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“A brilliant speech on machine learning and 
music in a college”
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“A brilliant speech on machine learning and 
music in a college”



5February 8, 2024. Cory McKay

“A rapturous lecture audience after being 
gifted with erudition”
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“An ecstatic college audience after attending the 
greatest music technology lecture of their lives”
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Whirlwind tour of machine learning
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Early AI: Expert systems

• Early AI focused on manually
encoding sets of explicit rules 
(“heuristics”) that a computer 
could follow
• Often represented as “decision 

trees” (right)

• Early specialized programming 
languages like “Prolog” were used  
to specify logical rules and 
relationships
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Early AI: Expert systems

• “Expert systems” based on these kinds of approaches require:
• “Knowledge representation” for encoding, connecting and structuring 

information in machine-interpretable ways

• An “inference engine” for processing inputs in the context of embedded 
knowledge to produce outputs
• Usually based on logical reasoning via explicitly defined rules

• Sometimes involving some probabilistic reasoning (e.g. “fuzzy logic”)
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Early AI: Expert systems

• Tree search techniques like 
“branch and bound” can be used 
to explore as many possible 
outcomes of a decision as can be 
computed
• Unpromising (or probably 

unpromising) outcomes can be 
eliminated when exhaustive 
computing is not possible

• Often used in early game-playing 
AI (e.g. checkers)
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Sample historical expert systems

• My own graduating undergraduate physics thesis 
project (1998, right) on using magnetic fields to 
help robots navigate unknown environments

• INTERNIST-I or MYCIN, prototype systems from the 
1970’s for performing clinical diagnoses

• Musical dice games (popular in the 18th century) 
can be seen as early generative expert systems
• Music is composed by series of dice rolls that lead to 

lookups on pre-constructed tables 
• Such games have been attributed to composers like 

C.P.E. Bach, Mozart and others
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Machine learning

• Manually specifying heuristics can be onerous or impossible for 
complex problems
• And is intrinsically flawed when expert domain knowledge is imperfect

• “Machine learning” bypasses this problem by having AIs 
automatically learn their own heuristics (or other ways of making 
decisions)
• Training, testing and validation data is needed to train a “model” that can 

then be used to  make decisions
• “Generalization” beyond the training data must be verified

• Traditionally (but much less so now), bespoke engineered “features” 
(characteristic measurements) expected to be useful were pre-calculated 
from the data and used as the percepts of the models
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Machine learning

• Sample application: Facial 
expression recognition
• In the past, pre-computed 

feature values rather than raw 
images were used to train 
models
• e.g. distance between eyes

• e.g. width of mouth

• etc.
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Machine learning

• Not having  enough features, or not having a sufficiently complex model, risks 
“underfitting” complex problems
• i.e. the model could be intrinsically incapable of representing a sufficiently sophisticated

mapping, either because the available features are missing essential information or because
the model is too simplistic

• Conversely, too many features or too complex a model risks “overfitting” training 
data
• i.e. capturing patterns in the training data that are not characteristic of the overall population 

from which it is drawn
• This is related to the “curse of dimensionality”

• More training data can counterbalance the curse of dimensionality
• But more data can be expensive or impossible to obtain

• “Dimensionality reduction” methods can also help, by automatically pre-shrinking 
feature spaces to (hopefully) be more tractable and directly salient
• e.g. PCA, forward-backward selection, genetic algorithms, etc.
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Machine learning

• Three particularly important overall types of machine learning:
• Supervised learning: training instances are labelled with “classes”, and during 

training models learn to map patterns in input instances (or their extracted 
feature values) to appropriate class name(s)

• Unsupervised learning / clustering: training instances are not labelled, so 
during training models look for emergent patterns in the training instances (or 
their extracted feature values)

• Reinforcement learning: an AI agent interacts with an environment and learns 
from feedback it receives from the environment
• e.g., if a Roomba consistently bumps into an object in a certain place, it learns not to go 

there
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Machine learning

Supervised

 Learning

Ockeghem

Josquin

Unknown (Ockeghem)

Unknown (Josquin)

Unsupervised

Learning

Composer 1

Composer 2

Composer 3

Composer 4

• An illustration 
of supervised 
vs. 
unsupervised 
learning from a
(2-feature) 
comparison 
from my own  
research on 
composer 
identification
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Classic machine learning algorithms

• There is a great variety of algorithm types that have been developed
to train models, a small sampling of which is outlined in the following 
slides



18February 8, 2024. Cory McKay

Classic machine learning algorithms

• Naive Bayesian: uses Bayes’ law, a basic principle in probability 
theory, to build models based on the observed relative frequencies of 
feature patterns

• Mixture models: form mappings via weighted sums of specific 
statistical feature probability distributions (e.g. Gaussians), and learns 
by iteratively estimating the parameters (e.g. mean vectors, 
covariance matrixes) and relative weights of these distributions
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Classic machine learning algorithms

• k-NN (k-Nearest Neighbor): a geometric approach that represents an input 
instance as a point in an n-dimensional feature space, and labels it based 
on the labels of the k closest memorized training instances

• Linear discriminant models: separate classes in n-dimensional feature 
space using hyperplane “discriminants” (decision boundaries separating 
classes)

