

ADDITIONS AND IMPROVEMENTS TO THE ACE 2.0 MUSIC CLASSIFIER

Jessica Thompson Cory McKay John Ashley Burgoyne Ichiro Fujinaga
Music Technology
McGill University

jessica.thompson@
mail.mcgill.ca

CIRMMT
McGill University
cory.mckay@

mail.mcgill.ca

CIRMMT
McGill University

ashley@
music.mcgill.ca

CIRMMT
McGill University

ich@
music.mcgill.ca

ABSTRACT

This paper presents additions and improvements to the
Autonomous Classification Engine (ACE), a framework
for using and optimizing classifiers. Given a set of feature
values, ACE experiments with a variety of classifiers,
classifier parameters, classifier ensembles and dimen-
sionality-reduction techniques in order to arrive at a con-
figuration that is well-suited to a given problem. Changes
and additions have been made to ACE in order to in-
crease its functionality as well as to make it easier to use
and incorporate into other software frameworks. Details
are provided on ACE’s remodeled class structure and
associated API, the improved command line and graphi-
cal user interfaces, a new ACE XML 2.0 ZIP file format
and expanded statistical reporting associated with cross
validation. The resulting improved processing and meth-
ods of operation are also discussed.

1. INTRODUCTION

Automatic classification techniques play an essential role
in many music information retrieval (MIR) research ar-
eas. These include genre classification, mood classifica-
tion, music recommendation, performer identification,
composer identification, and instrument identification, to
name just a few. Classification software especially
adapted to MIR can be of significant benefit. Some im-
portant work has already been done in this area, as noted
in Section 2. ACE, which is part of the jMIR software
suite described below, is a framework that builds upon
these systems and adds additional functionality that is
generally lacking in both systems designed specifically
for music classification as well as general classification
systems. ACE 2.0, which is presented in this paper, has
been significantly improved since the release in 2005 of
ACE 1.1 [1]. Improvements include an entirely restruc-
tured and simplified API, a significantly improved com-
mand-line interface, a new GUI, new file formats, im-
proved processing and significantly expanded statistical
reporting.

1.1 jMIR

jMIR [2] is a suite of software tools developed for use in
MIR research. The jMIR components can be used either
independently or as an integrated suite. Although the
components can read and write to common file formats
such as Weka ARFF, jMIR also uses its own ACE XML
file formats that offer a number of advantages over alter-
native data-mining formats [1, 3].

jMIR was designed to provide:

• a flexible set of tools that can easily be applied to a
wide variety of MIR-oriented research tasks;

• a platform that can be used to combine research on
symbolic, audio and/or cultural data;

• easy-to-use and accessible software with a minimal
learning curve that can be used by researchers with
little or no technological training;

• a modular and extensible framework for iteratively
developing and sharing new feature extraction and
classification technologies; and

• software that encourages collaboration between dif-
ferent research centers by facilitating the sharing of
research data using powerful and flexible file for-
mats [4].

jMIR is the only existing software suite that combines a
meta-learning component (ACE) into an integrated
framework with three different types of musical feature
extractors, a metadata correction tool, and ground truth
data. jMIR is also the only unified MIR research frame-
work that combines all three of symbolic, audio, and cul-
tural features.

1.2 ACE XML

ACE XML [1, 3] is a set of file formats developed to
enable communication between the various jMIR soft-
ware components, including ACE. These file formats
have been designed to be very flexible and expressive. It
is hoped that the MIR research community will eventu-
ally adopt them as multi-purpose standardized formats,
beyond the limited scope of jMIR. ACE XML has re-
cently been significantly revised and expanded in order to
help make this possible [3].

1.3 ACE

ACE is a meta-learning classification system that can
automatically experiment with a variety of different di-
mensionality-reduction and machine-learning algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.

© 2009 International Society for Music Information Retrieval

in order to evaluate which ones are best suited to particu-
lar problems. ACE can also be used as a simple automatic
classification system. ACE is open source and available
for free. It is implemented entirely in Java in order to
maximize portability.

