humans
 We must pose the research questions for them to 

investigate

 We must interpret the results they present us with

◼ Music is, after all, defined by human experience, 
not some “objective” external truth



5 / 93

Big questions to think about

◼ What existing needs of music scholars can 
be addressed by computational approaches?

◼ What new, different opportunities for 
scholarship do computational approaches 
present?

◼ What challenges and pitfalls do 
computational approaches pose?

◼ How can we stimulate discussions and 
collaborations between domain experts (e.g. 
musicologists and data scientists)?
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What is a “feature”?

◼ A piece of information that measures a 
characteristic of something (e.g. a piece of 
music) in a simple and consistent way

◼ Represented as simple number(s)
Can be a single value, or can be a set of 

related values (e.g. a histogram)

◼ Provides a summary description of the 
characteristic being measured
Usually macro, rather than local

◼ Can be extracted from pieces in their 
entirety, or from segments of pieces
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Example: A basic feature

◼ Range (1-D): Difference in semitones 

between the highest and lowest pitches

◼ Value of this feature: 7

G - C = 7 semitones
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Example: A histogram feature
◼ Pitch Class Histogram: Consists of 12 values, each representing the 

fraction of all notes belonging to an enharmonic pitch class 

◼ Graph on right shows 
feature values 

◼ Pitch class counts:
 C: 3, D: 10, E: 11, G: 2

◼ Most common note is E:
 11/26 notes

 Corresponds to a feature 
value of 0.423 for E

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F
ra

c
ti

o
n

 o
f 

N
o

te
s

Pitch Class (Untransposed)



9 / 93

Josquin’s Ave Maria . . . virgo serena

◼ Range: 34 (semitones)

◼ Repeated notes: 0.181 (18.1%)

◼ Vertical perfect 4ths: 0.070 (7.0%)

◼ Rhythmic variability: 0.032

◼ Parallel motion: 0.039 (3.9%)
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Ockeghem’s Missa Mi-mi (Kyrie)

◼ Range: 26 (semitones)

◼ Repeated notes: 0.084 (8.4%)

◼ Vertical perfect 4ths: 0.109 (10.9%)

◼ Rhythmic variability: 0.042

◼ Parallel motion: 0.076 (7.6%)
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Feature value comparison

Feature Ave Maria Missa Mi-mi

Range 34 26

Repeated notes 0.181 0.084

Vertical perfect 4ths 0.070 0.109

Rhythmic variability 0.032 0.042

Parallel motion 0.039 0.076
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Comparing features

◼ Comparing pairs of pieces like this in terms of 
features can be very revealing

Especially when that comparison involves 
hundreds or thousands of features, not just six

◼ Things get even more interesting, however, 
when comparisons are made between 
hundreds or thousands of pieces, not just two

Especially when the music is aggregated into 
groups, which can then be contrasted collectively

e.g. comparing composers, genres, regions, time 
periods, etc.
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How can we use features? (1/3)

◼ Manual analysis to look for patterns

◼ Applying statistical analysis and visualization tools to 
study features extracted from large collections of 
music
 Highlight patterns

 Measure how similar various types of music are

 Study the relative musical importance of various features

 Observe unexpected new things in the music

◼ Perform sophisticated content-based searches of large 
musical databases
 e.g. find all pieces with less than X amount of 

chromaticism and more than Y amount of contrary motion

 e.g. the SIMSSA DB
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How can we use features? (2/3)

◼ Use supervised machine learning to classify 
music

Done by training models on pre-labelled data

Can study music using whatever categories 
(“classes”) one is interested in
◼ e.g. composer, genre, style, time period, culture, 

region, etc.

Sample applications we have already explored:
◼ Identify the composers of unattributed musical pieces

◼ Explore the stylistic origins of genres (e.g. madrigals)

◼ Delineate regional styles (e.g. Iberian vs. Franco-
Flemish)
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How can we use features? (3/3)

◼ Use unsupervised machine learning to 

cluster music

Done by training on unlabelled data

Can study how the model groups pieces 

based on statistical similarity

◼ And then see if we can find meaning in these 

groups
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Tools for examining features

◼ Manually:

Text editors

Spreadsheets

◼ With automatic assistance:

Statistical analysis software
◼ e.g. SPSS, SAS, etc.

Machine learning and data mining software
◼ e.g. Weka, Orange, etc.