• Support vector machines (SVMs): define discriminants using “support 
vectors” 
• Can use “kernels” to deal with data that is not linearly separable by projecting it to 

higher-dimensional spaces
• Especially good (relatively speaking) at dealing with problems with many features 

and relatively little training data
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Classic machine learning algorithms

• Decision tree learners: decision trees are inferred directly from 
feature data

• Ensemble learning: multiple models are trained and used together to 
arrive at final outputs
• Individual base learners are often quite simple (e.g. decision tree “stubs”)

• “Bagging” or “boosting” are common arrangements for combining base 
learners

• “Adaboost” has been a particularly successful approach
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Classic machine learning algorithms

• Sequential learning: instead of treating instances of data 
independently, the sequence in which they occur is modelled in 
meaningful ways
• e.g. processing melodies or chord progressions

• Hidden Markov models (HMMs) and conditional random field classifiers are 
two well-known approaches

• Genetic algorithms: learning is performed by “evolving” sets of 
solutions to be optimized based on some measure of “fitness”
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Artificial neural networks

• “Artificial neural networks” are a machine 
learning approach (very) loosely based on 
animal brains

• Sets of “nodes” are connected by “edges” and 
arranged in “layers” going left to right
• The leftmost nodes receive input

• Raw data, or features pre-extracted from it

• The rightmost nodes specify output
• e.g. classifications predicted by the network

• Information can be iteratively passed through 
“hidden layers” of nodes separating the input and 
output nodes
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Artificial neural networks

• Each edge has a “weight” used to multiply 
values passed through it from one node to 
another

• The (weighted) sum of all inputs to any node 
(and its own constant “bias” value) is processed 
by an “activation function”
• The result is then sent to nodes in the next layer of 

the network, via connecting edges

• Training happens by incrementally adjusting the 
weights of the edges and (sometimes) the bias 
values
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Artificial neural networks

• Many variants of this basic neural net 
architecture exist
• Some quite sophisticated

• For example, “recurrent” nets have 
feedback edges connecting nodes later 
in a network back to nodes in earlier 
layers
• This architecture can model sequences, like 

melodies and chord progressions
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Artificial neural networks

• Neural nets have waxed and waned in popularity over the decades

• Early neural nets (“perceptrons”) lacked hidden layers, and researchers lost 
interest in them in 1969 when it was shown that they could not model 
certain essential functions, like the Boolean XOR operator

• Interest was rekindled in the 1980s when a training process called 
“backpropagation” permitted the incorporation of hidden layers, which in 
turn permitted essential functions like XOR to be modelled

• Although there were some initial success, limited training data and 
prohibitively long training times for even moderately complex models led 
neural nets to be neglected in favor of other approaches for many years
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Deep learning

• Eventually, by the late 2000’s and early 2010’s, developments like the 
increased availability of massive amounts of training data (“big data”) 
and efficient hardware processing of neural nets using video card 
GPUs made extremely large and complex neural nets viable

• This led to the era of “deep learning,” which has shown that (very!) 
large and complex neural nets can be deployed very successful in 
many application areas
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Deep learning

• Many different network architectures, training techniques and 
activation functions continue to be experimented with

• The “transformer” neural network architecture is the basis for many 
of the (enormous!) “large language models (LLMs)” like ChatGPT
• GPT-4 has 1.76 trillion learnable parameters!

• Huge models like this are powerful enough that unsupervised 
approaches can be quite effective
• Training data with only limited labels, or no labels at all, is often viable

• Even low-quality, noisy data can still be useful

• All this makes training data much cheaper
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Deep learning

• Deep learning is also powerful enough that hand-engineered, pre-
computed features are often no longer bothered with
• Early layers of a network can in effect learn to find the features they need directly 

from (relatively) raw data like image pixel maps or audio “chromagrams” (below)

• Other kinds of pre-processing that were necessary for earlier types of AI 
are also typically no longer necessary either
• e.g. edge detection in images or note segmentation in music audio
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Deep learning

• The quick rise, power and relative opaqueness of deep learning has led to 
important ethical concerns, including:
• Environmental impact

• e.g. enormous amounts of electricity are needed to train models and (in the case of LLMs in 
particular) process prompts

• Intellectual property rights
• e.g. is it right that an AI music composer be trained on existing music without the permission 

or recompense of those who wrote that music?
• Fraud

• e.g. misrepresentation of machine generated content as one’s own
• Bias and fairness

• e.g. building human biases or prejudices implicit in training data into models
• Privacy

• e.g. video or audio surveillance of public spaces by AIs
• False output due to “hallucinations”
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Alternatives to deep learning?

• What if you’re worried by such ethical issues?

• What if only very limited training data is available?
• e.g. Renaissance music

• Deep learning techniques like “data augmentation” and “transfer learning” 
can only help so much

• What if you care not just about “what,” but also “why?”
• e.g. if I’m modelling a musician’s style, I might want to know not only if it is 

distinct from another musician’s style, but in what specific ways

• The reasons for predictions output using deep learning are (usually) opaque
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Statistically characterizing music
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What is a musical “feature”?

