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“A brilliant speech on machine learning and
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“A brilliant speech on machine learning and
music in a college”
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“A rapturous lecture audience after being
gifted with erudition”
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“An ecstatic college audience after attending the
greatest music technology lecture of their lives”

—
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Whirlwind tour of machine learning
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Early Al: Expert systems

* Early Al focused on manually animal_tree
encoding sets of explicit rules
(“heuristics”) that a computer

Has feathers?

could follow / \F‘,%
» Often represented as “decision
trees” (rlght) Can fly? Has finns?
* Early specialized programming
. “ ” False True \ False
languages like “Prolog” were used v v
tO SpeCifV |08ica| rUIeS and Hawk Penguin Dolphin Bear

relationships

February 8, 2024. Cory McKay



Early Al: Expert systems

* “Expert systems” based on these kinds of approaches require:

* “Knowledge representation” for encoding, connecting and structuring
information in machine-interpretable ways

* An “inference engine” for processing inputs in the context of embedded
knowledge to produce outputs
* Usually based on logical reasoning via explicitly defined rules
* Sometimes involving some probabilistic reasoning (e.g. “fuzzy logic”)
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Early Al: Expert systems

* Tree search techniques like
“branch and bound” can be used
to explore as many possible
outcomes of a decision as can be
computed

e Unpromising (or probably
unpromising) outcomes can be
eliminated when exhaustive
computing is not possible

e Often used in early game-playing
Al (e.g. checkers)
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Sample historical expert systems

* My own graduating undergraduate physics thesis
project (1998, right) on using magnetic fields to
help robots navigate unknown environments

* INTERNIST-I or MYCIN, prototype systems from the
1970’s for performing clinical diagnoses

* Musical dice games (popular in the 18% century)
can be seen as early generative expert systems

* Music is composed by series of dice rolls that lead to
lookups on pre-constructed tables

e Such games have been attributed to composers like
C.P.E. Bach, Mozart and others
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Machine learning

* Manually specifying heuristics can be onerous or impossible for
complex problems

* And is intrinsically flawed when expert domain knowledge is imperfect

* “Machine learning” bypasses this problem by having Als
automatically learn their own heuristics (or other ways of making
decisions)

* Training, testing and validation data is needed to train a “model” that can
then be used to make decisions
* “Generalization” beyond the training data must be verified

* Traditionally (but much less so now), bespoke engineered “features”
(characteristic measurements) expected to be useful were pre-calculated
from the data and used as the percepts of the models
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Machine learning

EYE DISTANCES

e Sample application: Facial e o )
p . pp o FACE DISTANCE / ;_@F\—m \5
expression recognition 7 [\

* In the past, pre-computed / T DIl

/ /’// TS\
feature values rather than raw =4 A
images were used to train T\ @/ G

models Lf c) W
* e.g. distance between eyes s B L=
* e.g. width of mouth T
. etc. / 1\
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Machine learning

* Not having enough features, or not having a sufficiently complex model, risks
“underfitting” complex problems

* i.e. the model could be intrinsically incapable of representing a sufficiently sophisticated
mapping, either because the available features are missing essential information or because
the model is too simplistic

. gonversely, too many features or too complex a model risks “overfitting” training
ata

* j.e. capturing patterns in the training data that are not characteristic of the overall population
from which it is drawn

* This is related to the “curse of dimensionality”

* More training data can counterbalance the curse of dimensionality
* But more data can be expensive or impossible to obtain

* “Dimensionality reduction” methods can also help, by automatically pre-shrinking
feature spaces to (hopefully) be more tractable and directly salient

* e.g. PCA, forward-backward selection, genetic algorithms, etc.
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Machine learning

* Three particularly important overall types of machine learning:

* Supervised learning: training instances are labelled with “classes”, and during
training models learn to map patterns in input instances (or their extracted
feature values) to appropriate class name(s)

* Unsupervised learning / clustering: training instances are not labelled, so

during training models look for emergent patterns in the training instances (or
their extracted feature values)

e Reinforcement learning: an Al agent interacts with an environment and learns
from feedback it receives from the environment

* e.g., if a Roomba consistently bumps into an object in a certain place, it learns not to go
there
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Machine learning

* An illustration
of supervised
VS.
unsupervised
learning from a
(2-feature)
comparison
from my own
research on
composer
identification
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Classic machine learning algorithms

* There is a great variety of algorithm types that have been developed
to train models, a small sampling of which is outlined in the following
slides
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Classic machine learning algorithms

* Naive Bayesian: uses Bayes’ law, a basic principle in probability
theory, to build models based on the observed relative frequencies of
feature patterns

Ple|x)= Pele)Ple)

| P(x) .

u
Posterior Probability Predictor Prior Probability

P(c|X) = P(x,|€)x P(x, | e)x---x P(x, [ c)x P(c)

* Mixture models: form mappings via weighted sums of specific
statistical feature probability distributions (e.g. Gaussians), and learns
by iteratively estimating the parameters (e.g. mean vectors,
covariance matrixes) and relative weights of these distributions
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Classic machine learning algorithms

* k-NN (k-Nearest Neighbor): a geometric approach that represents an input
instance as a point in an n-dimensional feature space, and labels it based
on the labels of the k closest memorized training instances

* Linear discriminant models: separate classes in n-dimensional feature
space u)smg hyperplane “discriminants” (decision boundaries separating
classes

e Support vector machines (SVMs): define discriminants using “support
vectors”

* Can use “kernels” to deal with data that is not linearly separable by projecting it to
higher-dimensional spaces

* Especially good (relatively speaking) at dealing with problems with many features
and relatively little training data
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Classic machine learning algorithms

* Decision tree learners: decision trees are inferred directly from
feature data

* Ensemble learning: multiple models are trained and used together to
arrive at final outputs
* Individual base learners are often quite simple (e.g. decision tree “stubs”)

* “Bagging” or “boosting” are common arrangements for combining base
learners

e “Adaboost” has been a particularly successful approach
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Classic machine learning algorithms

* Sequential learning: instead of treating instances of data
independently, the sequence in which they occur is modelled in
meaningful ways

* e.g. processing melodies or chord progressions

* Hidden Markov models (HMMs) and conditional random field classifiers are
two well-known approaches