◼ Many of these tools can produce helpful 
visualizations
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Feature visualization: Histograms (1/6)

◼ Histograms offer a good way to visualize how the 
values of a feature are distributed across a corpus as 
a whole
 As opposed to focusing on individual pieces

◼ The x-axis corresponds to a series of bins, with each 
corresponding to a range of values for a given feature
 e.g. the first bin could correspond to Parallel Motion 

feature values between 0 and 0.1, the next bin to Parallel 
Motion values between 0.1 and 0.2, etc.

◼ The y-axis indicates the fraction of all pieces that have 
a feature value within the range of each given bin
 e.g. if 30% of pieces in the corpus have Parallel Motion 

values between 0.1 and 0.2, then this bin  (0.1 to 0.2) will 
have a y-coordinate of 30% (or, equivalently, 0.3)
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Feature visualization: Histograms (2/6)

◼ In other words:

Each bar on a histogram represents the fraction 
of pieces in a corpus with a feature value falling in 
that bar’s range of feature values

◼ Clarification: I am speaking here about a way 
to visualize a 1-dimensional feature as it is 
distributed across a corpus of interest

This is distinct from the multi-dimensional 
histogram features discussed earlier
◼ e.g. Pitch Class Histograms

Although both are equally histograms, of course
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Feature visualization: Histograms (3/6)

◼ These histograms show that Ockeghem tends to have more vertical 
6ths (between all pairs of voices) than Josquin
 Ockeghem peaks in the 0.16 to 0.17 bin, at nearly 35%

 Josquin peaks in the 0.13 to 0.14 bin, at about 28%

◼ Of course, there are also clearly many exceptions
 This feature is helpful, but is limited if only considered alone
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Feature visualization: Histograms (4/6)

◼ The histograms for both composers can 

be superimposed onto a single chart:
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Feature visualization: Histograms (5/6)

◼ These histograms show that Ockeghem tends to have longer 
melodic arcs (average number of notes separating peaks & troughs)
 Both peak in the 1.9 to 2.0 bin

 However, Josquin’s histogram is (slightly) more skewed to the far left

◼ Of course, there are once again clearly many exceptions
 This feature is also helpful, but also limited if considered alone
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Feature visualization: Histograms (6/6)

◼ Once again, the histograms for both 
composers can be superimposed onto a 
single chart:
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Feature visualization: Scatter plots (1/6)

◼ Scatter plots are another good way to visualize feature 
data
 The x-axis represents one feature

 The y-axis represents some other feature

 Each point represents the values of these two features for 
a single piece

◼ Scatter plots let you see pieces individually, rather 
than aggregating them into bins (as histograms do)
 Scatter plots also let you see more clearly how features 

jointly separate the different composers

◼ To make them easier to read, scatter plots typically 
have just 2 dimensions
 Computer classifiers, in contrast, work with much larger n-

dimensional scatterplots (one dimension per feature)
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Feature visualization: Scatter plots (2/6)

◼ Josquin 

pieces tend 

to be left

and low on 
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Feature visualization: Scatter plots (3/6)

◼ Simply drawing a 
single 1-D 
dividing line 
(“discriminant”) 
results in a not 
entirely terrible 
classifier based 
only on Vertical 
Sixths
 But many 

pieces would 
still be 
misclassified

 Can get 62% 
classification 
accuracy using 
an SVM and just 
this one feature
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Feature visualization: Scatter plots (4/6)

◼ Could 
alternatively draw 
a 1-D discriminant 
dividing the 
pieces based only 
on the Average 
Length of Melodic 
Arcs
 Get 57% 

classification 
accuracy using 
an SVM and just 
this one feature

 Not as good as 
the Vertical 
Sixths
discriminant 
(62%)
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Feature visualization: Scatter plots (5/6)

◼ Drawing a curve 
(another kind of 
discriminant) 
divides the 
composers still 
better than either 
of the previous 
discriminants
 Get 80%

accuracy using 
an SVM and just 
these 2 
features! 

◼ More than 2 
features are 
clearly needed to 
improve 
performance

1.3

1.5

1.7

1.9

2.1

2.3

2.5

2.7

0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21

A
v

e
ra

g
e
 L

e
n

g
th

 o
f 

M
e
lo

d
ic

 A
rc

s

Vertical Sixths

2-Feature Scatter Plot of Individual Pieces

Ockeghem Josquin



28 / 93

Feature visualization: Scatter plots (6/6)

◼ In fact, many 
(but not all) 
types of 
machine 
learning in effect 
simply learn 
where to place 
these kinds of 
discriminants as 
they train

◼ But typically with 
many more then 
just two 
features, of 
course
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Benefits of features

◼ Can quickly perform consistent empirical studies 
involving huge quantities of music