• A piece of information that measures a characteristic of something 
(e.g. a piece of music) in a simple, consistent and precisely-defined
way

• Represented using numbers
• Can be a single value, or can be a set of related values (e.g. a histogram)

• Provides a summary description of the characteristic being measured
• Usually macro, rather than local

• Usually extracted from pieces in their entirety
• But can also be extracted from segments of pieces
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Example: A simple (one-dimensional) feature

• Range (1-D): Difference in semitones between the lowest and highest 
pitches

• Value of this feature for the above example: 7
• G - C = 7 semitones
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Example: A histogram feature

• Pitch Class Histogram: Consists of 
12 values, each representing the 
fraction of all notes belonging to 
an enharmonic pitch class 

• Histogram graph on right shows 
feature values for this melody

• Pitch class counts:
• C: 3, D: 10, E: 11, G: 2

• Most common note is E:
• 11/26 notes
• Corresponds to a feature value of 0.423 for 

E
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Josquin’s Ave Maria . . . Virgo serena

• Range: 34 (semitones)
• Repeated notes: 0.181 (18.1%)
• Vertical perfect 4ths: 0.070 (7.0%)
• Rhythmic variability: 0.032
• Parallel motion: 0.039 (3.9%)
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Ockeghem’s Missa Mi-mi (Kyrie)

• Range: 26 (semitones)
• Repeated notes: 0.084 (8.4%)
• Vertical perfect 4ths: 0.109 (10.9%)
• Rhythmic variability: 0.042
• Parallel motion: 0.076 (7.6%)
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Feature value comparison
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Feature Ave Maria Missa Mi-mi

Range 34 26

Repeated notes 0.181 0.084

Vertical perfect 4ths 0.070 0.109

Rhythmic variability 0.032 0.042

Parallel motion 0.039 0.076
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Comparing features

• Comparing pairs of pieces like this in terms of features can be 
revealing
• Especially when that comparison involves hundreds or thousands of features, 

not just six

• Things get even more interesting when comparisons are made 
between hundreds or thousands of pieces, not just two
• Especially when the music is divided into groups of interest, whose can then 

be collectively contrasted with one another

• e.g. comparing the styles of composers, genres, regions, time periods, etc.
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Ways of comparing feature values

• Manually:
• Text editors

• Spreadsheets

• With automatic assistance:
• Statistical analysis software

• e.g. SPSS, SAS, etc.

• Machine learning and data mining software
• e.g. Weka, Orange, etc.

• Many of these tools can produce helpful visualizations
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Feature visualization: Histograms

• Histograms offer a good way of visualizing how the values of a feature 
are distributed across a corpus of music as a whole
• As opposed to focusing on individual pieces

• The x-axis corresponds to a series of bins, with each corresponding to 
a range of values for a given feature
• e.g., the first bin could correspond to Parallel Motion feature values between 

0 and 0.1, the next bin to Parallel Motion values between 0.1 and 0.2, etc.

• The y-axis indicates the fraction of pieces that have a feature value 
within the range of each given bin
• e.g., if 30% of pieces in the corpus have Parallel Motion values between 0.1 

and 0.2, then this bin  (0.1 to 0.2) will have a y-coordinate of 30% (or, 
equivalently, 0.3)
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Feature visualization: Histograms

• In other words: Each vertical bar on such a histogram represents the 
fraction of pieces in a corpus with a feature value falling in that bar’s 
range of feature values
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Feature visualization: Histograms

• These histograms show that Ockeghem tends to have more vertical 6ths (between 
all pairs of voices) than Josquin
• Ockeghem peaks in the 0.16 to 0.17 bin, at nearly 35%
• Josquin peaks in the 0.13 to 0.14 bin, at about 28%

• Of course, there are also clearly many exceptions
• This feature is helpful, but is limited if not considered in conjunction with other features
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Feature visualization: Histograms

• The histograms for both composers can be 
superimposed onto a single chart:
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Feature visualization: Histograms

• These histograms show that Ockeghem tends to have longer melodic arcs (average 
number of notes separating melodic peaks & troughs)
• Both peak in the 1.9 to 2.0 bin
• However, Josquin’s histogram is more skewed to the left

• Of course, there are once again clearly many exceptions
• This feature is also helpful, but also limited if only considered alone
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Feature visualization: Histograms

• Once again, the histograms for both composers can 
be superimposed onto a single chart:
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Feature visualization: Scatter plots

• Scatter plots are another nice way of visualizing feature data
• The x-axis represents one feature

• The y-axis represents a different feature

• Each point represents the values of these two features for a single piece

• Scatter plots let you see pieces individually, rather than aggregating them 
into bins (as histograms do)
• Scatter plots also let you see more clearly how features jointly separate the different 

categories of interest

• To make them easier to read, scatter plots typically have just 2 dimensions
• Computer classifiers, in contrast, work with much larger n-dimensional scatterplots 

(one dimension per feature)
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Feature visualization: Scatter plots

• Josquin pieces tend to be left and 
low on this graph
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Feature visualization: Scatter plots

• Simply drawing a single 1-D 
vertical dividing line 
(“discriminant”) results in a not 
entirely terrible classifier based 
only on Vertical Sixths
• Can get 62% classification accuracy 

using an SVM classifier and just this 
one feature

• But many pieces would still be 
misclassified 1.3
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Feature visualization: Scatter plots

• Could alternatively draw a 1-D 
discriminant dividing the pieces 
based only on the Average 
Length of Melodic Arcs
• Can get 57% classification accuracy 

using an SVM classifier and just this 
one feature

• Not as good as the Vertical Sixths
discriminant (62%), but still better 
than chance (50%) 1.3
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Feature visualization: Scatter plots

• Drawing a curve (another kind of 
discriminant) divides the 
composers still better than either 
of the previous (linear) 
discriminants
• Can get 80% accuracy using an 

SVM classifier looking at just these 
2 features! 