ACE is built on the standardized Weka machine-
learning infrastructure [5] and makes direct use of a vari-
ety of algorithms and data structures distributed with
Weka. This means not only that new algorithms produced
by the very active Weka community can be incorporated
into ACE immediately, but also that new algorithms spe-
cifically designed for MIR research can be developed
using the Weka framework. ACE can read features stored
in either ACE XML or Weka ARFF files.

Two Weka data structures of particular interest that
are used by ACE and referred to in this paper are the
Weka Instances object, which stores a set of instances
in a representation similar to the Weka ARFF file, and the
Weka Classifer object, which classifies a set of Weka
Instances with a specified classification algorithm.

2. RELATED WORK

There are a number of existing software packages
that are often used for machine learning, including Weka
[5], PRTools [6] and several other MATLAB [7] tool-
boxes. There are also several systems that offer meta-
learning functionality, including RapidMiner (formerly
Yale) [8] and METAL [9]. All of these are general pur-
pose systems, however, and do not meet some of the spe-
cial needs of MIR, as discussed in [1]. ACE and ACE
XML make it possible to represent and use types of in-
formation that are particularly relevant to MIR but are not
expressible or usable in most alternative systems. For
example, jMIR and ACE XML have the ability to:

• maintain logical groupings between multi-dimen-
sional features;

• represent class labels and feature values for poten-
tially overlapping sub-sections of instances as well
as for instances as a whole;

• represent structured class ontologies; and

• associate multiple classes with a single instance.

There are also several high-quality toolsets that have
been designed specifically for MIR, but they tend to offer
less sophisticated processing specifically with respect to
machine learning. MIRtoolbox [10] is a powerful modu-
lar MATLAB toolbox for designing and extracting audio
features. The well-known CLAM [11] and Marsyas [12]
focus on audio-related tasks. The M2K [13] graphical
patching interface can be used to connect a range of dif-
ferent MIR processing components in ways that can take
advantage of distributed processing.

3. IMPROVEMENTS NEW TO ACE 2.0

3.1 Architectural Restructuring

ACE’s class structure has been redesigned to be more
flexible, extensible, and easy to understand. This redesign
is intended to facilitate integration with other software.

ACE’s main functionality is accessed through an inter-
face class called Coordinator. Figure 1 illustrates this
organization: the GUI, command-line interface, and ex-
ternal software all only directly access this new Coordi-
nator class, which then communicates with ACE’s proc-
essing classes. This organization ensures that all
processing is performed identically, regardless of the
source of the request, and makes ACE easier to use. New
users wishing to use the ACE API need only understand
the Coordinator class in order to be able to use all of
ACE’s functionality. The remainder of this section pre-
sents ACE’s main classes.

Figure 1. Structure of ACE’s main processing
classes. The Coordinator class provides an ex-
clusive interface through which ACE’s main func-
tionality can be accessed. Arrows indicate interac-
tions between classes. All public methods are
listed, but parameters are omitted from method
declarations to save space.

• Coordinator: The class provides the interface
through which ACE’s training, classification, cross
validation, and experimentation functionality can be
accessed. Only Coordinator calls the classes listed
below; all other sources need only call the appropri-
ate methods in Coordinator to access the func-
tionality of all other processing classes. Loading and
preparation of instances as well as dimensionality
reduction is performed in this class prior to passing
instances to processing classes.

• Trainer: Trains a specified type of Weka Classi-
fier based on the given training instances. The
trained Weka Classifier is stored and saved in an
ACE TrainedModel object.

• InstanceClassifier: Classifies a set of instances
using a trained Weka Classifier. This class reads
the TrainedModel object from a specified file and
uses it to classify the given instances. In the context
of cross validation, a classified Weka Instances
object is returned. Classifications can be written to a
Weka ARFF file or an ACE XML Instance Label
file.

• DimensionalityReducer: Reduces the dimen-
sionality of the features extracted from a set of in-
stances. This class is called by the Coordinator
class to reduce the dimensionality of the training
data prior to training and cross-validation in order to
help avoid the “curse of dimensionality.” This class
is also called by the Experimenter class to create
an array of multiple dimensionality-reduced versions
of an original set of instances.