* Genetic algorithms: learning is performed by “evolving” sets of
solutions to be optimized based on some measure of “fitness”
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Artificial neural networks

e “Artificial neural networks” are a machine
learning approach (very) loosely based on
animal brains

 Sets of “nodes” are connected by “edges” and
arranged in “layers” going left to right
* The leftmost nodes receive input
* Raw data, or features pre-extracted from it

* The rightmost nodes specify output
* e.g. classifications predicted by the network

* Information can be iteratively passed through
“hidden layers” of nodes separating the input and
output nodes
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Artificial neural networks

* Each edge has a “weight” used to multiply
values passed through it from one node to
another

* The (weighted) sum of all inputs to any node
(and its own constant “bias” value) is processed
by an “activation function”

* The result is then sent to nodes in the next layer of
the network, via connecting edges

* Training happens by incrementally adjusting the
weights of the edges and (sometimes) the bias
values
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Artificial neural networks

* Many variants of this basic neural net
architecture exist

* Some quite sophisticated

* For example, “recurrent” nets have
feedback edges connecting nodes later
in a network back to nodes in earlier
layers

* This architecture can model sequences, like
melodies and chord progressions

February 8, 2024. Cory McKay

Recurrent Neural Network

24



Artificial neural networks

* Neural nets have waxed and waned in popularity over the decades

e Early neural nets (“perceptrons”) lacked hidden layers, and researchers lost
interest in them in 1969 when it was shown that they could not model
certain essential functions, like the Boolean XOR operator

* Interest was rekindled in the 1980s when a training process called
“backpropagation” permitted the incorporation of hidden layers, which in
turn permitted essential functions like XOR to be modelled

e Although there were some initial success, limited training data and
prohibitively long training times for even moderately complex models led
neural nets to be neglected in favor of other approaches for many years
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Deep learning

* Eventually, by the late 2000’s and early 2010’s, developments like the
increased availability of massive amounts of training data (“big data”)
and efficient hardware processing of neural nets using video card
GPUs made extremely large and complex neural nets viable

 This led to the era of “deep learning,” which has shown that (very!)
large and complex neural nets can be deployed very successful in
many application areas
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Deep learning

* Many different network architectures, training techniques and
activation functions continue to be experimented with

* The “transformer” neural network architecture is the basis for many
of the (enormous!) “large language models (LLMs)” like ChatGPT

* GPT-4 has 1.76 trillion learnable parameters!

* Huge models like this are powerful enough that unsupervised
approaches can be quite effective
* Training data with only limited labels, or no labels at all, is often viable
* Even low-quality, noisy data can still be useful
* All this makes training data much cheaper

February 8, 2024. Cory McKay
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Deep learning

* Deep learning is also powerful enough that hand-engineered, pre-
computed features are often no longer bothered with

e Early layers of a network can in effect learn to find the features they need directly
from (relatively) raw data like image pixel maps or audio “chromagrams” (below)

Chromagram

B
A#
A
G#

Gl
Fé
F
E
D#
D

chroma class

e Other kinds of pre-processing that were necessary for earlier types of Al
are also typically no longer necessary either
e e.g. edge detection in images or note segmentation in music audio
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Deep learning

* The quick rise, power and relative opaqueness of deep learning has led to
important ethical concerns, including:

* Environmental impact

* e.g. enormous amounts of electricity are needed to train models and (in the case of LLMs in
particular) process prompts

Intellectual property rights

* e.g.is it right that an Al music composer be trained on existing music without the permission
or recompense of those who wrote that music?

Fraud
* e.g. misrepresentation of machine generated content as one’s own
Bias and fairness
e e.g. building human biases or prejudices implicit in training data into models
Privacy
* e.g.video or audio surveillance of public spaces by Als
False output due to “hallucinations”
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Alternatives to deep learning?

* What if you’re worried by such ethical issues?

 What if only very limited training data is available?
* e.g. Renaissance music
* Deep learning techniques like “data augmentation” and “transfer learning”
can only help so much
* What if you care not just about “what,” but also “why?”

e e.g. if I'm modelling a musician’s style, | might want to know not only if it is
distinct from another musician’s style, but in what specific ways

* The reasons for predictions output using deep learning are (usually) opaque
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Statistically characterizing music
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What is a musical “feature”?

* A piece of information that measures a characteristic of something
(e.g. a piece of music) in a simple, consistent and precisely-defined
way

* Represented using numbers
e Can be a single value, or can be a set of related values (e.g. a histogram)

* Provides a summary description of the characteristic being measured
* Usually macro, rather than local

* Usually extracted from pieces in their entirety
* But can also be extracted from segments of pieces
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Example: A simple (one-dimensional) feature

* Range (1-D): Difference in semitones between the lowest and highest
pitches

: - — — 3 : — - - 2 : 1
él: 1 1 1 —1 4 1 - 1 : i: 1 o
Y] - - — - gy - < . @ o -
éo‘ - . p- o - - - I‘; o - - io 5|

* Value of this feature for the above example: 7
* G-C=7semitones
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Example: A histogram feature

* Pitch Class Histogram: Consists of

12 values, each representing the
fraction of all notes belonging to
an enharmonic pitch class

* Histogram graph on right shows
feature values for this melody

e Pitch class counts:
 C:3,D:10,E: 11, G: 2

e Most common note is E:
* 11/26 notes

e Corresponds to a feature value of 0.423 for

E

February 8, 2024.
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Josquin’s Ave Maria . . .