◼ Can be applied to diverse types of music in 
consistent ways

◼ Permit simultaneous consideration of thousands of 
features and their interrelationships
 One can statistically condense many features into 

more interpretable low-dimensional spaces when 
needed

◼ No need to formally specify any queries or 
heuristics before beginning analyses
 But one may if one wishes to, of course

◼ Help to avoid potentially incorrect ingrained 
assumptions and biases
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Salience

◼ Two fundamental differences between traditional and feature-
based approaches to analysis are linked to:
 (Perceived) salience of particular pieces

 (Perceived) salience of particular musical characteristics

◼ Human experts know (or assume they know?) what is 
important to look at
 Due to time constraints, experts tend to focus primarily on the 

pieces (or excerpts) and the musical characteristics they expect 
to be important

 This means that, in many research projects, the significant 
majority of a given repertoire is left unstudied, and many musical 
characteristics are left unexplored

 The selected pieces or characteristics may not be representative

◼ Computers, in contrast, have no expectations as to what is 
important, and time is much less of a constraint for them
 So they can look at everything we let them look at
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But . . .

◼ Does a computational feature-based 
approach really avoid bias?

What if the makeup of the research corpus 
computers are provided with is limited or 
biased?

What if the encoding of the music is biased?
◼ A particular problem if files with inconsistent

encodings (and editorial decisions) are compared

What if the particular features that are 
implemented are limited or biased?
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Missing feature types

◼ Certain essential areas of insight are left 

uninvestigated by content-based symbolic 

features (at least so far)

Qualities that are difficult to precisely define 

and measure consistently

◼ e.g. amount and types of imitation

Text

◼ Although text mining methodologies can be used

Historical evidence



33 / 93

Computers need us!

◼ Remember that a feature-based approach is 
useless without:
Human experts to ask important questions

Human experts to interpret results musically

Human experts to place feature values in the 
larger context

◼ Automatically extracted features are a tool
that expert musicologists and theorists can 
add to their already rich toolbox
Features are a great tool that opens up many 

new possibilities, but a tool that this is of very 
limited utility by itself
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Choosing features to implement

◼ Which features do we need?
 The ones that are relevant to the kinds of music under 

consideration

 Including the ones we already know or suspect are important

 Including the ones that are important, but we do not know it yet

◼ So, we need a lot of diverse features!
 So we can deal with many types of music

 So we can address the interests of many different researchers

 So we encourage unexpected but important results

 So we are less likely to miss out on important insights

◼ The same can be said for data
 The more music there is and the more varied it is the better!

 We’ll return briefly to data in a bit, but let’s focus on features for 
the moment . . .
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jSymbolic: Introduction

◼ jSymbolic is a software platform for 

extracting features from symbolic music

Part of the much larger (multimodal) jMIR

package

◼ Compatible with Macs, PCs and Linux

computers

◼ Free and open-source
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What does jSymbolic do?

◼ (Version 2.2) extracts 246 unique features

◼ Some of these are multi-dimensional histograms, 
including:
 Pitch and pitch class histograms

 Melodic interval histograms

 Vertical interval histograms

 Chord types histograms

 Rhythmic value histograms

 Beat histograms

 Instrument histograms

◼ In all, (version 2.2) extracts a total of 1497 
separate values
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jSymbolic: Feature types (1/3)

◼ Pitch Statistics:
 What are the occurrence rates of different pitches and pitch 

classes?

 How tonal is the piece?

 How much variety in pitch is there?

◼ Melody / horizontal intervals:
 What kinds of melodic intervals are present?

 How much melodic variation is there?

 What kinds of melodic contours are used?

◼ Chords / vertical intervals:
 What vertical intervals are present?

 What types of chords do they combine to make?

 How much harmonic movement is there?
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jSymbolic: Feature types (2/3)

◼ Texture:
 How many independent voices are there and how do they 

interact (e.g. moving in parallel, crossing voices, etc.)? 

◼ Rhythm:
 Rhythmic values of notes

 Intervals between the attacks of different notes 

 Use of rests

 What kinds of meter is used? 

 Rubato?

◼ Instrumentation:
 What types of instruments are present and which are given 

particular importance relative to others? 