• CrossValidator: Cross-validates the given in-
stances with the specified type of Weka Classi-
fier using the specified number of partitions. In-
stances are partitioned randomly into training and
testing data for each fold. CrossValidator makes
calls to the Trainer and InstanceClassifier
classes to evaluate the performance of a specific
classification approach. The specified type of Weka
Classifier is trained on the remaining training
data and tested on the testing data for each partition.
Statistics are stored for each partition and used to
generate performance reports that provide much
more statistical detail than Weka itself provides.

• Experimenter: Tests to find the best performing
classification approach by making repeated calls to
the CrossValidator class using different parame-
ters each time. Different types of classifiers are
tested with different types of dimensionality reduc-
tion. Experimenter calls Dimensionali-
tyReducer to get an array of Weka Instances ob-
jects, wherein each cell contains a different dimen-
sionality-reduced version of the original instances.

Each type of classifier is cross-validated with
each set of dimensionality-reduced instances. A
summary of the results for each cross-validation ex-
periment for each dimensionality-reduction experi-
ment is generated, as well as more detailed results
when requested by the user. After the best classifica-
tion methodology has been selected, validation is
performed using a publication set put aside at the
beginning of the experiment. A new Weka Classi-
fier of the chosen type is created and trained on the
chosen type of dimensionality-reduced instances (all
instances are now available for use as training data,
except for the publication set). The newly trained
Weka Classifier is tested on the publication set
and the results are saved.

3.2 Redesigned Cross Validation

ACE performs full meta-learning with training, testing,
and publication data sets. Previously, cross-validation
was performed using the Weka API, but now, ACE im-
plements its own cross-validation that improves upon
Weka’s. This new implementation, contained in the
CrossValidator class, includes output of additional
statistics and more transparent data processing. Whereas
previously Weka’s cross-validation only allowed access
to overall correctness statistics and confusion matrices,
ACE’s new implementation includes variances across
partitions, individual instance classification results for
each partition, confusion matrices for each partition, and
data on running times.

3.3 ACE XML 2.0 ZIP and Project Files

ACE XML, the file format used to transmit information
between the jMIR components, consists of four different
file types for storing, respectively, extracted feature val-
ues, feature metadata, labeled instances and class ontolo-
gies. Although the separation of this data into four differ-
ent types of files does have significant advantages [4],
large projects consisting of multiple files can become
unwieldy.

The new ACE XML 2.0 Project and ZIP files present
solutions to this problem. The Project file allows users to
associate ACE XML files together so that they may be
automatically saved or loaded together, and the ZIP for-
mat makes it possible to package all files referred to in a
Project file into a single compressed ZIP file.

The ACE XML ZIP file is implemented using an
ACE XML Project file and a hidden text file with the
extension “.sp”. This file contains only one line of text
that specifies the name of the single ACE XML Project
file compressed within the ACE XML ZIP file. When
ACE parses an ACE XML ZIP file, it looks for the .sp
file first, and then parses the associated ACE XML Pro-
ject file so that the other contents of the ACE XML ZIP
file can be properly interpreted.

ACE includes utilities for creating, accessing, and
managing ACE XML ZIP files. When ACE unzips an
ACE XML ZIP file, it rewrites the ACE XML Project file
to reflect the new path names of the newly unzipped files.
ACE can also extract or add a single file from/to an ACE
XML ZIP file. An ACE XML ZIP file can be used to
load or save an ACE project via the ACE command-line
interface, GUI or API.

3.4 Improved Command-Line Interface

The previous ACE command-line interface has been en-
tirely redesigned with clearer and more intuitive com-
mands. The command-line interface of software such as
ACE is particularly important, as it is often needed to
perform batch processing that can last days or weeks.
Running ACE from the command line has become easier
with the addition of new functionality such as the ability
to load an ACE project from an ACE XML Project file or
an ACE ZIP file. The user can also now specify the type
of classifier or dimensionality-reduction algorithm to be
used as well as other options related to the distribution of
datasets (e.g., randomization, maximum class member-
ship, and maximum class spread). With the verbose op-
tion, the user also has the option of printing a more de-
tailed report of the performed processing. These im-
provements to the command-line interface not only make
ACE easier to use, but also provide more precise control
of ACE’s processing.