* Range: 34 (semitones)

* Repeated notes: 0.181 (18.1%)

* Vertical perfect 4ths: 0.070 (7.0%)
* Rhythmic variability: 0.032
 Parallel motion: 0.039 (3.9%)

Ave Maria: PC Histogram
0.3

0.2 -

] 1 LLJ 11

9 10 11 12

Fraction of Notes

Pitch Class Index
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Ockeghem’s Missa Mi-mi (Kyrie)

* Range: 26 (semitones)

* Repeated notes: 0.084 (8.4%) e dde i e e i
Vertical perfect 4ths: 0.109 (10.9%) ‘ \
Rhythmic variability: 0.042 e

1 ° o/ 4 . — ——t X
¢ Para||E| m0t|0n. 0.076 (7.6 0) é =SS ——————————=—————————
Missa Mi-mi: PC Histogram e | .
. ‘ g | R S T
03 = i | , [ | ”
@ E=EE==—r=cia= = f =
46 le
Z 0.2
e 2" : ;
G === ===
g 0-1 T = Chri - :c ‘ e-le -. e - - - - ’» - - ‘a- % ] - = ’
3 Lo s ; ‘ ‘
I (EeE====—=x= = E ==
0 T T T T T T T T T k e = ‘ :k.:: =% = i 5 | p ’ ‘ ' f ‘ 'I ’ ‘ “ Mm"
1 2 3 4 5 6 7 8 9 10 11 12 e = = = = = = F ==
Pitch Class Index | =B e “lc : A]IC : . = ‘.- : ‘; o '. p>r ‘
I 2 ps s 1 - z— Z,,,L,‘ —

February 8, 2024. Cory McKay



Feature value comparison

Feature Ave Maria Missa Mi-mi
Range 34 26
Repeated notes 0.181 0.084
Vertical perfect 4ths 0.070 0.109
Rhythmic variability 0.032 0.042
Parallel motion 0.039 0.076

o o
[N} w

o
[

Fraction of Notes

0

Ave Maria: PC Histogram

9 10 11 12

Pitch Class Index

o
w

o
N

Fraction of Notes

Missa Mi-mi: PC Histogram

9 10
Pitch Class Index

11 12
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Comparing features

* Comparing pairs of pieces like this in terms of features can be
revealing

* Especially when that comparison involves hundreds or thousands of features,
not just six

* Things get even more interesting when comparisons are made
between hundreds or thousands of pieces, not just two

* Especially when the music is divided into groups of interest, whose can then
be collectively contrasted with one another

e e.g. comparing the styles of composers, genres, regions, time periods, etc.
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Ways of comparing feature values

* Manually:
* Text editors
* Spreadsheets

e With automatic assistance:

* Statistical analysis software
* e.g.SPSS, SAS, etc.

* Machine learning and data mining software
* e.g. Weka, Orange, etc.

* Many of these tools can produce helpful visualizations

February 8, 2024. Cory McKay
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Feature visualization: Histograms

* Histograms offer a good way of visualizing how the values of a feature
are distributed across a corpus of music as a whole

* As opposed to focusing on individual pieces

* The x-axis corresponds to a series of bins, with each corresponding to
a range of values for a given feature
e e.g., the first bin could correspond to Parallel Motion feature values between
0 and 0.1, the next bin to Parallel Motion values between 0.1 and 0.2, etc.

* The y-axis indicates the fraction of pieces that have a feature value
within the range of each given bin

e e.g., if 30% of pieces in the corpus have Parallel Motion values between 0.1
and 0.2, then this bin (0.1 to 0.2) will have a y-coordinate of 30% (or,
equivalently, 0.3)
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Feature visualization: Histograms

* In other words: Each vertical bar on such a histogram represents the
fraction of pieces in a corpus with a feature value falling in that bar’s
range of feature values

February 8, 2024. Cory McKay
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Feature visualization: Histograms

Ock: Vertical 6ths Histogram
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w

Jos: Vertical 6ths Histogram
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* These histograms show that Ockeghem tends to have more vertical 6" (between

all pairs of voices) than Josquin

* Ockeghem peaksin the 0.16 to 0.17 bin, at nearly 35%
e Josquin peaksin the 0.13 to 0.14 bin, at about 28%

* Of course, there are also clearly many exceptions
* This feature is helpful, but is limited if not considered in conjunction with other features
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Feature visualization: Histograms

* The histograms for both composers can be
superimposed onto a single chart:

Ockeghem vs. Josquin: Vertical 6ths Histograms
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Feature visualization: Histograms

Ock: Av. Length Melodic Arcs Jos: Av. Length Melodic Arcs
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* These histograms show that Ockeghem tends to have longer melodic arcs (average
number of notes separating melodic peaks & troughs)

* Both peakinthe 1.9 to 2.0 bin
* However, Josquin’s histogram is more skewed to the left

* Of course, there are once again clearly many exceptions
e This feature is also helpful, but also limited if only considered alone
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Feature visualization: Histograms

* Once again, the histograms for both composers can
be superimposed onto a single chart:
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Ock vs. Jos: Average Length of Melodic Arcs Histograms

B Ockeghem M Josquin

15 1.6 1.7 1.8 19 2.0 2.1 2.2 2.3 2.4 2.5 2.6

Feature Value Bins

2.7

February 8, 2024.

Cory McKay

45



Feature visualization: Scatter plots

 Scatter plots are another nice way of visualizing feature data
* The x-axis represents one feature
* The y-axis represents a different feature
e Each point represents the values of these two features for a single piece

* Scatter plots let you see pieces individually, rather than aggregating them
into bins (as histograms do)

* Scatter plots also let you see more clearly how features jointly separate the different
categories of interest

* To make them easier to read, scatter plots typically have just 2 dimensions

 Computer classifiers, in contrast, work with much larger n-dimensional scatterplots
(one dimension per feature)
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Feature visualization: Scatter plots

* Josquin pieces tend to be left and

low on this graph

February 8, 2024.

Average Length of Melodic Arcs

N
~N
1

N
(%]
1

N
w

N
-

=
(\e]
1

=
~N
1

=
(8]
1

=
w

2-Feature Scatter Plot of Individual Pieces

= Ockeghem x Josquin

0.07

0.09 0.11 0.13 0.15 0.17 0.19 0.21
Vertical Sixths

Cory McKay

47




Feature visualization: Scatter plots

* Simply drawing a single 1-D
vertical dividing line

(“discriminant”) results in a not
entirely terrible classifier based

only on Vertical Sixths

* Can get 62% classification accuracy
using an SVM classifier and just this

one feature

* But many pieces would still be
misclassified
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Feature visualization: Scatter plots

* Could alternatively draw a 1-D
discriminant dividing the pieces
based only on the Average
Length of Melodic Arcs

* Can get 57% classification accuracy
using an SVM classifier and just this
one feature

* Not as good as the Vertical Sixths
discriminant (62%), but still better
than chance (50%)
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Feature visualization: Scatter plots

* Drawing a curve (another kind of
discriminant) divides the
composers still better than either
of the previous (linear)
discriminants

* Can get 80% accuracy using an
SVM classifier looking at just these
2 features!