◼ Dynamics:
 How loud are notes and what kinds of dynamic variations occur?
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jSymbolic: Feature types (3/3)

◼ jSymbolic only (for now) extracts features associated 
with musical content

◼ There are thus no features associated with:
 Text

 Historical evidence

◼ This is partly a disadvantage:
 Obviously these kinds of information can be essential

 Researchers using jSymbolic features must of course use 
their expertise to consider extracted features in the larger 
context

◼ It is also partly an advantage, however:
 It allows us to (temporarily) focus only on the  music, so 

that we can find insights there that we might otherwise 
have missed
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Other music research software

◼ jSymbolic is intrinsically different from other software used in 
empirical symbolic music research
 e.g. music21 (includes a port of the original jSymbolic features)

 e.g. Humdrum

 e.g. VIS

◼ This other software is excellent for finding exactly where 
specific things one is searching for happen
 Perfect for very targeted research based on specific searches

◼ jSymbolic, in contrast, allows one to acquire large amounts of
summary information about music with or without a priori 
expectations of what one is looking for
 Good for general annotation of symbolic databases

 Good for statistical analysis and machine learning

 Good for free exploratory research

 Good for large-scale validation of theoretical models
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jSymbolic: User interfaces

◼ Graphical user 

interface

◼ Command line 

interface

◼ Java API

◼ Rodan 

workflow for 

distributed 

processing
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jSymbolic: Manual

◼ Extensive manual 
includes:
Detailed feature 

descriptions

Detailed 
instructions on 
installation and 
use

◼ There is also a 
step-by-step 
tutorial with 
worked examples



43 / 93

jSymbolic: File formats

◼ Input:

MIDI

MEI

MusicXML (after conversion)

◼ Output:

CSV

ACE XML

Weka ARFF
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Why MIDI?

◼ jSymbolic’s features have been designed to deal 
most natively with MIDI

 As opposed to alternatives like MusicXML and MEI

◼ But MIDI has serious problems for music analysis:

 e.g. Cannot distinguish enharmonic equivalents
◼ Pitch is encoded in semitone steps

 e.g. Can have problems with rhythmic 
synchronization of “simultaneous” note attacks
◼ Some MIDI encodings are real-time performance captures, 

so there may be slight time offsets 

◼ Some score editing software artificially creates such offsets 
to make music playback sound more natural
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Benefits of MIDI (1/2)

◼ MIDI is better than general symbolic 
alternative file formats at representing non-
Western or live musical traditions

e.g. Can encode microtones precisely

e.g. Can encode complex rhythms difficult to 
annotate using Western notation

e.g. Can be used to symbolically record 
performances directly

◼ Far more (and more diverse) music has been 
encoded in MIDI than any symbolic 
alternative
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Benefits of MIDI (2/2)

◼ MIDI is a stable, mature format
 MIDI encoders and decoders are widely available

 MIDI is compatible with almost all symbolic software

 MIDI files are reliably easy and consistent to parse
◼ Unlike alternatives like MEI which, despite its many advantages, can be 

very difficult to write a stable parser for, given its in-flux specification 
and free-wheeling encoding culture

◼ MIDI can be easily and directly sonified
 Almost all symbolic alternatives must be first converted to MIDI 

to be listened to

◼ MIDI does not allow ambiguity, it forces encoders to commit
 Alternatives like MEI purposely (and appropriately for archiving) 

allow ambiguous encodings

 While good for the purposes of archiving, such ambiguity is 
highly problematic when performing automatic analysis
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jSymbolic: Miscellany

◼ Windowed feature extraction
 Including overlapping windows

◼ Configuration files
 Pre-set feature choices

 Pre-set input and output choices

 More

 Useful for saving specific feature extraction jobs

◼ Can combine jSymbolic with other jMIR components to 
perform multimodal research
 i.e. combine symbolic features with other features 

extracted from audio, lyrics and cultural data

 This improves results substantially! (McKay et al. 2010)
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jSymbolic: Extensibility

◼ jSymbolic is specifically designed such 
that music scholars can design their own 
features and work with programmers to 
then very easily add these features to the 
jSymbolic infrastructure

Fully open source

Modular plug-in feature design

Automatically handles feature dependencies 
and scheduling

Very well-documented code
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To come in jSymbolic 3.0

◼ Many miscellaneous usability 

improvements

 Including expanded multilingual support

◼ Many new features

533 unique features and 2040 feature values 

as of March 3, 2020, in total

 Including features base on note onset slices

 Including features base on n-grams
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Research involving jSymbolic

◼ I will now briefly highlight several research 

projects that have been carried out based on 

jSymbolic features

To give you an idea of what is possible

◼ I put special emphasis on a study comparing 

Renaissance composers

 It is particularly illustrative

◼ Several other studies will also be discussed

 In less detail
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Composer identification study

