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ABSTRACT 

This paper presents additions and improvements to the 
Autonomous Classification Engine (ACE), a framework 
for using and optimizing classifiers. Given a set of feature 
values, ACE experiments with a variety of classifiers, 
classifier parameters, classifier ensembles and dimen-
sionality-reduction techniques in order to arrive at a con-
figuration that is well-suited to a given problem. Changes 
and additions have been made to ACE in order to in-
crease its functionality as well as to make it easier to use 
and incorporate into other software frameworks. Details 
are provided on ACE’s remodeled class structure and 
associated API, the improved command line and graphi-
cal user interfaces, a new ACE XML 2.0 ZIP file format 
and expanded statistical reporting associated with cross 
validation. The resulting improved processing and meth-
ods of operation are also discussed. 

1. INTRODUCTION 

Automatic classification techniques play an essential role 
in many music information retrieval (MIR) research ar-
eas. These include genre classification, mood classifica-
tion, music recommendation, performer identification, 
composer identification, and instrument identification, to 
name just a few. Classification software especially 
adapted to MIR can be of significant benefit. Some im-
portant work has already been done in this area, as noted 
in Section 2. ACE, which is part of the jMIR software 
suite described below, is a framework that builds upon 
these systems and adds additional functionality that is 
generally lacking in both systems designed specifically 
for music classification as well as general classification 
systems. ACE 2.0, which is presented in this paper, has 
been significantly improved since the release in 2005 of 
ACE 1.1 [1]. Improvements include an entirely restruc-
tured and simplified API, a significantly improved com-
mand-line interface, a new GUI, new file formats, im-
proved processing and significantly expanded statistical 
reporting.  

 

1.1 jMIR 

jMIR [2] is a suite of software tools developed for use in 
MIR research. The jMIR components can be used either 
independently or as an integrated suite. Although the 
components can read and write to common file formats 
such as Weka ARFF, jMIR also uses its own ACE XML 
file formats that offer a number of advantages over alter-
native data-mining formats [1, 3]. 

jMIR was designed to provide: 

• a flexible set of tools that can easily be applied to a 
wide variety of MIR-oriented research tasks; 

• a platform that can be used to combine research on 
symbolic, audio and/or cultural data; 

• easy-to-use and accessible software with a minimal 
learning curve that can be used by researchers with 
little or no technological training; 

• a modular and extensible framework for iteratively 
developing and sharing new feature extraction and 
classification technologies; and 

• software that encourages collaboration between dif-
ferent research centers by facilitating the sharing of 
research data using powerful and flexible file for-
mats [4]. 

jMIR is the only existing software suite that combines a 
meta-learning component (ACE) into an integrated 
framework with three different types of musical feature 
extractors, a metadata correction tool, and ground truth 
data. jMIR is also the only unified MIR research frame-
work that combines all three of symbolic, audio, and cul-
tural features. 

1.2 ACE XML 

ACE XML [1, 3] is a set of file formats developed to 
enable communication between the various jMIR soft-
ware components, including ACE. These file formats 
have been designed to be very flexible and expressive. It 
is hoped that the MIR research community will eventu-
ally adopt them as multi-purpose standardized formats, 
beyond the limited scope of jMIR. ACE XML has re-
cently been significantly revised and expanded in order to 
help make this possible [3]. 

1.3 ACE  

ACE is a meta-learning classification system that can 
automatically experiment with a variety of different di-
mensionality-reduction and machine-learning algorithms 
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in order to evaluate which ones are best suited to particu-
lar problems. ACE can also be used as a simple automatic 
classification system. ACE is open source and available 
for free. It is implemented entirely in Java in order to 
maximize portability. 

ACE is built on the standardized Weka machine-
learning infrastructure [5] and makes direct use of a vari-
ety of algorithms and data structures distributed with 
Weka. This means not only that new algorithms produced 
by the very active Weka community can be incorporated 
into ACE immediately, but also that new algorithms spe-
cifically designed for MIR research can be developed 
using the Weka framework. ACE can read features stored 
in either ACE XML or Weka ARFF files. 

Two Weka data structures of particular interest that 
are used by ACE and referred to in this paper are the 
Weka Instances object, which stores a set of instances 
in a representation similar to the Weka ARFF file, and the 
Weka Classifer object, which classifies a set of Weka 
Instances with a specified classification algorithm.  