Average Length of Melodic Arcs

* More than 2 features are needed
to improve performance further
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Choosing features to implement

* What particular features should we investigate?

* Yes, probably the ones we already know or suspect are important to the kinds
of music under consideration

* But also ideally ones that are important, but we do not know or suspect it yet

* To do this, we may need a lot of diverse features
* So we encourage unexpected but important surprises
* So we are less likely to miss important insights
* So we can apply them to many types of music
* So we can address the interests of many different researchers

* The same can be said for data
 The more music and the more varied it is the better (typically)
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Calculating features

* So how can music researchers get access to all these diverse and
wonderful features?

February 8, 2024. Cory McKay
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Highlights from my own research
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jSymbolic: Introduction

* jSymbolic is a software platform | have been developing since 2004 for
automatically extracting features from symbolic musical representations
(digital musical scores) such as MIDI

* Tristano Tenaglia and Rian Adamian, two research assistants, also made important
contributions between 2015 to 2020

* Free and open-source
* https://imir.sourceforge.net + https://github.com/DDMAL/jSymbolic2

*  McKay, C., J. Cumming, and |. Fujinaga. 2018. jSymbolic 2.2: Extracting features from symbolic music for use in musicological and MIR
research. Proceedings of the International Society for Music Information Retrieval Conference. 348—-354.

* McKay, C., T. Tenaglia, and I. Fujinaga. 2016. jSymbolic2: Extracting features from symbolic music representations. Extended Abstracts for the
Late-Breaking Demo Session of the 17th International Society for Music Information Retrieval Conference.

* MocKay, C., and I. Fujinaga. 2006. jSymbolic: A feature extractor for MIDI files. Proceedings of the International Computer Music Conference.
302-305.
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https://jmir.sourceforge.net/
https://github.com/DDMAL/jSymbolic2

What does jSymbolic do?

* (Version 2.2, the current release version) extracts 246 unique features
* Some of these are multi-dimensional histograms
* In all, (version 2.2) extracts a total of 1497 separate values
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Window Duration (seconds} ¥| Also Save Features in a Weka ARFF File ) Also Save Features in a CSV File
Window Overtap Fraction (0.0 to 1.0% EXTRACT AND SAVE FEATURES
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jSymbolic 2.2: Feature types (1/2)

* Pitch Statistics:
 What are the occurrence rates of different pitches and pitch classes?
 How tonal is the piece?
* How much variety in pitch is there?

* Melody / horizontal intervals:
* What kinds of melodic intervals are present?
* How much melodic variation is there?
* What kinds of melodic contours are used?

e Chords / vertical intervals:
 What vertical intervals are present?

* What types of chords do they combine to make?
e How much harmonic movement is there?
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jSymbolic 2.2: Feature types (2/2)

Rhythm:

Rhythmic values of notes

Intervals between the attacks of different notes
Use of rests

What kinds of meter are used?
Rubato?

* Texture:

* How many independent voices are there and how do they interact (e.g. moving in parallel,
crossing voices, etc.)?

Instrumentation:

. Wﬂat t%/pes of instruments are present and which are given particular importance relative to
others:

* Dynamics:
 How loud are notes and what kinds of dynamic variations occur?
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jSymbolic: Extensibility

* jSymbolic is specifically designed such that music researchers can
design their own features and easily add these features to the
jSymbolic infrastructure as plug-ins
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To come in j[Symbolic 3

* Many new features
* 533 unique features and 2040 feature values

* Including features base on n-grams

* A useful way of statistically exploring patterns in melodic, harmonic or rhythmic
sequences

* McKay, C. 2023. From jSymbolic 2 to 3: More musical features. Proceedings of the International Symposium on Computer
Music Multidisciplinary Research. 752—755.

* McKay, C., J. Cumming, and I. Fujinaga. 2023. Rhythmic, melodic and vertical n-gram features as a means of studying
symbolic music computationally. Presented at the Digital Humanities Conference.

* McKay, C., R. Adamian, J. Cumming, and I. Fujinaga. 2020. Exploring Renaissance music using n-gram aggregates to
summarize local musical content. Presented at the Medieval and Renaissance Music Conference.
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Musicological research based on jSymbolic’s
features
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Musical genre (popular and art music

* | showed that (just) %Symbolic features and machine learning could be used to
automatically identify the genre of a piece of music

* e.g.93% accuracy among 5 genres
* e.g. /8% accuracy among 10 genres
* e.g. 64% accuracy among 38 genres

* Features based on instrumentation were especially effective

. ycl}ay, C, J.§4usm§q5i2g, and I. Fujinaga. 2018. jSymbolic 2.2: Extracting features from symbolic music for use in musicological and MIR research. Proceedings of the International Society for Music Information Retrieval
onference. 348-354.

. McKay, C. 2010. Automatic music classification with jMIR. Ph.D. Dissertation. McGill University, Canada.

. McKay, C., and I. Fujinaga. 2007. Style-independent computer-assisted exploratory analysis of large music collections. Journal of Interdisciplinary Music Studies 1 (1): 63—85.

. McKay, C., and I. Fujinaga. 2006. Musical genre classification: Is it worth pursuing and how can it be improved?. Proceedings of the International Conference on Music Information Retrieval. 101-106.
. McKay, C., and I. Fujinaga. 2005. Automatic music classification and the importance of instrument identification. Proceedings of the Conference on Interdisciplinary Musicology. CD-ROM.

. %cKay, C., and I. Fujinaga. 2006. Style-independent computer-assisted exploratory analysis of large music collections. Presented at the Joint Meeting of the American Musicological Society and the Society for Music
eory.

. McKay, C., and I. Fujinaga. 2004. Automatic genre classification as a study of the viability of high-level features for music classification. Proceedings of the International Computer Music Conference. 367-370.
. McKay, C. and I. Fujinaga. 2004. Automatic genre classification using large high-level musical feature sets. Proceedings of the International Conference on Music Information Retrieval. 525-530.