• More than 2 features are needed 
to improve performance further
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Choosing features to implement

• What particular features should we investigate?
• Yes, probably the ones we already know or suspect are important to the kinds 

of music under consideration
• But also ideally ones that are important, but we do not know or suspect it yet

• To do this, we may need a lot of diverse features
• So we encourage unexpected but important surprises
• So we are less likely to miss important insights
• So we can apply them to many types of music
• So we can address the interests of many different researchers

• The same can be said for data
• The more music and the more varied it is the better (typically)
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Calculating features

• So how can music researchers get access to all these diverse and 
wonderful features?
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Highlights from my own research
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jSymbolic: Introduction

• jSymbolic is a software platform I have been developing since 2004 for 
automatically extracting features from symbolic musical representations 
(digital musical scores) such as MIDI
• Tristano Tenaglia and Rian Adamian, two research assistants, also made important 

contributions between 2015 to 2020

• Free and open-source
• https://jmir.sourceforge.net + https://github.com/DDMAL/jSymbolic2

• McKay, C., J. Cumming, and I. Fujinaga. 2018. jSymbolic 2.2: Extracting features from symbolic music for use in musicological and MIR 
research. Proceedings of the International Society for Music Information Retrieval Conference. 348–354.

• McKay, C., T. Tenaglia, and I. Fujinaga. 2016. jSymbolic2: Extracting features from symbolic music representations. Extended Abstracts for the 
Late-Breaking Demo Session of the 17th International Society for Music Information Retrieval Conference.

• McKay, C., and I. Fujinaga. 2006. jSymbolic: A feature extractor for MIDI files. Proceedings of the International Computer Music Conference. 
302–305.

https://jmir.sourceforge.net/
https://github.com/DDMAL/jSymbolic2
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What does jSymbolic do?

• (Version 2.2, the current release version) extracts 246 unique features
• Some of these are multi-dimensional histograms

• In all, (version 2.2) extracts a total of 1497 separate values
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jSymbolic 2.2: Feature types (1/2)

• Pitch Statistics:
• What are the occurrence rates of different pitches and pitch classes?
• How tonal is the piece?
• How much variety in pitch is there?

• Melody / horizontal intervals:
• What kinds of melodic intervals are present?
• How much melodic variation is there?
• What kinds of melodic contours are used?

• Chords / vertical intervals:
• What vertical intervals are present?
• What types of chords do they combine to make?
• How much harmonic movement is there?
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jSymbolic 2.2: Feature types (2/2)

• Rhythm:
• Rhythmic values of notes
• Intervals between the attacks of different notes 
• Use of rests
• What kinds of meter are used? 
• Rubato?

• Texture:
• How many independent voices are there and how do they interact (e.g. moving in parallel, 

crossing voices, etc.)? 

• Instrumentation:
• What types of instruments are present and which are given particular importance relative to 

others? 

• Dynamics:
• How loud are notes and what kinds of dynamic variations occur?
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jSymbolic: Extensibility

• jSymbolic is specifically designed such that music researchers can 
design their own features and easily add these features to the 
jSymbolic infrastructure as plug-ins
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To come in jSymbolic 3

• Many new features
• 533 unique features and 2040 feature values

• Including features base on n-grams
• A useful way of statistically exploring patterns in melodic, harmonic or rhythmic 

sequences

• McKay, C. 2023. From jSymbolic 2 to 3: More musical features. Proceedings of the International Symposium on Computer 
Music Multidisciplinary Research. 752–755.

• McKay, C., J. Cumming, and I. Fujinaga. 2023. Rhythmic, melodic and vertical n-gram features as a means of studying 
symbolic music computationally. Presented at the Digital Humanities Conference.

• McKay, C., R. Adamian, J. Cumming, and I. Fujinaga. 2020. Exploring Renaissance music using n-gram aggregates to 
summarize local musical content. Presented at the Medieval and Renaissance Music Conference.
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Musicological research based on jSymbolic’s 
features
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Musical genre (popular and art music)

• I showed that (just) jSymbolic features and machine learning could be used to 
automatically identify the genre of a piece of music
• e.g. 93% accuracy among 5 genres
• e.g. 78% accuracy among 10 genres
• e.g. 64% accuracy among 38 genres

• Features based on instrumentation were especially effective

• McKay, C., J. Cumming, and I. Fujinaga. 2018. jSymbolic 2.2: Extracting features from symbolic music for use in musicological and MIR research. Proceedings of the International Society for Music Information Retrieval 
Conference. 348–354.

• McKay, C. 2010. Automatic music classification with jMIR. Ph.D. Dissertation. McGill University, Canada.

• McKay, C., and I. Fujinaga. 2007. Style-independent computer-assisted exploratory analysis of large music collections. Journal of Interdisciplinary Music Studies 1 (1): 63–85.

• McKay, C., and I. Fujinaga. 2006. Musical genre classification: Is it worth pursuing and how can it be improved?. Proceedings of the International Conference on Music Information Retrieval. 101–106.