2. RELATED WORK 

There are a number of existing software packages 
that are often used for machine learning, including Weka 
[5], PRTools [6] and several other MATLAB [7] tool-
boxes. There are also several systems that offer meta-
learning functionality, including RapidMiner (formerly 
Yale) [8] and METAL [9]. All of these are general pur-
pose systems, however, and do not meet some of the spe-
cial needs of MIR, as discussed in [1]. ACE and ACE 
XML make it possible to represent and use types of in-
formation that are particularly relevant to MIR but are not 
expressible or usable in most alternative systems. For 
example, jMIR and ACE XML have the ability to: 

• maintain logical groupings between multi-dimen-
sional features; 

• represent class labels and feature values for poten-
tially overlapping sub-sections of instances as well 
as for instances as a whole; 

• represent structured class ontologies; and 

• associate multiple classes with a single instance.  

There are also several high-quality toolsets that have 
been designed specifically for MIR, but they tend to offer 
less sophisticated processing specifically with respect to 
machine learning. MIRtoolbox [10] is a powerful modu-
lar MATLAB toolbox for designing and extracting audio 
features. The well-known CLAM [11] and Marsyas [12] 
focus on audio-related tasks. The M2K [13] graphical 
patching interface can be used to connect a range of dif-
ferent MIR processing components in ways that can take 
advantage of distributed processing.  

3. IMPROVEMENTS NEW TO ACE 2.0 

3.1 Architectural Restructuring 

ACE’s class structure has been redesigned to be more 
flexible, extensible, and easy to understand. This redesign 
is intended to facilitate integration with other software. 

ACE’s main functionality is accessed through an inter-
face class called Coordinator. Figure 1 illustrates this 
organization: the GUI, command-line interface, and ex-
ternal software all only directly access this new Coordi-
nator class, which then communicates with ACE’s proc-
essing classes. This organization ensures that all 
processing is performed identically, regardless of the 
source of the request, and makes ACE easier to use. New 
users wishing to use the ACE API need only understand 
the Coordinator class in order to be able to use all of 
ACE’s functionality. The remainder of this section pre-
sents ACE’s main classes. 

Figure 1. Structure of ACE’s main processing 
classes. The Coordinator class provides an ex-
clusive interface through which ACE’s main func-
tionality can be accessed. Arrows indicate interac-
tions between classes. All public methods are 
listed, but parameters are omitted from method 
declarations to save space. 



  
 

• Coordinator: The class provides the interface 
through which ACE’s training, classification, cross 
validation, and experimentation functionality can be 
accessed. Only Coordinator calls the classes listed 
below; all other sources need only call the appropri-
ate methods in Coordinator to access the func-
tionality of all other processing classes. Loading and 
preparation of instances as well as dimensionality 
reduction is performed in this class prior to passing 
instances to processing classes. 

• Trainer: Trains a specified type of Weka Classi-
fier based on the given training instances. The 
trained Weka Classifier is stored and saved in an 
ACE TrainedModel object. 

• InstanceClassifier: Classifies a set of instances 
using a trained Weka Classifier. This class reads 
the TrainedModel object from a specified file and 
uses it to classify the given instances. In the context 
of cross validation, a classified Weka Instances 
object is returned. Classifications can be written to a 
Weka ARFF file or an ACE XML Instance Label 
file. 

• DimensionalityReducer: Reduces the dimen-
sionality of the features extracted from a set of in-
stances. This class is called by the Coordinator 
class to reduce the dimensionality of the training 
data prior to training and cross-validation in order to 
help avoid the “curse of dimensionality.” This class 
is also called by the Experimenter class to create 
an array of multiple dimensionality-reduced versions 
of an original set of instances. 

• CrossValidator: Cross-validates the given in-
stances with the specified type of Weka Classi-
fier using the specified number of partitions. In-
stances are partitioned randomly into training and 
testing data for each fold. CrossValidator makes 
calls to the Trainer and InstanceClassifier 
classes to evaluate the performance of a specific 
classification approach. The specified type of Weka 
Classifier is trained on the remaining training 
data and tested on the testing data for each partition. 
Statistics are stored for each partition and used to 
generate performance reports that provide much 
more statistical detail than Weka itself provides. 

• Experimenter: Tests to find the best performing 
classification approach by making repeated calls to 
the CrossValidator class using different parame-
ters each time. Different types of classifiers are 
tested with different types of dimensionality reduc-
tion. Experimenter calls Dimensionali-
tyReducer to get an array of Weka Instances ob-
jects, wherein each cell contains a different dimen-
sionality-reduced version of the original instances.  