. McKay, C. 2004. Automatic genre classification of MIDI recordings. M.A. Thesis. McGill University, Canada.
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Renaissance musicology: Origins of the
madrigal

* The madrigal (a type of polyphonic vocal music from the 17t to 18t
centuries) is typically said in the literature to be derived primarily
from motets and chansons

e Our feature-based analysis found that early madrigals are actually
statistically fairly dissimilar to both motets and chansons, and are
musically much closer to other Italian-texted forms, especially the

vilotta

* Cumming, J., and C. McKay. 2021. Using corpus studies to find the origins of the madrigal. Proceedings of the Future Directions of
Music Cognition International Conference. 38—42.

* Cumming, J., and C. McKay. 2018. Revisiting the origins of the Italian madrigal using machine learning. Presented at the Medieval
and Renaissance Music Conference.
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Renaissance musicology: Composer style

* jSymbolic features and machine learning can also be used to automatically
recognize compositional style
* e.g. able to identify the composer of securely attributed works 92% of the time
(among 7 composers)
* Could even distinguish very stylistically similar composers
* e.g. 86% accuracy for Josquin and La Rue

* Particularly useful for Renaissance music, much of which is unattributed or
insecurely attributed

* McKay, C., J. Cumming, and |. Fujinaga. 2018. jSymbolic 2.2: Extracting features from symbolic music for use in musicological and
MIR research. Proceedings of the International Society for Music Information Retrieval Conference. 348-354.

* McKay, C., J. Cumming, and I. Fujinaga. 2017. Characterizing composers using jSymbolic2 features. Extended Abstracts for the Late-
Breaking Demo Session of the 18th International Society for Music Information Retrieval Conference.

* McKay, C., T. Tenaglia, J. Cumming, and |. Fujinaga. 2017. Using statistical feature extraction to distinguish the styles of different
composers. Presented at the Medieval and Renaissance Music Conference.
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Renaissance musicology: Composer style

* Also used jSymbolic feature values to identify specific differences in
the styles of different composers

* | began by asking an eminent specialist musicologist and an eminent
specialist theorist to identify what they thought differentiated the
styles of Josquin and Ockeghem, and then checked their expectations
using calculated features . ..
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Renaissance musicology: Composer style

* Josquin vs. Ockeghem a priori expert expectations: Ockeghem has . ..
* Slightly more large leaps (larger than a 5t")

Less stepwise motion in some voices

More notes at the bottom of the range

Slightly more chords (or simultaneities) without a third

Slightly more dissonance

A lot more triple meter

More varied rhythmic note values

More 3-voice music

Less music for more than 4 voices
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Renaissance musicology: Composer style

* Josquin vs. Ockeghem empirical reality: Ockeghem has. ..
e OPPOSITE: Slightly more large leaps (larger than a 5t")
Less stepwise motion in some voices
More notes at the bottom of the range
Slightly more chords (or simultaneities) without a third
 OPPOSITE: Slightly more dissonance
* YES: A lot more triple meter
More varied rhythmic note values
* YES: More 3-voice music
* YES: Less music for more than 4 voices
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Renaissance musicology: Composer style

» Additional unexpected insights revealed from a purely feature-based
analysis:
Rhythm-related features are particularly important

* e.g.Josquin tends to have greater rhythmic variety
* Especially in terms of both especially short and especially long notes

* It turns out that rhythmic features in general tend to have much more predictive power
than most expert Renaissance scholars expect

* Much of the literature largely ignores rhythm
Ockeghem tends to have more diminished triads

Ockeghem tends to have more vertical sixths
Ockeghems tends to have longer melodic arcs
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Renaissance musicology: Composer style

* In another study, | used jSymbolic features to validate a benchmark
ranking by musicologist Jesse Rodin of the attribution certainty of all
pieces associated with Josquin

e Rodin’s rankings are based purely on historical evidence, not on the music
itself

* My analysis was based only on the music
* Happily, the two approaches produced largely coinciding results
* Updated version of this work to be published in a 2025 book chapter
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Renaissance musicology: Other published research
with jSymbolic using jSymbolic features

 Attribution of anonymous and doubtfully attributed works:
* Masses transcribed by Siro Cisilino
e Coimbra manuscripts
* Ave verum corpus and O decus virgineum
* Ave festiva ferculis
e Gaffurius Codices

* Regional style in Iberian Renaissance music:
 Musical influences of Pedro Fernandez Buch
 Musical Influences of Cristobal de Morales and Francisco Guerrero
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Renaissance musicology: Other published
work using jSymbolic features

* Cuenca, M. E., and C. McKay. 2023. The stylistic origin of the anonymous 16th century masses transcribed by Siro Cisilino (1903-1987) at the Fondazione Cini: A statistical and
machine learning approach. Presented at the Medieval and Renaissance Music Conference.

* McKay, C., and M. E. Cuenca. 2022. Influencias musicales en las misas y motetes de Cristobal de Morales y Francisco Guerrero: Una aproximacién estadistica. In Musicologia en
transicion, eds. J. Marin-Lépez, A. Mazuela-Anguita and J. J. Pastor-Comin, 1031-1052. Madrid, Spain: Sociedad Espafiola de Musicologia.

* Cuenca, M. E., and C. McKay. 2022. Musical influences on the masses of Pedro Ferndndez Buch (c. 1574-1648): A stylistic comparison using statistical analysis. Presented at the
Medieval and Renaissance Music Conference.

e Cuenca, M. E., and C. McKay. 2021. Exploring musical style in the anonymous and doubtfully attributed mass movements of the Coimbra manuscripts: A statistical and machine
learning approach. Journal of New Music Research 50 (3): 199-219.

¢ Cuenca, M. E., and C. McKay. 2021. Influencias musicales en las misas y motetes de Cristdbal de Morales y Francisco Guerrero: Una aproximacién estadistica. Presented at the
Congreso de la Sociedad Espafiola de Musicologia.

*  McKay, C. 2021. Exploring composer attribution in motet cycles using machine learning. Gaffurius Codices Online, Schola Cantorum Basiliensis.

* Rodriguez-Garcia, E., and C. McKay. 2021. Composer attribution of Renaissance motets: A case study using statistical features and machine learning. In The Anatomy of Iberian
Polyphony Around 1500, eds. E. Rodriguez-Garcia and J. P. d’Alvarenga, 401-38. Kassel, Germany: Edition Reichenberger.

*  McKay, C., and M. E. Cuenca. 2021. Musical influences on the masses and motets of Cristdbal de Morales and Francisco Guerrero: A statistical approach. Presented at the
Medieval and Renaissance Music Conference.