• McKay, C., and I. Fujinaga. 2005. Automatic music classification and the importance of instrument identification. Proceedings of the Conference on Interdisciplinary Musicology. CD-ROM.

• McKay, C., and I. Fujinaga. 2006. Style-independent computer-assisted exploratory analysis of large music collections. Presented at the Joint Meeting of the American Musicological Society and the Society for Music 
Theory.

• McKay, C., and I. Fujinaga. 2004. Automatic genre classification as a study of the viability of high-level features for music classification. Proceedings of the International Computer Music Conference. 367–370.

• McKay, C. and I. Fujinaga. 2004. Automatic genre classification using large high-level musical feature sets. Proceedings of the International Conference on Music Information Retrieval. 525–530.

• McKay, C. 2004. Automatic genre classification of MIDI recordings. M.A. Thesis. McGill University, Canada.
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Renaissance musicology: Origins of the 
madrigal
• The madrigal (a type of polyphonic vocal music from the 17th to 18th

centuries) is typically said in the literature to be derived primarily 
from motets and chansons

• Our feature-based analysis found that early madrigals are actually
statistically fairly dissimilar to both motets and chansons, and are 
musically much closer to other Italian-texted forms, especially the 
vilotta

• Cumming, J., and C. McKay. 2021. Using corpus studies to find the origins of the madrigal. Proceedings of the Future Directions of 
Music Cognition International Conference. 38–42.

• Cumming, J., and C. McKay. 2018. Revisiting the origins of the Italian madrigal using machine learning. Presented at the Medieval 
and Renaissance Music Conference.
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Renaissance musicology: Composer style

• jSymbolic features and machine learning can also be used to automatically 
recognize compositional style
• e.g. able to identify the composer of securely attributed works 92% of the time 

(among 7 composers)
• Could even distinguish very stylistically similar composers 

• e.g. 86% accuracy for Josquin and La Rue

• Particularly useful for Renaissance music, much of which is unattributed or 
insecurely attributed

• McKay, C., J. Cumming, and I. Fujinaga. 2018. jSymbolic 2.2: Extracting features from symbolic music for use in musicological and 
MIR research. Proceedings of the International Society for Music Information Retrieval Conference. 348–354.

• McKay, C., J. Cumming, and I. Fujinaga. 2017. Characterizing composers using jSymbolic2 features. Extended Abstracts for the Late-
Breaking Demo Session of the 18th International Society for Music Information Retrieval Conference.

• McKay, C., T. Tenaglia, J. Cumming, and I. Fujinaga. 2017. Using statistical feature extraction to distinguish the styles of different 
composers. Presented at the Medieval and Renaissance Music Conference.
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Renaissance musicology: Composer style

• Also used jSymbolic feature values to identify specific differences in 
the styles of different composers

• I began by asking an eminent specialist musicologist and an eminent 
specialist theorist to identify what they thought differentiated the 
styles of Josquin and Ockeghem, and then checked their expectations 
using calculated features . . .
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Renaissance musicology: Composer style

• Josquin vs. Ockeghem a priori expert expectations: Ockeghem has . . .
• Slightly more large leaps (larger than a 5th)

• Less stepwise motion in some voices

• More notes at the bottom of the range

• Slightly more chords (or simultaneities) without a third

• Slightly more dissonance

• A lot more triple meter

• More varied rhythmic note values

• More 3-voice music

• Less music for more than 4 voices
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Renaissance musicology: Composer style

• Josquin vs. Ockeghem empirical reality: Ockeghem has . . .
• OPPOSITE: Slightly more large leaps (larger than a 5th)

• SAME: Less stepwise motion in some voices

• SAME: More notes at the bottom of the range

• SAME: Slightly more chords (or simultaneities) without a third

• OPPOSITE: Slightly more dissonance

• YES: A lot more triple meter

• SAME: More varied rhythmic note values

• YES: More 3-voice music

• YES: Less music for more than 4 voices
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Renaissance musicology: Composer style

• Additional unexpected insights revealed from a purely feature-based 
analysis:
• Rhythm-related features are particularly important

• e.g. Josquin tends to have greater rhythmic variety
• Especially in terms of both especially short and especially long notes

• It turns out that rhythmic features in general tend to have much more predictive power 
than most expert Renaissance scholars expect 
• Much of the literature largely ignores rhythm

• Ockeghem tends to have more diminished triads

• Ockeghem tends to have more vertical sixths

• Ockeghems tends to have longer melodic arcs
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Renaissance musicology: Composer style

• In another study, I used jSymbolic features to validate a benchmark 
ranking by musicologist Jesse Rodin of the attribution certainty of all 
pieces associated with Josquin 
• Rodin’s rankings are based purely on historical evidence, not on the music 

itself

• My analysis was based only on the music

• Happily, the two approaches produced largely coinciding results

• Updated version of this work to be published in a 2025 book chapter
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Renaissance musicology: Other published research 
with jSymbolic using jSymbolic features

• Attribution of anonymous and doubtfully attributed works:
• Masses transcribed by Siro Cisilino

• Coimbra manuscripts

• Ave verum corpus and O decus virgineum

• Ave festiva ferculis

• Gaffurius Codices

• Regional style in Iberian Renaissance music:
• Musical influences of Pedro Fernández Buch

• Musical Influences of Cristóbal de Morales and Francisco Guerrero
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Renaissance musicology: Other published 
work using jSymbolic features
• Cuenca, M. E., and C. McKay. 2023. The stylistic origin of the anonymous 16th century masses transcribed by Siro Cisilino (1903-1987) at the Fondazione Cini: A statistical and 

machine learning approach. Presented at the Medieval and Renaissance Music Conference.