3.5 Graphical User Interface

ACE also now includes functionality for GUI-based
viewing, editing, and saving of ACE XML files. This
functionality is divided between three panes: the Taxon-
omy pane, which displays the contents of an ACE XML
Class Ontology file; the Features pane, which displays
the contents of an ACE XML Feature Description file;
and the Instances pane, which displays the combined
contents of both ACE XML Feature Value files and ACE
XML Instance Label files.

A screen shot of the Taxonomy pane is shown in Fig-
ure 2. The displayed structure indicates a genre taxonomy
for use in an automatic genre classification task. If an
ACE XML Instance Label file is loaded without explic-
itly specifying such a class ontology either manually or
with an ACE XML Class Ontology file, then a flat ontol-
ogy is automatically generated based on the labels used in
the ACE XML Instance Label file, and is displayed in the
Taxonomy pane. Figure 3 shows a Features pane display-
ing a list of audio features. If an ACE XML Feature De-
scriptions file is not loaded here prior to loading an ACE
XML Feature Values file, feature descriptions are gener-
ated automatically based on the features present in the
ACE XML Feature Values file. Figure 4 shows how the
Instances pane can be used to display class labels that
have been associated with particular instances.

Figure 2. A sample genre ontology displayed in the Tax-
onomy pane of the ACE GUI.

Figure 3. The Features pane of the ACE GUI displaying
metadata about a set of audio features.

Figure 4. The Instances pane of the ACE GUI. Song ti-
tles are associated in this example with particular genre

labels drawn from the genre ontology shown in Figure 2.
Note that neither the Display Feature Values nor the Dis-
play Misc Info checkboxes are checked, so only instance
identifiers and classes are displayed in this particular ex-
ample.

Figures 5, 6, and 7 illustrate a more complex exam-
ple. Figure 5 establishes a new class ontology, in this case
a hierarchical music–speech–applause–silence discrimi-
nator. Figure 6 shows how the Instances pane can display
not only class labels, but also miscellaneous metadata.
This figure also demonstrates that instances can be bro-
ken into separately-labeled subsections and that each in-
stance or subsection may be associated with multiple
class labels. Start and stop times indicate the boundaries
of the subsections. Figure 7 demonstrates how feature
values can also be displayed using the Instances pane. It
shows the same data as Figure 6, except that feature val-
ues are displayed and miscellaneous metadata is not.

If feature arrays and class labels are loaded for the
same subsection, all information for that instance is pre-
sented in one row. The specific time of the overlap of
class labels within a subsection is indicated within paren-
theses after the class name. Subsection rows for any
overall instance can be hidden by unchecking the Show
Sections checkbox. The Composer and Note columns are
metadata loaded from the particular Instance Label ACE
XML file associated with this example and can be hidden
by clicking on the Display Misc Info checkbox.

Figure 5. Another class ontology displayed in the Taxon-
omy pane of the ACE GUI.

Figure 6. Instances with subsections and metadata dis-
played in the Instances pane of the ACE GUI.

Figure 7. Instances with subsections and feature values
displayed in the Instances pane of the ACE GUI.

4. CONCLUSION AND FUTURE WORK

Improvements have been made to ACE since its original
publication, including new capabilities that make it a
more complete and easy-to-use meta-learning classifica-
tion framework. ACE is an ongoing project, and further
improvements will continue to be made.

4.1 Fully Functional GUI

The ACE GUI currently serves as a tool for viewing and
editing ACE XML files. It will eventually be possible to
also use the GUI to perform experiments on data sets, as
can currently only be done with the command-line inter-
face or API. This functionality will be accessible from
two currently unfinished panes: the Experimenter pane
and the Preferences pane. The Experimenter pane will
allow full access to all of ACE’s machine learning func-
tionality. Several sub-panes will be used to display the
same output that is printed or saved to files when running
experiments from the ACE command-line interface. The
Preferences pane of the ACE GUI will allow users to
specify preferences related to both interface settings and
machine learning parameters. User studies will also be
performed in order to validate and improve the GUI de-
sign.