* Rodriguez-Garcia, E., and C. McKay. 2021. Ave festiva ferculis: Exploring attribution by combining manual and computational analysis. Presented at the Medieval and Renaissance
Music Conference.

* Cuenca, M. E., and C. McKay. 2019. Andlisis estadistico de misas ibéricas renacentistas a través del software jSymbolic. Presented at the El andlisis musical actual: Marco tedrico e
interdisciplinariedad conference.

e Cuenca, M. E., and C. McKay. 2019. Exploring musical style in the anonymous and doubtfully attributed mass movements of the Coimbra manuscripts: A statistical approach.
Presented at the Medieval and Renaissance Music Conference.
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Chord identification in Barogue music

* | co-supervised Yaolong Ju’s PhD research on using machine learning to
identify chords in Baroque music
* Did not use jSymbolic, did use neural networks
* Sometimes using figured bass annotations
* Interesting investigation of how to address intrinsic ambiguity

* Ju, Y., S. Margot, C. McKay, and I. Fujinaga. 2020. Automatic chord labeling: A figured bass approach. Proceedings of DLfM 2020:
The 7th International Conference on Digital Libraries for Musicology. 27-31.

* Ju, Y, S. Margot, C. McKay, L. Dahn, and I. Fujinaga. 2020. Automatic figured bass annotation using the new Bach Chorales Figured
Bass dataset. Proceedings of the International Society for Music Information Retrieval Conference. 640—646.

* Ju, Y., S. Margot, C. McKay, and |. Fujinaga. 2020. Figured bass encodings for Bach chorales in various symbolic formats: A case
study. Music Encoding Conference Proceedings. 71-74.

* Juy, Y., S. Howes, C. McKay, N. Condit-Schultz, J. Calvo-Zaragoza, and |. Fujinaga. 2019. An interactive workflow for generating chord
labels for homorhythmic music in symbolic formats. Proceedings of the International Society for Music Information Retrieval
Conference. 862—869.

February 8, 2024. Cory McKay 71



SIMSSA DB

* A prototype database of symbolic
music files intended for research in
computational musicology

* And, eventually, associated images,
audio recordings, texts, etc.

* https://db.simssa.ca
e Searchable by:

* Free text
 Faceted metadata
e Feature values

Search

amor

Sort By

Best Match

Composition Year From

Composition Year To

Genre (Type of Work)

Madrigal(8)

Frottola(1)

Genre (Style)

Renaissance(9)

Composer

Festa, Sebastiano(4)

Pisano, Bernardo(4)

Tromboncino,
Bartolomeo(1)

Instrument/Voice

Voice(9)

Sacred or Secular

Secular(9)

File Format

9 Musical Works for query "amor" and selected facets

Search Resuls to Cart

Amore amor quando io sperav

Composer(s): Pisano, Bernardo 1490--1548
Genres (Type of Work): Madriga
Genres (Style): Renaissance

File(s) Holding Complete Musical Work:

File(s) Holding an Individual Section:

) far che mi consi

Composer(s): Pisano, Bernardc

Hor vedi Amore che giovine!

Composer(s): Pisano, Bernardc

Please note that features only
apply to valid MIDI, Music XML
and MEl files, and will exclude file
formats from Sibelius, Finale, etc.
For an explanation of all features,
please consult the jSymbol

Chords and Vertical
Interval Features

Dynamics Features
Instrumentation Features

Melodic Interval Features

Musical Texture Features

Average Number of
Independent Voices:

1-3.938

Contrary Motion:

0.079 - 0.2071

Maximum Number of
Independent Voices:

1-4

e Auto-annotated by jSymbolic
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https://db.simssa.ca/

SIMSSA DB

* To be used in combination with other music repositories as part of the
long-term LinkedMusic project (2022-2029)

* | designed the data model, but all the actual implementation work was
done by RAs | co-supervised:

e Gustavo Polins Pedro, Yaolong Ju, Rebecca Mizrahi, Hong Van Pham

*  McKay, C., and J. Cumming. 2022. Summary features as the basis for content-based queries of symbolic music repositories. Presented at the Congress
of the International Association of Music Libraries, Archives and Documentation Centres.

* Hopkins, E., Y. Ju, G. Polins Pedro, C. McKay, J. Cumming, and I. Fujinaga. 2019. SIMSSA DB: Symbolic music discovery and search. Poster presentation
at the International Conference on Digital Libraries for Musicology.

* Ju, Y, G. Polins Pedro, C. McKay, E. Hopkins, J. Cumming, and I. Fujinaga. 2019. Enabling music search and analysis: A database for symbolic music files.
Presented at the Music Encoding Confgrence.

* McKay, C,, E. Hopkins, G. Polins Pedro, Y. Ju, A. Kam, J. Cumming, and |. Fujinaga. 2019. A collaborative symbolic music database for computational
research on music. Presented at the Medieval and Renaissance Music Conference.

*  McKay, C., A. Hankinson, J. Cummin% and I. Fujinaga. 2017. A database model for computational music research. Poster presentation at the
International Workshop on Digital Libraries for Musicology.
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General data and metadata issues

* The availability, quality and selection of data and metadata can be an essential
factors when conducting empirical studies

* McKay, C, J. Cumming, and |. Fujinaga. 2021. Lessons learned in a large-scale project to digitize and computationally analyze musical scores. Digital Scholarship in
the Humanities 36 (52%: ii198—ii202.

* Cumming, J., C. McKay, J. Stuchbery, and I. Fujinaga. 2018. Methodologies for creating symbolic corpora of Western music before 1600. Proceedings of the
International Society for Music Information Retrieval Conference. 491-498.

* McKay, C., and I. Fujinaga. 2015. Building an infrastructure for a 21st-century global music library. Extended Abstracts for the Late-Breaking Demo Session of the
16th International Society for Music Information Retrieval Conference.

* McKay, C., and I. Fujinaga. 2013. Expressing musical features, class labels, ontoIoFies, and metadata using ACE XML 2.0. In Structuring Music Through Markup
Language: Designs and Architectures, ed. J. Steyn, 48-79. Hershey, PA: 1GI Global.