◼ Related paper: MedRen 2017

◼ Used jSymbolic features to automatically 

classify pieces of Renaissance music by 

composer

As an example of the kinds of things that can 

be done with jSymbolic

As a meaningful research project in its own 

right
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RenComp7 dataset

◼ Began by constructing the 
“RenComp7” dataset:
 1584 MIDI files

 By 7 Renaissance 
composers

◼ Combines:
 Top right: Music drawn 

from the Josquin Research 
Project (Rodin, Sapp and 
Bokulich)

 Bottom right: Music by 
Palestrina (Miller 2004) 
and Victoria (Sigler, Wild 
and Handelman 2015)

Composer Files

Busnoys 69

Josquin (only includes 

the 2 most secure 

Jesse Rodin groups)

131

La Rue 197

Martini 123

Ockeghem 98

Composer Files

Palestrina 705

Victoria 261
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Methodology

◼ Extracted 721 feature values from each of the 
1584 RenComp7 files using jSymbolic 2.0

◼ Used machine learning to teach a (SVM) classifier 
to automatically distinguish the music of the 
composers 
 Based on the jSymbolic features

◼ Used statistical analysis to gain insight into relative 
compositional styles

◼ Performed several versions of this study
 Classifying amongst all 7 composers

 Focusing only on smaller subsets of composers
◼ Some more similar, some less similar
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Classification results

Composer Group Classification 

Accuracy 

All 7 92.7%

Ockeghem / Busnoys

/ Martini

87.2%

Ockeghem / Busnoys 84.4%

Ockeghem / Martini 94.6%

Busnoys / Martini 93.8%

Josquin / Ockeghem 93.9%

Josquin / Busnoys 96.0%

Josquin / Martini 88.2%

Josquin / La Rue 85.4%

Victoria / Palestrina 99.9%
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Direct applications of such work

◼ Validating existing suspected but uncertain 

attributions

◼ Helping to resolve conflicting attributions

◼ Suggesting possible attributions of 

currently entirely unattributed scores
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How do the composers differ?

◼ Some very interesting questions:

What musical insights can we learn from the 

jSymbolic feature data itself?

 In particular, what can we learn about how the 

music of different composers differs?

◼ Chose to focus on two particular cases:

Josquin vs. Ockeghem: Relatively different

Josquin vs. La Rue: Relatively similar
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A priori expectations (1/2)

◼ What might an expert musicologist expect to 
differentiate the composers?
 Before actually examining the feature values

◼ Once formulating these expectations, we can then 
see if the feature data confirms or repudiates
these expectations
 Both are useful!

◼ We can also see if the feature data reveals 
unexpected insights

◼ I consulted one musicologist (Julie Cumming) and 
one theorist (Peter Schubert), both experts in the 
period . . .
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A priori expectations (2/2)

◼ Josquin vs. Ockeghem: Ockeghem may have . . .
 Slightly more large leaps (larger than a 5th)

 Less stepwise motion in some voices

 More notes at the bottom of the range

 Slightly more chords (or simultaneities) without a third

 Slightly more dissonance

 A lot more triple meter

 More varied rhythmic note values

 More 3-voice music

 Less music for more than 4 voices

◼ Josquin vs. La Rue: La Rue may have . . . Hard to say!

 Maybe more compressed ranges?
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Were our expectations correct?

◼ Josquin vs. Ockeghem: Ockeghem may have . . .
 OPPOSITE: Slightly more large leaps (larger than a 5th)

 SAME: Less stepwise motion in some voices

 SAME: More notes at the bottom of the range

 SAME: Slightly more chords (or simultaneities) without a 
third

 OPPOSITE: Slightly more dissonance

 YES: A lot more triple meter

 SAME: More varied rhythmic note values

 YES: More 3-voice music

 YES: Less music for more than 4 voices

◼ Josquin vs. La Rue: La Rue may have . . .
 SAME: Maybe more compressed ranges?
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Importance of empiricism

◼ These results show that even some of the 
most highly informed experts in the field can 
have a number of inaccurate assumptions 

And so, it is certain, do we all

◼ These results highlight the important need for 
empirical validation in general in musicology 
and music theory

There are very likely a range of widely held 
beliefs and theoretical models that will in fact turn 
out to be incorrect when they are subjected to 
exhaustive and rigorous empirical examination
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(Free) diving into the feature values

◼ There are a variety of statistical techniques for 
attempting to evaluate which features are likely to be 
effective in distinguishing between types of music

◼ We used seven of these statistical techniques to find:
 The features and feature subsets most consistently 

statistically predicted to be effective at distinguishing 
composers

◼ We then manually examined these feature subsets to 
find the features likely to be the most musicologically
meaningful

◼ IMPORTANT NOTE: exploratory studies like this 
ultimately need confirmatory studies on a different
dataset in order to properly show statistical 
significance
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Novel insights revealed (1/2)