• McKay, C., and M. E. Cuenca. 2022. Influencias musicales en las misas y motetes de Cristóbal de Morales y Francisco Guerrero: Una aproximación estadística. In Musicología en 
transición, eds. J. Marín-López, A. Mazuela-Anguita and J. J. Pastor-Comín, 1031–1052. Madrid, Spain: Sociedad Española de Musicología.

• Cuenca, M. E., and C. McKay. 2022. Musical influences on the masses of Pedro Fernández Buch (c. 1574-1648): A stylistic comparison using statistical analysis. Presented at the 
Medieval and Renaissance Music Conference.

• Cuenca, M. E., and C. McKay. 2021. Exploring musical style in the anonymous and doubtfully attributed mass movements of the Coimbra manuscripts: A statistical and machine 
learning approach. Journal of New Music Research 50 (3): 199–219.

• Cuenca, M. E., and C. McKay. 2021. Influencias musicales en las misas y motetes de Cristóbal de Morales y Francisco Guerrero: Una aproximación estadística. Presented at the 
Congreso de la Sociedad Española de Musicología.

• McKay, C. 2021. Exploring composer attribution in motet cycles using machine learning. Gaffurius Codices Online, Schola Cantorum Basiliensis.

• Rodríguez-García, E., and C. McKay. 2021. Composer attribution of Renaissance motets: A case study using statistical features and machine learning. In The Anatomy of Iberian 
Polyphony Around 1500, eds. E. Rodríguez-García and J. P. d’Alvarenga, 401–38. Kassel, Germany: Edition Reichenberger.

• McKay, C., and M. E. Cuenca. 2021. Musical influences on the masses and motets of Cristóbal de Morales and Francisco Guerrero: A statistical approach. Presented at the 
Medieval and Renaissance Music Conference.

• Rodriguez-Garcia, E., and C. McKay. 2021. Ave festiva ferculis: Exploring attribution by combining manual and computational analysis. Presented at the Medieval and Renaissance 
Music Conference.

• Cuenca, M. E., and C. McKay. 2019. Análisis estadístico de misas ibéricas renacentistas a través del software jSymbolic. Presented at the El análisis musical actual: Marco teórico e 
interdisciplinariedad conference.

• Cuenca, M. E., and C. McKay. 2019. Exploring musical style in the anonymous and doubtfully attributed mass movements of the Coimbra manuscripts: A statistical approach. 
Presented at the Medieval and Renaissance Music Conference.
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Chord identification in Baroque music 

• I co-supervised Yaolong Ju’s PhD research on using machine learning to 
identify chords in Baroque music 
• Did not use jSymbolic, did use neural networks
• Sometimes using figured bass annotations
• Interesting investigation of how to address intrinsic ambiguity

• Ju, Y., S. Margot, C. McKay, and I. Fujinaga. 2020. Automatic chord labeling: A figured bass approach. Proceedings of DLfM 2020: 
The 7th International Conference on Digital Libraries for Musicology. 27–31.

• Ju, Y., S. Margot, C. McKay, L. Dahn, and I. Fujinaga. 2020. Automatic figured bass annotation using the new Bach Chorales Figured 
Bass dataset. Proceedings of the International Society for Music Information Retrieval Conference. 640–646.

• Ju, Y., S. Margot, C. McKay, and I. Fujinaga. 2020. Figured bass encodings for Bach chorales in various symbolic formats: A case
study. Music Encoding Conference Proceedings. 71–74.

• Ju, Y., S. Howes, C. McKay, N. Condit-Schultz, J. Calvo-Zaragoza, and I. Fujinaga. 2019. An interactive workflow for generating chord 
labels for homorhythmic music in symbolic formats. Proceedings of the International Society for Music Information Retrieval 
Conference. 862–869.
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SIMSSA DB

• A prototype database of symbolic 
music files intended for research in 
computational musicology
• And, eventually, associated images, 

audio recordings, texts, etc.
• https://db.simssa.ca

• Searchable by:
• Free text
• Faceted metadata
• Feature values

• Auto-annotated by jSymbolic

https://db.simssa.ca/


73February 8, 2024. Cory McKay

SIMSSA DB

• To be used in combination with other music repositories as part of the 
long-term LinkedMusic project (2022-2029)

• I designed the data model, but all the actual implementation work was 
done by RAs I co-supervised:
• Gustavo Polins Pedro, Yaolong Ju, Rebecca Mizrahi, Hong Van Pham

• McKay, C., and J. Cumming. 2022. Summary features as the basis for content-based queries of symbolic music repositories. Presented at the Congress 
of the International Association of Music Libraries, Archives and Documentation Centres.

• Hopkins, E., Y. Ju, G. Polins Pedro, C. McKay, J. Cumming, and I. Fujinaga. 2019. SIMSSA DB: Symbolic music discovery and search. Poster presentation 
at the International Conference on Digital Libraries for Musicology.