Each type of classifier is cross-validated with 
each set of dimensionality-reduced instances. A 
summary of the results for each cross-validation ex-
periment for each dimensionality-reduction experi-
ment is generated, as well as more detailed results 
when requested by the user. After the best classifica-
tion methodology has been selected, validation is 
performed using a publication set put aside at the 
beginning of the experiment. A new Weka Classi-
fier of the chosen type is created and trained on the 
chosen type of dimensionality-reduced instances (all 
instances are now available for use as training data, 
except for the publication set). The newly trained 
Weka Classifier is tested on the publication set 
and the results are saved. 

3.2 Redesigned Cross Validation 

ACE performs full meta-learning with training, testing, 
and publication data sets. Previously, cross-validation 
was performed using the Weka API, but now, ACE im-
plements its own cross-validation that improves upon 
Weka’s. This new implementation, contained in the 
CrossValidator class, includes output of additional 
statistics and more transparent data processing. Whereas 
previously Weka’s cross-validation only allowed access 
to overall correctness statistics and confusion matrices, 
ACE’s new implementation includes variances across 
partitions, individual instance classification results for 
each partition, confusion matrices for each partition, and 
data on running times.  

3.3 ACE XML 2.0 ZIP and Project Files 

ACE XML, the file format used to transmit information 
between the jMIR components, consists of four different 
file types for storing, respectively, extracted feature val-
ues, feature metadata, labeled instances and class ontolo-
gies. Although the separation of this data into four differ-
ent types of files does have significant advantages [4], 
large projects consisting of multiple files can become 
unwieldy. 

The new ACE XML 2.0 Project and ZIP files present 
solutions to this problem. The Project file allows users to 
associate ACE XML files together so that they may be 
automatically saved or loaded together, and the ZIP for-
mat makes it possible to package all files referred to in a 
Project file into a single compressed ZIP file.  

The ACE XML ZIP file is implemented using an 
ACE XML Project file and a hidden text file with the 
extension “.sp”. This file contains only one line of text 
that specifies the name of the single ACE XML Project 
file compressed within the ACE XML ZIP file. When 
ACE parses an ACE XML ZIP file, it looks for the .sp 
file first, and then parses the associated ACE XML Pro-
ject file so that the other contents of the ACE XML ZIP 
file can be properly interpreted. 



  
 

ACE includes utilities for creating, accessing, and 
managing ACE XML ZIP files. When ACE unzips an 
ACE XML ZIP file, it rewrites the ACE XML Project file 
to reflect the new path names of the newly unzipped files. 
ACE can also extract or add a single file from/to an ACE 
XML ZIP file. An ACE XML ZIP file can be used to 
load or save an ACE project via the ACE command-line 
interface, GUI or API.  

3.4 Improved Command-Line Interface 

The previous ACE command-line interface has been en-
tirely redesigned with clearer and more intuitive com-
mands. The command-line interface of software such as 
ACE is particularly important, as it is often needed to 
perform batch processing that can last days or weeks. 
Running ACE from the command line has become easier 
with the addition of new functionality such as the ability 
to load an ACE project from an ACE XML Project file or 
an ACE ZIP file. The user can also now specify the type 
of classifier or dimensionality-reduction algorithm to be 
used as well as other options related to the distribution of 
datasets (e.g., randomization, maximum class member-
ship, and maximum class spread). With the verbose op-
tion, the user also has the option of printing a more de-
tailed report of the performed processing. These im-
provements to the command-line interface not only make 
ACE easier to use, but also provide more precise control 
of ACE’s processing. 

3.5 Graphical User Interface 

ACE also now includes functionality for GUI-based 
viewing, editing, and saving of ACE XML files. This 
functionality is divided between three panes: the Taxon-
omy pane, which displays the contents of an ACE XML 
Class Ontology file; the Features pane, which displays 
the contents of an ACE XML Feature Description file; 
and the Instances pane, which displays the combined 
contents of both ACE XML Feature Value files and ACE 
XML Instance Label files.  

A screen shot of the Taxonomy pane is shown in Fig-
ure 2. The displayed structure indicates a genre taxonomy 
for use in an automatic genre classification task. If an 
ACE XML Instance Label file is loaded without explic-
itly specifying such a class ontology either manually or 
with an ACE XML Class Ontology file, then a flat ontol-
ogy is automatically generated based on the labels used in 
the ACE XML Instance Label file, and is displayed in the 
Taxonomy pane. Figure 3 shows a Features pane display-
ing a list of audio features. If an ACE XML Feature De-
scriptions file is not loaded here prior to loading an ACE 
XML Feature Values file, feature descriptions are gener-
ated automatically based on the features present in the 
ACE XML Feature Values file. Figure 4 shows how the 
Instances pane can be used to display class labels that 
have been associated with particular instances.  