4.2 Distributed Work Load

Functionality is being built into ACE to allow it to run
trials on multiple computers in parallel in order to reducte
execution times. Once the distributed aspect of the system
is complete, a server-based subsystem will be designed
that contains a coordination system and database. Al-
though not necessary for using ACE, users will be able to
choose to dedicate computers to this server, allowing
ACE to run continually. The server will keep a record of
the performances of all ACE operations run on a particu-
lar user’s cluster and generate statistics for self-evaluation
and improvement. ACE will then make use of any idle
time to attempt to improve solutions to previously en-
countered but currently inactive problems. Ultimately, the
user would only be required to specify the total time
available (typically days or weeks) for ACE to run its
experiments and everything else, including the choice of
learning algorithms and their parameters, would be auto-
matically determined by ACE.

4.3 Expanded Machine Learning Algorithms

In the future, ACE will include learning schemes impor-
tant to MIR that are currently missing from the Weka
distribution, such as hidden Markov models and recurrent
neural networks. Support for Weka’s unsupervised learn-
ing functionality will also be incorporated. It would also
be beneficial to include tools for constructing blackboard
systems, in particular those that can integrate knowledge
sources based on expert heuristics. Another potentially
beneficial addition would be to implement modules for
facilitating post-processing. All of these extensions
would add to ACE’s flexibility and breadth of processing.

5. ACKNOWLEDGEMENTS

The authors would like to thank the Andrew W. Mellon
Foundation and the Centre for Interdisciplinary Research
in Music Media and Technology (CIRMMT) for their
generous financial support, as well as the members of the
Networked Environment for Music Analysis (NEMA)
group for their valuable critiques and suggestions.

6. REFERENCES

[1] McKay, C., R. Fiebrink, D. McEnnis, B. Li, and I.
Fujinaga. 2005. ACE: A framework for optimizing
music classification. Proceedings of the
International Conference on Music Information
Retrieval. 42–9.

[2] McKay, C., and I. Fujinaga. 2009. jMIR: Tools for
automatic music classification. Proceedings of the
International Computer Music Conference

[3] McKay, C., J. A. Burgoyne, J. Thompson, and I.
Fujinaga. 2009. Using the ACE XML 2.0 file
formats to store and share music classification data.
Proceedings of the International Conference on
Music Information Retrieval.

[4] McKay, C., and I. Fujinaga. 2008. Combining
features extracted from audio, symbolic and cultural
sources. Proceedings of the International
Conference on Music Information Retrieval, 597–
602.

[5] Witten, I., and E. Frank. 2005. Data mining:
Practical machine learning tools and techniques
with Java implementations. San Francisco: Morgan
Kaufmann.

[6] van der Heijden, F., R. P. W. Duin, D. de Ridder,
and D. M. J. Tax. 2004. Classification, parameter
estimation and state estimation: An engineering
approach using MATLAB. New York: Wiley.

[7] MathWorks 2008. MATLAB version 7.6.0. Natick,
Massachusetts: The MathWorks.

[8] Mierswa, I., M. Wrust, R. Klinkenberg, M. Scholz,
and T. Euler. 2006. YALE: Rapid prototyping for
complex data mining tasks. Proceedings of the ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining.

[9] Brazdil, P., C. Soares, and J. Costa. 2003. Ranking
learning algorithms. Machine Learning 50 (3): 251–
77.

[10] Lartillot, O., P. Toiviainen, and T. Eerola. 2008. A
Matlab toolbox for music information retrieval. In
Data analysis, machine learning and applications,
ed. C. Preisach, H. Burkhardt, L. Schmidt-Thieme,
and R. Decker. New York: Springer. 261–8.

[11] Arumi, P., and X. Amatriain. 2005. CLAM: An ob-
ject oriented framework for audio and music. Pro-
ceedings of the International Linux Audio Confer-
ence.

[12] Tzanetakis, G., and P. Cook. 1999. MARSYAS: A
framework for audio analysis. Organized Sound
4 (3): 169–75.

[13] Downie, S., A. Ehmann, and D. Tcheng. 2005.
Music-to-knowledge (M2K): A prototyping and
evaluation environment for music information
retrieval research. Proceedings of the 28th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, 676.

