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What are n-grams?

• The notion of n-grams is drawn primarily from a 
substantial literature in computational linguistics
• Typically used to represent sequences of n words
• e.g. to-be-or-not-to-be is a 6-gram 

• i.e. a sequence of 6 words

• e.g. to-be, be-or, or-not, not-to, to-be are the five 2-
grams making up this 6-gram

• N-grams have also been used to many other 
disciplines
• e.g. base pairs in DNA sequences, such as the A-G-C 3-

gram
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Outline of this talk

• This talk will focus on our work on using n-
grams as the basis for learning about 
Renaissance music

• Will discuss experiments we performed using 
machine learning and statistical analysis to 
process n-gram data

• Or, more specifically, n-gram features
automatically extracted from music using our 
jSymbolic software
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What is a “feature”?

• A piece of information that measures a 
characteristic of something (e.g. a piece of music) 
in a simple, consistent and precisely-defined way

• Represented using numbers
• Can be a single value, or can be a set of related values 

(e.g. a histogram)

• Provides a summary description of the 
characteristic being measured
• Usually macro, rather than local

• Usually extracted from pieces in their entirety
• But can also be extracted from segments of pieces
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Example: A simple feature
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• Range (1-D): Difference in semitones between 
the lowest and highest pitches

• Value of this feature: 7

• G - C = 7 semitones



Example: A histogram feature
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• Pitch Class Histogram: Consists of 12 values, each representing the 
fraction of all notes belonging to an enharmonic pitch class

• Histogram graph on right 
shows feature values 

• Pitch class counts:
• C: 3, D: 10, E: 11, G: 2

• Most common note is E:
• 11/26 notes
• Corresponds to a feature 

value of 0.423 for E
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Comparing features

• Comparing pairs of pieces in terms of features 
can be very revealing
• Especially when that comparison involves hundreds or 

thousands of features

• Things get even more interesting, however, when 
comparisons are made between hundreds or 
thousands of pieces
• Especially when the music is aggregated into groups, 

which can then be contrasted collectively
• e.g. comparing composers, genres, regions, time 

periods, etc.

July 4, 2020. McKay, Adamian, Cumming and Fujinaga 7



Benefits of features

• Provide an empirical basis for manual comparison by 
experts, machine learning or statistical analysis

• Permits studies involving huge quantities of music
(thousands of pieces!)

• Can simultaneously explore a broad range of musical 
characteristics (thousands!) and their interrelationships
• Including characteristics one may not have thought to consider

• No need to formally specify specific queries or heuristics 
before beginning analyses
• But may do so if one wishes to, of course
• Facilitates exploratory research

• Help to avoid potentially incorrect ingrained assumptions 
and biases
• But only if treated properly
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jSymbolic: Introduction

• jSymbolic is a software platform for extracting 
features from digital scores

• Compatible with Macs, PCs and Linux
computers

• Free and open-source
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jSymbolic (version 2.2)’s feature types

• Pitch statistics
• e.g. Range

• Melody / horizontal intervals
• e.g. Most Common Melodic Interval

• Chords / vertical intervals
• e.g. Vertical Minor Third Prevalence

• Texture
• e.g. Parallel Motion

• Rhythm
• e.g. Note Density per Quarter Note

• Instrumentation
• e.g. Note Prevalence of Unpitched Instruments

• Dynamics
• e.g. Variation of Dynamics
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jSymbolic 3.0 (alpha)

• Currently being tested and refined internally

• Many miscellaneous usability improvements

• Including expanded multilingual support

• Many new features

• 533 unique features and 2040 feature values, as of 
June 2020

• Up from 246 and 1497, respectively

• Including new features based on n-grams 
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Measuring local sequences (1/2)

• jSymbolic (version 2.2) strongly emphasizes 
global summary statistics
• i.e. describing an overall, aggregated characteristic of 

the music, like its range

• Features measuring local sequences are very 
limited in version 2.2
• e.g. melodic transitions from just one note to the next 

or, at the most, single melodic arcs

• Many features simply ignore the order in which events 
happen
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Measuring local sequences (2/2)

• This is a limitation, since many musically 
interesting phenomena are associated with local 
patterns and sequences

• Challenge: How can one measure local behaviour 
while also maintaining the requirement that 
features be expressed as simple global numbers?