◼ Josquin vs. Ockeghem (93.9%):

Rhythm-related features are particularly important
◼ Josquin tends to have greater rhythmic variety

 Especially in terms of both especially short and long notes

◼ Ockeghem tends to have more triple meter

 As expected

◼ Features derived from beat histograms also have good 
discriminatory power

Ockeghem tends to have more vertical sixths

Ockeghem tends to have more diminished triads

Ockeghems tends to have longer melodic arcs
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Novel insights revealed (2/2)

◼ Josquin vs. La Rue (85.4%):

Pitch-related features are particularly 

important

◼ Josquin tends to have more vertical unisons and 

thirds

◼ La Rue tends to have more vertical fourths and 

octaves

◼ Josquin tends to have more melodic octaves
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Research potential (1/2)

◼ The results above are the product of an initial 
accurate but relatively simple analysis

◼ There is substantial potential to expand this 
study

Apply more sophisticated and detailed statistical 
analysis techniques

Perform a more detailed manual exploration of 
the feature data

 Implement new specialized features

Look at more and different composer groups
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Research potential (2/2)

◼ Composer attribution is just one small 

example of the many musicological and 

theoretical research domains to which 

features and jSymbolic2 can be applied
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Tools used

◼ All machine learning and feature 

selection/weighting was performed using 

the Weka machine learning framework

Free and open-source

Surprisingly (relatively) easy to use for such 

technical software
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Excluded features

◼ Only 721 of the available 1230 jSymbolic 

2.0 features were used in order to avoid 

bias

Some excluded features were irrelevant to the 

data under consideration 

Some excluded features were correlated with 

the source of the data

◼ This primarily meant removing features linked to 

instrumentation, dynamics and tempo
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Sidebar: Avoiding encoding bias (1/2)

◼ If music from multiple different sources is included in a 
study, then one must be careful to avoid making 
conclusions based on the source of the music rather 
than the underlying music itself
◼ As this could corrupt the results

◼ Problems can occur when inconsistent editorial 
decisions are present. To be careful of in early music:
◼ Inconsistent additions of accidentals (musica ficta)

◼ Choice of different rhythmic note values to denote the beat

◼ Differing metrical interpretations of mensuration signs

◼ Transposition to different keys

 Inconsistent encoding practices can also have an effect
◼ e.g. if one set of files has precise tempo markings but another is 

arbitrarily annotated at 120 BPM
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Sidebar: Avoiding encoding bias (2/2)

◼ How to avoid corrupted feature-based results 

associated with the kinds of corpus 

inconsistencies and biases described above:

◼ Ideally, use music files that were all consistently

generated using the same methodology

 All editorial decisions (e.g. musica ficta) should be applied 

consistently and should be documented

◼ If this is not possible, then exclude all features that 

are sensitive to the particular biases present

 jSymbolic includes functionality that can help 

detect and identify these kinds of problems
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Building valid digital symbolic music 

research corpora

◼ Related publication: ISMIR 2018

◼ Presents techniques and workflows for 
building large collections of symbolic digital 
music that avoid bias and facilitate 
statistically valid large-scale empirical studies

◼ Presents a corpus of Renaissance duos as a 
sample of how this can be done

 Includes experiments with jSymbolic 2.2 features 
empirically demonstrating the negative effects 
that improper methodologies can produce
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Josquin attribution study (1/3)

◼ Related publication: ISMIR 2017 

◼ We also did a second composer-related 

study using the Josquin Research Project 

data

This one investigated the attribution of pieces 

suspected to be by Josquin
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Josquin attribution study (2/3)

◼ Jesse Rodin has broken Josquin’s music into 6 
levels of attribution certainty

 Based on historical sources, not musical content

◼ We used the jSymbolic 2.0 features to train a 2-
class SVM classifier

 First class: Josquin 
◼ The Josquin music in the 2 most secure Rodin levels

 Second class: NotJosquin
◼ All the JRP music available from 21 other Renaissance 

composers similar to Josquin

◼ This model was then used to classify the Josquin 
music in the remaining 4 Jesse Rodin levels
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Josquin attribution study (3/3)
◼ It turns out that, the more 

insecure a piece is 
according to Rodin’s 
classification, the less likely 
it was to be classified as 
being by Josquin by our 
classifier

◼ This demonstrates some 
good empirical support for 
Rodin’s categorizations
 This is a great example of 

how features extracted by a 
computer and human 
expert knowledge can 
complement each other

Rodin Certainty Level % Classified 

as Josquin

Level 3 “Tricky” 48.6%

Level 4 “Questionable” 17.2%

Level 5 “Doubtful” 14.0%

Level 6 “Very doubtful” 5.5%
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Origins of the Italian madrigal (1/3)

◼ Related paper: MedRen 2018

◼ Where did the madrigal come from?
 The frottola (Einstein 1949)?