• Ju, Y., G. Polins Pedro, C. McKay, E. Hopkins, J. Cumming, and I. Fujinaga. 2019. Enabling music search and analysis: A database for symbolic music files. 
Presented at the Music Encoding Conference.

• McKay, C., E. Hopkins, G. Polins Pedro, Y. Ju, A. Kam, J. Cumming, and I. Fujinaga. 2019. A collaborative symbolic music database for computational 
research on music. Presented at the Medieval and Renaissance Music Conference.

• McKay, C., A. Hankinson, J. Cumming, and I. Fujinaga. 2017. A database model for computational music research. Poster presentation at the 
International Workshop on Digital Libraries for Musicology.
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General data and metadata issues

• The availability, quality and selection of data and metadata can be an essential 
factors when conducting empirical studies

• McKay, C., J. Cumming, and I. Fujinaga. 2021. Lessons learned in a large-scale project to digitize and computationally analyze musical scores. Digital Scholarship in 
the Humanities 36 (s2): ii198–ii202.

• Cumming, J., C. McKay, J. Stuchbery, and I. Fujinaga. 2018. Methodologies for creating symbolic corpora of Western music before 1600. Proceedings of the 
International Society for Music Information Retrieval Conference. 491–498.

• McKay, C., and I. Fujinaga. 2015. Building an infrastructure for a 21st-century global music library. Extended Abstracts for the Late-Breaking Demo Session of the 
16th International Society for Music Information Retrieval Conference.

• McKay, C., and I. Fujinaga. 2013. Expressing musical features, class labels, ontologies, and metadata using ACE XML 2.0. In Structuring Music Through Markup 
Language: Designs and Architectures, ed. J. Steyn, 48–79. Hershey, PA: IGI Global.

• McKay, C., and D. Bainbridge. 2011. A musical web mining and audio feature extraction extension to the Greenstone digital library software. Proceedings of the 
International Society for Music Information Retrieval Conference. 459–464.

• Angeles, B., C. McKay, and I. Fujinaga. 2010. Discovering metadata inconsistencies. Proceedings of the International Society for Music Information Retrieval 
Conference. 195–200.

• McKay, C., J. A. Burgoyne, J. Thompson, and I. Fujinaga. 2009. Using ACE XML 2.0 to store and share feature, instance and class data for musical classification. 
Proceedings of the International Society for Music Information Retrieval Conference. 303–308.

• McEnnis, D., C. McKay, and I. Fujinaga. 2006. Overview of OMEN. Proceedings of the International Conference on Music Information Retrieval. 7–12.

• McKay, C., D. McEnnis and I. Fujinaga. 2006. A large publicly accessible prototype audio database for music research. Proceedings of the International Conference on 
Music Information Retrieval. 160–163.
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jMIR and multimodal research

• All the research I have presented so far was based on symbolic data 
(i.e. digital scores), like MIDI files

• However, I have also conducted research involving many other kinds 
of musical data (e.g. audio, images, video, text, etc.), both individually 
and in combination (“multimodal” analysis) 

• In fact, jSymbolic is just one part of the larger open-source jMIR
multimodal music research software suite that I wrote
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jMIR’s jAudio 2

• Implemented jointly with Daniel 
McEnnis

• Extracts features from audio files
• e.g. MP3, WAV, AIFF, AU, SND

• 28 bundled core features
• Mainly low-level, some high-level

• McEnnis, D., C. McKay, and I. Fujinaga. 2006. jAudio: Additions and 
improvements. Proceedings of the International Conference on 
Music Information Retrieval. 385–386.

• McEnnis, D., C. McKay, I. Fujinaga, and P. Depalle. 2005. jAudio: A 
feature extraction library. Proceedings of the International 
Conference on Music Information Retrieval. 600–603.
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jMIR’s jWebMiner 2

• Extracts cultural features from the web 
based on automated search engine 
queries
• Calculates how often particular strings co-

occur on the same web pages
• e.g. how often does “J. S. Bach” compared to 

“Prokofiev” co-occur on web pages with 
“Baroque”?

• Version 2 (implemented by Gabriel 
Vigliensoni) also extracts features from 
Last.fm social tags

• Vigliensoni, G., C. McKay, and I. Fujinaga. 2010. Using jWebMiner 2.0 to 
improve music classification performance by combining different types of 
features mined from the web. Proceedings of the International Society for 
Music Information Retrieval Conference. 607–612.

• McKay, C., and I. Fujinaga. 2007. jWebMiner: A web-based feature extractor. 
Proceedings of the International Conference on Music Information Retrieval. 
113–114.
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jMIR’s jLyrics

• Extracts features from textual lyrics

• Can also automatically generate word frequency profiles for particular 
classes if training data is provided

• McKay, C., J. A. Burgoyne, J. Hockman, J. B. L. Smith, G. Vigliensoni, and I. Fujinaga. 2010. Evaluating the genre classification performance of 
lyrical features relative to audio, symbolic and cultural features. Proceedings of the International Society for Music Information Retrieval 
Conference. 213–218.
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jMIR’s ACE 2

• Automatically uses meta-learning to evaluate 
the relative suitability of machine learning and 
dimensionality reduction algorithms for a 
given problem, in terms of:
• Classification accuracy
• Consistency
• Time complexity

• Jessica Thompson improved the architecture, 
interface and functionality in version 2

• Thompson, J., C. McKay, J. A. Burgoyne, and I. Fujinaga. 2009. Additions 
and improvements to the ACE 2.0 music classifier. Proceedings of the 
International Society for Music Information Retrieval Conference. 435–
440.