* McKay, C., and D. Bainbridge. 2011. A musical web mining and audio feature extraction extension to the Greenstone digital library software. Proceedings of the
International Society for Music Information Retrieval Conﬁerence. 459-464.

* Angeles, B., C. McKay, and I. Fujinaga. 2010. Discovering metadata inconsistencies. Proceedings of the International Society for Music Information Retrieval
Conference. 195-200.

*  McKay, C, J. A. Burgoyne, J. Thompson, and I. Fujinaga. 2009. Using ACE XML 2.0 to store and share feature, instance and class data for musical classification.
Proceedings of the International Society for Music Information Retrieval Conference. 303—308.

*  McEnnis, D., C. McKay, and I. Fujinaga. 2006. Overview of OMEN. Proceedings of the International Conference on Music Information Retrieval. 7-12.

* McKay, C., D. McEnnis and I. Fujinaga. 2006. A large publicly accessible prototype audio database for music research. Proceedings of the International Conference on
Music Information Retrieval. 160-163.
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JMIR and multimodal research

 All the research | have presented so far was based on symbolic data
(i.e. digital scores), like MIDI files

* However, | have also conducted research involving many other kinds
of musical data (e.g. audio, images, video, text, etc.), both individually
and in combination (“multimodal” analysis)

* In fact, jSymbolic is just one part of the larger open-source jMIR
multimodal music research software suite that | wrote
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jMIR’s jAudio 2

* Implemented jointly with Daniel
McEnnis

e Extracts features from audio files
* e.g. MP3, WAV, AIFF, AU, SND

e 28 bundled core features
* Mainly low-level, some high-level

* McEnnis, D., C. McKay, and I. Fujinaga. 2006. jAudio: Additions and
improvements. Proceedings of the International Conference on
Music Information Retrieval. 385—386.

* McEnnis, D., C. McKay, I. Fujinaga, and P. Depalle. 2005. jAudio: A
feature extraction library. Proceedings of the International
Conference on Music Information Retrieval. 600—603.
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JMIR’s jWebMiner 2

* Extracts cultural features from the web L Joks
based on automated search engine B T ——
q u e rl es [ Co-Occurrence Extraction % Cross Tabulation EMIld.cﬁun|
[ ] Calculates hOW Often pa rtiCU|ar Strings CO— PRIMARY SEARCH STRINGS: SECONDARY SEARCH STRINGS:
OCCUf On the Sa me Web pages Loael Sanve | Clear Cranize Load Save | Clear Organize
Charles Mingus <SYMNOMYM=> Charlle Mingus Waz
* e.g. how often does “J. S. Bach” compared to s Davs Clasai
“Prokofiev” co-occur on web pages with Sestionn
“Baroque”? pear Jam
e Version 2 (implemented by Gabriel
Vigliensoni) also extracts features from
Last.fm social tags
* Vigliensoni, G., C. McKay, and I. Fujinaga. 2010. Using jWebMiner 2.0 to
improve music classification performance by combining different types of
features mined from the web. Proceedings of the International Society for
Music Information Retrieval Conference. 607-612.
* McKay, C., and I. Fujinaga. 2007. jWebMiner: A web-based feature extractor.
Proceedings of the International Conference on Music Information Retrieval. DAL AR A

113-114.
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JMIR’s jLyrics

* Extracts features from textual lyrics

* Can also automatically generate word frequency profiles for particular
classes if training data is provided

* McKay, C, J. A. Burgoyne, J. Hockman, J. B. L. Smith, G. Vigliensoni, and I. Fujinaga. 2010. Evaluating the genre classification performance of
lyrical features relative to audio, symbolic and cultural features. Proceedings of the International Society for Music Information Retrieval
Conference. 213-218.
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iMIR’s ACE 2

Automatically uses meta-learning to evaluate
the relative suitability of machine learning and
dimensionality reduction algorithms for a
given problem, in terms of:

* Classification accuracy
* Consistency
* Time complexity

Jessica Thompson improved the architecture,
interface and functionality in version 2

Thompson, J., C. McKay, J. A. Burgoyne, and I. Fujinaga. 2009. Additions
and improvements to the ACE 2.0 music classifier. Proceedings of the
znf(e)'rnational Society for Music Information Retrieval Conference. 435—

McKay, C., R. Fiebrink, D. McEnnis, B. Li, and I. Fujinaga. 2005. ACE: A
framework for optimizing music classification. Proceedings of the
International Conference on Music Information Retrieval. 42—49.

McKay, C., D. McEnnis, R. Fiebrink, and I. Fujinaga. 2005. ACE: A general-
purpose classification ensemble optimization framework. Proceedings
of the International Computer Music Conference. 161-164.
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JMIR’s jMusicMetaManager 2

* Auto-detects metadata errors or & plisiciictoianogsr Si(=) %
. . . . Anabrsis  Export  Inormation
inconsistencies and redundant copies of BRI o
re CO rd i n gs | Browse iTunes XML File: | CACordin Prograssidy MusiciTunesiTunes Music Library xml ¥ Use iTunes
° e.g. ”Charlie Mingusn VS_ ”Mingus’ CharIeS” Browse MP3 Directon: | CACondin Prograssidty MusiciTunasiTunes Music ¥ Use MP3s
R . . Browse Report Save Path: CACondin Progras sy MusicMusicRepors himl
¢ U_Slng nove' algorlthms based On edlt . | Remove all colons GENERAL PROFLES OF MUSIC COLLECTION: =
distance, replacement and word reordering R o s gL M rococigs st aerivg
. 3 ¥ Remove all guotation marks ¥ Feport artist breakdown
* G e n e rate S I nve nto ry a n d p rOfI | e re p O rtS ¥ Remoe all single quotes and apostrophes ¥ Report composer breakdoem
b 3 9 re p (o) rtS | na I I v Remove all brackets ¥ Report genre breakdown
¥ Comert ™ and "o~ &~ ¥ Report comment statistics

* Bruno Angeles added fingerprinting (auto- S 2Lt et by genre
identification of audio) functionality to ¢ Romow al saces ¥ Lis composers by genee