 The chanson and motet in Florence (Fenlon and Haar 1988)?

 The Florentine carnival song, villotta, and improvised solo song 
(A. Cummings 2004)?

◼ How could we analyze the music to help us decide?
 Extracted jSymbolic 2.2 features

 Applied machine learning and feature analysis techniques
◼ As we did with composers in the MedRen 2017 study

◼ Constructed the “3RenGenres” corpus: MIDI files derived from 
Florence BNC 164-167 (c. 1520)
 Madrigals (27 files)

 Motets (12 files)

 Frottole & Villotte (19 files)
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Origins of the Italian madrigal (2/3)

◼ Madrigals and motets are 
the most dissimilar genres 
(from an empirical content-
based perspective)
 Because they can be easily 

distinguished with features 
and machine learning

◼ Frottole / Villotte and 
madrigals are the most 
similar genres
 Because they are harder to 

tell apart

◼ Frottole / Villotte and motets 
are in between

Genre Group Classification 

Accuracy 

Frottole / Villotte

vs. Madrigals

64.6%

Frottole / Villotte

vs. Motets

84.8%

Madrigals vs. 

Motets

99.1%
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Origins of the Italian madrigal (3/3)

◼ Expert a priori prediction results:

Half of the predictions were correct

Half were partly or completely incorrect

◼ Exploratory feature analysis results:

Features related to rhythm and (to a lesser 
extent) texture were by far the most important

Pitch-related features were almost irrelevant 
(relatively speaking) in distinguishing the genres

◼ Opens very promising avenues for future 
research
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Iberian vs. Franco-Flemish music (1/4)

◼ Related paper: Anatomy of Polyphonic Music around 1500 
Conference (2018)

◼ Research question:
 Is Iberian Renaissance music demonstrably stylistically distinct 

from Franco-Flemish music of the time?

◼ Investigated empirically:
 Extracted jSymbolic 2.2 features from a dataset of Iberian and 

Franco-Flemish masses and motets

 Trained machine learning models that could distinguish between 
Iberian and Franco-Flemish music
◼ Based on these features

 Tested expert predictions to see if they match the actual musical 
data

 Used statistical analysis techniques to find those features that 
strongly (statistically) distinguish Iberian and Franco-Flemish 
music
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Dataset used

◼ Used the “FraFle/Iber” 
dataset provided by the 
Anatomy project's team

◼ Consists of masses and 
motets

◼ 467 MIDI files total

◼ IMPORTANT CAVEAT:
 This dataset was prepared 

for initial rough exploration

 It was no yet fully cleaned, 
so it (and the results about 
to be presented) may be 
subject to a certain 
amount of encoding bias

Region Composers Files

Franco-Flemish 

Mass movements

3 286

Franco-Flemish 

Motets

3 59

Iberian 

Mass movements

7 79

Iberian 

Motets

10 43



79 / 93

Iberian vs. Franco-Flemish music (3/4)

◼ Performed three versions of this study, where 
the music was classified by region:
 Iberian masses and motets vs. Franco-Flemish 

masses and motets: 97.9%

 Iberian masses vs. Franco-Flemish masses: 
99.6%

 Iberian motets vs. Franco-Flemish motets: 87.7%

◼ So, the Iberian music stylistically is distinct 
from the Franco-Flemish music, especially 
the masses
Because the classifier could tell the musics apart 

so easily
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Iberian vs. Franco-Flemish music (4/4)

◼ Comparing expert a priori predictions 
(submitted anonymously) with empirical data:
Expert predictions matched the data very well for 

motets, but less well for masses

◼ Analysis of statistically most predictive 
features:
Matched four of the features highlighted by 

experts

Revealed three features not highlighted by 
experts

◼ Highlights important new areas where more 
research could be very revealing
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Genre classification study (1/4)

◼ Related paper: unpublished 2017

◼ Classified music according to a variety of genres 
using jSymbolic 2.0 features
 Including popular music

◼ Used our SLAC dataset to do this
 Composed of 250 pieces

◼ Each piece in SLAC has a matching:
 MIDI transcription

 Text file containing lyrics (if any)

 Audio recording

 Metadata mined from search engines
◼ Containing “cultural” information
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Genre classification study (2/4)