• McKay, C., R. Fiebrink, D. McEnnis, B. Li, and I. Fujinaga. 2005. ACE: A 
framework for optimizing music classification. Proceedings of the 
International Conference on Music Information Retrieval. 42–49.

• McKay, C., D. McEnnis, R. Fiebrink, and I. Fujinaga. 2005. ACE: A general-
purpose classification ensemble optimization framework. Proceedings 
of the International Computer Music Conference. 161–164.
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jMIR’s jMusicMetaManager 2

• Auto-detects metadata errors or 
inconsistencies and redundant copies of 
recordings 
• e.g. “Charlie Mingus” vs. “Mingus, Charles”
• Using novel algorithms based on edit 

distance, replacement and word reordering

• Generates inventory and profile reports
• 39 reports in all

• Bruno Angeles added fingerprinting (auto-
identification of audio) functionality to 
version 2

• Angeles, B., C. McKay, and I. Fujinaga. 2010. Discovering metadata inconsistencies. 
Proceedings of the International Society for Music Information Retrieval Conference. 
195–200.

• McKay, C., D. McEnnis and I. Fujinaga. 2006. A large publicly accessible prototype 
audio database for music research. Proceedings of the International Conference on 
Music Information Retrieval. 160–163.
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Multi-modal analysis (1st approach)

• Extracted features using the four jMIR extractors 
and trained classifiers on all groupings of them
• Symbolic, audio, cultural (jWebMiner) and lyrical 

data were all used

• For tasks like genre classification, adding more 
feature types improved performance
• Except when cultural features were included: their 

predictive power was so strong that adding 
additional feature types had a negligible effect

• McKay, C., J. A. Burgoyne, J. Hockman, J. B. L. Smith, G. Vigliensoni, and I. Fujinaga. 2010. Evaluating the genre 
classification performance of lyrical features relative to audio, symbolic and cultural features. Proceedings of 
the International Society for Music Information Retrieval Conference. 213–218.

• McKay, C., and I. Fujinaga. 2010. Improving automatic music classification performance by extracting features 
from different types of data. Proceedings of the ACM SIGMM International Conference on Multimedia 
Information Retrieval. 257–266.

• McKay, C. 2010. Automatic music classification with jMIR. Ph.D. Dissertation. McGill University, Canada.

• McKay, C., and I. Fujinaga. 2008. Combining features extracted from audio, symbolic and cultural sources. 
Proceedings of the International Conference on Music Information Retrieval. 597–602.
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Multi-modal analysis (2nd approach)

• Used genetic algorithms to explore different combinations of modalities and 
feature types
• Features extracted from audio, lyric texts, symbolic scores, album cover images, semantic 

tags and playlist co-occurrences
• Evaluated subsets based on “importance,” “redundancy” and “stability”

• Found that combining data and feature types often does improve performance, 
but which ones in particular work best tends to depend greatly on the particular 
classification problem
• In general, though, playlist features were often particularly predictive, and album cover 

image features tended to be the least predictive

• Vatolkin, I., and C. McKay. 2022. Multi-objective investigation of six feature source types for multi-modal music classification. 
Transactions of the International Society for Music Information Retrieval 5 (1): 1–19.

• Vatolkin, I., and C. McKay. 2022. Stability of symbolic feature group importance in the context of multi-modal music classification. 
Proceedings of the International Society for Music Information Retrieval Conference. 469–476.
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jMIR’s jProductionCritic

• Auto-detects technical sound 
recording errors, production 
errors and potential issues in 
audio files
• e.g. clipping, edit clicks, 

background noise, etc.

• Labels audio tracks

• McKay, C. 2013. jProductionCritic: An educational tool for 
detecting technical errors in audio mixes. Proceedings of the 
International Society for Music Information Retrieval Conference. 
71–76.
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LANDR

• I have also done commercial 
consulting work with a Montreal 
company called LANDR that auto-
masters submitted audio
• i.e. adjusts to aspects like EQ and 

dynamics to make the music sound 
better

• Done in style-appropriate ways

• https://www.landr.com/online-audio-
mastering/

https://www.landr.com/online-audio-mastering/
https://www.landr.com/online-audio-mastering/
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Clarinet performance gesture

• Used a range of sensors, cameras and 
recordings to analyze the motions of 
clarinet performers to see how meaningful 
gestures were in communicating 
information to listeners / watchers
• Phrasing, expressiveness, rhythm, etc.

• We just used statistical analysis, no AI

• Wanderley, M., B. Vines, N. Middleton, C. McKay, and W. Hatch. 2005. The musical 
significance of clarinetists’ ancillary gestures: An exploration of the field. Journal of New 
Music Research 34 (1): 97–113.
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Other musical applications of machine 
learning
• Music generation / composition

• Hit prediction

• Copyright analysis

• Music recommendation / playlist generation

• Noise removal

• Source separation
• e.g. separating recorded piano from other instruments embedded in the same recording

• Automatic transcription
• i.e. generating a symbolic score from an audio recording

• And many, many, many more



87February 8, 2024. Cory McKay

Thanks for your attention!
c.mckay@marianopolis.edu

Room B-416, Marianopolis College
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