Ve rS i O n 2 v Report recordings missing key metadata
REORDERED WORD SUBSET SETTINGS: ¥ List artists with few recordings Custalff (2-90): &
¥ Check word ordering  Min % Matches (1-100% |70 List composers with few recordings  Cutoff (2-90):
¥ Check word subsets  Min % Matches (1-1000 20
* Angeles, B., C. McKay, and I. Fujinaga. 2010. Discovering metadata inconsistencies. MISCELLANEOUS REPORTS:
Proceedings of the International Society for Music Information Retrieval Conference.
195-200. EDIT DISTANCE SETTINGS: Report exacthy identical reconding titles =
* McKay, C., D. McEnnis and I. Fujinaga. 2006. A large publicly accessible prototype BEGIN METADATA ANALYSIS

audio database for music research. Proceedings of the International Conference on
Music Information Retrieval. 160-163.
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Multi-modal analysis (15t approach)

* EXtraCt_Ed feature_s_ USing the fOUF JMIR extractors 10-Genre Classification Performance of Feature
and trained classifiers on all groupings of them Sets Including and not Including Cultural
* Symbolic, audio, cultural (jWebMiner) and lyrical Features

data were all used

—— With Cultural Features —aA— Without Cultural Features

* For tasks like genre classification, adding more 3 100
H ©
feature types improved performance S o
. : S 85 — —— — -
 Except when cultural features were included: their < 80
predictive power was so strong that addlng s /i//;
additional feature types had a negligible effect g o 1’
.2 55 T
o 50
McKay, C., J. A. Burgoyne, J. Hockman, J. B. L. Smith, G. Vigliensoni, and I. Fujinaga. 2010. Evaluating the genre gjﬂ 23
cIassn>|/ ation performance of lyrical features relative to audio, symbolic and cultural features. Proceedings of o 35
the International Society for Music Information Retrieval Conference. 213-218. g 1 ‘ 5 ‘ 3 ‘ A
<

McKay, C., and I. Fujinaga. 2010. Improving automatic music classification Performance by extracting features
from different types of data. Proceedings of the ACM SIGMM International Conference on Multimedia Number of Feature Types
Information Retrieval. 257-266.

McKay, C. 2010. Automatic music classification with jMIR. Ph.D. Dissertation. McGill University, Canada.

McKay, C., and I. Fujinaga. 2008. Combining features extracted from audio, symbolic and cultural sources.
Proceedings of the International Conference on Music Information Retrieval. 597—602.
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Multi-modal analysis (2"® approach)

* Used genetic algorithms to explore different combinations of modalities and
feature types

* Features extracted from audio, lyric texts, symbolic scores, album cover images, semantic
tags and playlist co-occurrences

e Evaluated subsets based on “importance,

* Found that combining data and feature types often does improve performance,
but which ones in particular work best tends to depend greatly on the particular
classification problem

* In general, though, playlist features were often particularly predictive, and album cover
image features tended to be the least predictive

”

redundancy” and “stability”

* Vatolkin, I., and C. McKay. 2022. Multi-objective investigation of six feature source types for multi-modal music classification.
Transactions of the International Society for Music Information Retrieval 5 (1): 1-19.

* Vatolkin, I., and C. McKay. 2022. Stability of symbolic feature group importance in the context of multi-modal music classification.
Proceedings of the International Society for Music Information Retrieval Conference. 469-476.
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JMIR’s jProductionCritic

e Auto-detects technical sound
recording errors, production
errors and potential issues in
audio files

e e.g. clipping, edit clicks,
background noise, etc.

e Labels audio tracks

*  McKay, C. 2013. jProductionCritic: An educational tool for
detecting technical errors in audio mixes. Proceedings of the
International Society for Music Information Retrieval Conference.
71-76.
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Analysis - Configuration Settings |
REPORTS TO MAKE:

¥] Text File

v HTML CWsers\iCon\Deskiop\Re sulls\Rasul

v| ACE XML CUsers\Con\DeskopIResuls\Rasul
¥] Weka ARFF CWsers\Conf\Desktop\Resulis\Resul

| Command Line

Insufficient Dynamic Range 0 found

Long Silence 1 found

=
»»» Total errors found in Student 12wav 5

=»> Preparing and outputting reports

CHE

CWsersiCon\Desitop\Results\Resull

»] Audacity Label Track |CWsers\Corf\Desktop\Results\Resul

STATUS UPDATES AND COMMAND LINE REPORT 5:

PATHS TO SAVE REPORTS TO:
ts\Student 12 Mashup. bl
ItsiStudent 12 Mashug hitml
ts\Student 12 Mashup ALT bd
Its\Student 12 Mashup xmi

Its\Student 12 Mashup arft

Insufficient Variety In Dynamics 0 fou

PROBLEMS OCCURING DURING PROCESSING:

Browse

Browse

Browse

Browse

Browse

[Insufficient amic Range (Mild) | | |

| Encoding Quality (is encoded as a (lossy) MP3) (Severe!

Narrowband Noise (Moderate

Long Silence (Mild;
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LANDR

* | have also done commercial
consulting work with a Montreal
company called LANDR that auto-
masters submitted audio

* i.e. adjusts to aspects like EQ and
dynamics to make the music sound
better

* Done in style-appropriate ways

* https://www.landr.com/online-audio-
mastering/
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Clarinet performance gesture

* Used a range of sensors, cameras and

recordings to analyze the motions of ’
clarinet performers to see how meaningful - =~ =
gestures were in communicating oo
. . . uditory+Visua Visual-onl
information to listeners / watchers N L
* Phrasing, expressiveness, rhythm, etc. oo AL LG i
* We just used statistical analysis, no Al 3 HA M :
£04F U
* Wanderley, M., B. Vines, N. Middleton, C. McKay, and W. Hatch. 2005. The musical i /
significance of clarinetists’ ancillary gestures: An exploration of the field. Journal of New 01 Auditory-only *

Music Research 34 (1): 97-113.

(=]

10 20 30 40 50 60
Time (seconds)

o
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Other musical applications of machine
learning

* Music generation / composition

Hit prediction

Copyright analysis

Music recommendation / playlist generation
Noise removal

Source separation
* e.g.separating recorded piano from other instruments embedded in the same recording

Automatic transcription
* j.e. generating a symbolic score from an audio recording

* And many, many, many more
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. Single Interface for Music
. Score Searching and Analysis

L inkedMusic SIMSSA

Thanks for your attention!

c.mckay@marianopolis.edu
Room B-416, Marianopolis College
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