◼ SLAC is divided among 10 genres

 25 pieces of music per genre

◼ These 10 genres can be grouped into 5 pairs of 
similar genres

 This permits both 5-genre and 10-genre experiments

◼ The genres are:

 Blues: Modern Blues and Traditional Blues

 Classical: Baroque and Romantic

 Jazz: Bop and Swing

 Rap: Hardcore Rap and Pop Rap

 Rock: Alternative Rock and Metal
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Genre classification study (3/4)

◼ Using just the MIDI files, the jSymbolic 2.0 

features were able to classify among the 

10 genres 75.6% of the time

◼ Experiments were also performed with 

other types of features, alone and in 

various combinations . . .
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Genre classification study (4/4)

◼ S1 = jSymbolic 1.0

◼ S = jSymbolic 2.0

◼ L = jLyrics

◼ A = jAudio

◼ C = jWebMiner

◼ Combining different feature 
groups substantially 
improved performance:
 87.2% among 10 classes

◼ This offers support for 
multimodal research
 i.e. research involving 

different types of data
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A few more samples of research 

involving jSymbolic
◼ Using features to generate style-specific music

 Melomics, 2012 …

◼ Analyzing and generating fado music
 Gonzaga Videira, 2015

◼ Content-based searches of symbolic music databases
 McKay et al. 2017

◼ Comparing compositional styles of La Rue and Peñalosa
 Cuenca, 2018

◼ Patterns in Dutch folk music
 Ret et al., 2018

◼ Overview and comparison of jSymbolic 2.2
 McKay et al. 2018

◼ Exploring anonymous and doubtfully attributed Coimbra masses
 Cuenca and McKay 2019
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Overview of jMIR

◼ jSymbolic is actually part of my larger jMIR
toolset

Designed specifically for multimodal music 
research

◼ Primary tasks performed:

Feature extraction

Machine learning

Data storage file formats

Dataset management
◼ Acquiring, correcting and organizing metadata
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Characteristics of jMIR

◼ Has a separate software component to address 
each important aspect of automatic music 
classification
 Each component can be used independently
 Can also be used as an integrated whole

◼ Free and open source
 http://jmir.sourceforge.net

◼ Architectural emphasis on providing an 
extensible platform for iteratively developing new 
techniques and algorithms

◼ Interfaces designed for both technical and non-
technical users

◼ Facilitates multimodal research 
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88/41

jMIR components

◼ jSymbolic: Feature extraction from MIDI files

◼ jAudio: Audio feature extraction

◼ jWebMiner: Cultural feature extraction

◼ jLyrics: Extracts features from lyrical transcriptions

◼ ACE: Meta-learning classification engine

◼ ACE XML: File formats
 Features, feature metadata, instance metadata and ontologies

◼ lyricFetcher: Lyric mining

◼ Codaich, Bodhidharma MIDI and SLAC: datasets

◼ jMusicMetaManager: Metadata management

◼ jSongMiner: Metadata harvesting

◼ jProductionCritic: Detecting mixing and editing errors

◼ jMIRUtilities: Infrastructure for conducting experiments
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SIMSSA and MIRAI context (1/2)

◼ Much of the work I have presented is part of the 
multi-institutional SIMSSA and MIRAI projects

◼ These projects aim to make the huge number of 
digitized scores held at libraries and other 
institutions around the world accessible and 
searchable to the public

 Using optical music recognition (OMR) to transform 
images of scores into digital symbolic formats

 Annotating music with pre-extracted jSymbolic 
features

 And much more . . .
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SIMSSA and MIRAI context (2/2)

◼ Not only will this allow music researchers to query scores in 
relatively traditional ways (e.g. using textual metadata or 
melodic segments); it will also allow content-based searches 
based on feature values and ranges
 A researcher could thus filter results based on the amount of 

chromaticism in a piece, for example, or the amount of parallel 
motion between voices

◼ Can use statistical analysis to build multidimensional 
combinations of features that allow sophisticated searches
 e.g. the level of tonality of a piece, where this is estimated based 

on the values of several existing features

◼ Can use features to train classification models for directly 
assisting research by music scholars
 e.g. identifying composers of pieces with unknown attribution
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jSymbolic demo

◼ Tutorial:

 jmir.sourceforge.net/manuals/jSymbolic_tutori

al/home.html

◼ Manual:

 jmir.sourceforge.net/manuals/jSymbolic_man

ual/home.html

◼ jSymbolic download:

sourceforge.net/projects/jmir/files/jSymbolic/



Thanks for your attention!

◼ jSymbolic: http://jmir.sourceforge.net

◼ E-mail: cory.mckay@mail.mcgill.ca