• Through n-grams!

• Let us begin by first defining “note onset slices” 
(sometimes called “salami slices” in the literature) . . . 
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Note onset slices (1/2)
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• A slice consists of vertical groups of 
notes sounding simultaneously
• e.g. the first slice on the right contains 

the pitches A and C

• A new slice is started every time a new 
(pitched) note onset occurs

• Slices are separated by dotted lines on 
the right

• There can be different kinds of onset 
slices:
• e.g. a slice may only contain notes 

starting at the beginning of the slice
• e.g. a slice may alternatively also 

contain notes held from previous slices
• e.g. a slice may omit notes that are only 

held for less than some fraction of the 
slice



Note onset slices (2/2)

• Note onset slices provide units of grouped notes
that permit the formation of structures based on 
local transitions and sequences associated with:
• Vertical intervals

• Horizontal intervals

• Contrapuntal (vertical + horizontal) movement

• Rhythm

• More, such as textural patterns

• Sequences of such slices can be used to construct 
“n-grams” . . . 
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N-grams
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• Our musical n-grams encode sequences of n
(or n+1) note onset slices
• Enumerated by exhaustively breaking the 

music into overlapping sliding windows

• Examples of 4 different kinds of diatonic n-
grams (right): 
• 7 6 8 is a 3-gram indicating vertical intervals 

between the two voices
• -2 2 is a 2-gram indicating horizontal

intervals in the upper voice
• [7] (1 -2) [6] (-2 2) [8] is a contrapuntal 3-

gram that encodes both vertical and 
horizontal transitions

• 2 2 4 (half half whole) is a 3-gram indicating 
the upper voice’s rhythmic sequence



N-gram variants (1/2)

• What value(s) of n are best?

• n=2 is typically too local (not enough musical content)

• n>3 tends to lead to an explosion of rare n-grams

• Is n=3 the Goldilocks n-gram?

• It depends what one is interested in

• Which voices should n-grams consider?

• All voices together?

• Outer voices only?

• Individual voices?
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N-gram variants (2/2)

• What kinds of note onset slices are best?
• Should brief “decorative” notes be included?
• Should notes held from earlier slices be included?
• Should duplicate notes (unisons) be included?
• Should any new note trigger a new slice, or only a new 

pitch class?

• Other details?
• Should melodic direction be encoded?
• How should intervals be represented?

• e.g. M3 vs. 3 vs. 4 (semitones)

• Should intervals be octave-wrapped?
• e.g. a 10th to a 3rd
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Earlier work on musical n-grams

• Unlike our work with jSymbolic, earlier musicological research involving n-
grams has focused mainly on contrapuntal n-grams
• Often using a “modules” terminology to refer to repeated contrapuntal 

combinations

• Jessie Ann Owens (1998) did ground-breaking work relating to musical n-
grams

• Peter Schubert (2007) further developed this into an analytical approach
• Our group has also since experimented with n-grams in previous work, but 

not in a feature-based way
• e.g. Antila and Cumming (2014); Schubert and Cumming (2015); Arthur 

(2017); Cumming and McKay (2018, with Schubert, Condit-Shultz and 
Stuchbery)

• Others are also doing fascinating work involving concepts linked to n-
grams
• e.g. Richard Freedman et al.’s CRIM Project
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Representing n-grams as features

• Features must be represented as standardized 
simple numbers that can be consistently 
compared

• Extracting sequences of n-grams from a piece can 
result in differently sized lists of n-grams

• Does not fit the above requirements for a feature

• We thus need to extract features from the n-gram 
sequences

• Rather than use n-gram sequences directly as features
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Sample possible n-gram feature types 
(1/2)

• N-gram frequency histograms
• How often each n-gram occurs relative to all n-grams 

of the same type in a piece
• Many possible variants, including:

• All possible n-gram permutations
• Specific n-grams of interest (e.g. cadential n-grams)
• Sorted from most common to least on a piece-by-piece basis

• Many features can be derived from such 
histograms
• Or they can be used directly as feature vectors 

themselves
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Sample possible n-gram feature types 
(2/2)

• Particular n-grams
• Most common, second most common, etc.
• e.g. if the most common rhythmic 3-gram is half-half-half, then this 

feature value would be the 3-dimensional vector [2,2,2]

• Prevalence of such n-grams
• e.g. the most common rhythmic 3-gram might represent 0.204 (20.4%) 

of all rhythmic 3-grams

• Diversity of n-grams
• e.g. number of unique n-grams
• e.g. number of very common n-grams (those comprising, say, 15% or 

more of all rhythmic 3-grams) 
• e.g. number of rare n-grams (those comprising, say, 3% or less of all 

rhythmic 3-grams)

• etc.

July 4, 2020. McKay, Adamian, Cumming and Fujinaga 22



jSymbolic 3.0 alpha’s current n-grams 
and features derived from them

• Calculates three main types of n-grams:
• Vertical, horizontal and rhythmic
• Also calculates variants of these

• e.g. vertical all voices vs. vertical outer voices only

• Uses n=3
• At least for now

• Extracts 76 unique features from these n-grams
• Both n-grams and their note onset slices can be 

set to be calculated in a variety of ways
• Permits experimentation with n-gram approaches
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Experiments (1/2)

• We reran 3 feature-based experiments we 
have presented at previous MedRens, each 
with these variants:

• Original features (no n-gram features)

• New n-gram features only

• Original features + new n-gram features
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Experiments (2/2)

• All experiments involved using machine learning 
to train statistical models that could 
automatically classify music
• The models performed classifications based only on 

the jSymbolic features they were given

• Each experiment involved the same corpus described 
in the original conference presentation

• Support vector machines with linear kernels were 
used in all cases

• Results on the next slide are all classification 
accuracies based on 10-fold cross-validation
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Cross-validation classification 
accuracies
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Experiment Original Features 
(No N-Grams)

N-Gram Features 
Only

Combined Features

Composers (2017)
Josquin vs. La Rue

85.4% 69.5% 86.0% (statistically 
indistinguishable 

from performance 
of original features)

Genre (2018)
Madrigals vs. 
Motets vs. 
Frottole/Villotte

68.4% 82.8% 74.1%

Region (2019)
Franco-Flemish 
masses & motets 
vs. Iberian masses 
& motets

93.6% 81.6% 98.6%



Experimental discussion (1/2)

• For the composer and region experiments, when 
looked at individually, none of the n-gram 
features particularly stood out with respect to 
“information gain” (a rough measure of 
discriminative power)
• i.e. the n-gram features performed well when grouped 

collectively, but none were particularly discriminative 
individually

• When the original and n-gram features were 
combined, the features with the highest (individual) 
information gain were overwhelming not n-gram 
features
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Experimental discussion (2/2)

• The genre experiment, in contrast, showed the 
following n-gram features had the highest (individual) 
information gain (they were the top 3 features when 
both groups were combined, and were 5 of the top 7):
• Number of Distinct Melodic Interval 3-gram Types in 

Highest Line

• Prevalence of Median Melodic Interval 3-gram Type in 
Highest Line

• Number of Distinct Vertical Interval 3-gram Types

• Number of Rare Melodic Interval 3-gram Types

• Number of Distinct Melodic Interval 3-gram Types
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Conclusions and future research

• Our experiments show that the new jSymbolic n-
gram features clearly encapsulate useful 
information about Renaissance music

• We have only begun to scratch the surface of 
what can be done with n-grams
• Can we interpret musical meaning from n-grams the 

way we have from other features in the past?
• i.e. what insights can n-grams teach us about the particular 

style of a composer, region, etc.?

• Can we come up with better, more useful n-grams?
• And better features to extract from them?
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Thanks for your attention
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• E-mail: cory.mckay@mail.mcgill.ca
• jSymbolic: http://jmir.sourceforge.net
• SIMSSA: https://simssa.ca