 

 
Figure 2. A sample genre ontology displayed in the Tax-
onomy pane of the ACE GUI. 

 
Figure 3. The Features pane of the ACE GUI displaying 
metadata about a set of audio features. 

 
Figure 4. The Instances pane of the ACE GUI. Song ti-
tles are associated in this example with particular genre 



  
 

labels drawn from the genre ontology shown in Figure 2. 
Note that neither the Display Feature Values nor the Dis-
play Misc Info checkboxes are checked, so only instance 
identifiers and classes are displayed in this particular ex-
ample. 

Figures 5, 6, and 7 illustrate a more complex exam-
ple. Figure 5 establishes a new class ontology, in this case 
a hierarchical music–speech–applause–silence discrimi-
nator. Figure 6 shows how the Instances pane can display 
not only class labels, but also miscellaneous metadata. 
This figure also demonstrates that instances can be bro-
ken into separately-labeled subsections and that each in-
stance or subsection may be associated with multiple 
class labels. Start and stop times indicate the boundaries 
of the subsections. Figure 7 demonstrates how feature 
values can also be displayed using the Instances pane. It 
shows the same data as Figure 6, except that feature val-
ues are displayed and miscellaneous metadata is not.  

If feature arrays and class labels are loaded for the 
same subsection, all information for that instance is pre-
sented in one row. The specific time of the overlap of 
class labels within a subsection is indicated within paren-
theses after the class name. Subsection rows for any 
overall instance can be hidden by unchecking the Show 
Sections checkbox. The Composer and Note columns are 
metadata loaded from the particular Instance Label ACE 
XML file associated with this example and can be hidden 
by clicking on the Display Misc Info checkbox.  

 

Figure 5. Another class ontology displayed in the Taxon-
omy pane of the ACE GUI. 

 

Figure 6. Instances with subsections and metadata dis-
played in the Instances pane of the ACE GUI. 

 

Figure 7. Instances with subsections and feature values 
displayed in the Instances pane of the ACE GUI. 

4. CONCLUSION AND FUTURE WORK 

Improvements have been made to ACE since its original 
publication, including new capabilities that make it a 
more complete and easy-to-use meta-learning classifica-
tion framework. ACE is an ongoing project, and further 
improvements will continue to be made. 

4.1 Fully Functional GUI 

The ACE GUI currently serves as a tool for viewing and 
editing ACE XML files. It will eventually be possible to 
also use the GUI to perform experiments on data sets, as 
can currently only be done with the command-line inter-
face or API. This functionality will be accessible from 
two currently unfinished panes: the Experimenter pane 
and the Preferences pane. The Experimenter pane will 
allow full access to all of ACE’s machine learning func-
tionality. Several sub-panes will be used to display the 
same output that is printed or saved to files when running 
experiments from the ACE command-line interface. The 
Preferences pane of the ACE GUI will allow users to 
specify preferences related to both interface settings and 
machine learning parameters. User studies will also be 
performed in order to validate and improve the GUI de-
sign. 



  
 

4.2 Distributed Work Load 

Functionality is being built into ACE to allow it to run 
trials on multiple computers in parallel in order to reducte 
execution times. Once the distributed aspect of the system 
is complete, a server-based subsystem will be designed 
that contains a coordination system and database. Al-
though not necessary for using ACE, users will be able to 
choose to dedicate computers to this server, allowing 
ACE to run continually. The server will keep a record of 
the performances of all ACE operations run on a particu-
lar user’s cluster and generate statistics for self-evaluation 
and improvement. ACE will then make use of any idle 
time to attempt to improve solutions to previously en-
countered but currently inactive problems. Ultimately, the 
user would only be required to specify the total time 
available (typically days or weeks) for ACE to run its 
experiments and everything else, including the choice of 
learning algorithms and their parameters, would be auto-
matically determined by ACE. 

4.3 Expanded Machine Learning Algorithms 

In the future, ACE will include learning schemes impor-
tant to MIR that are currently missing from the Weka 
distribution, such as hidden Markov models and recurrent 
neural networks. Support for Weka’s unsupervised learn-
ing functionality will also be incorporated. It would also 
be beneficial to include tools for constructing blackboard 
systems, in particular those that can integrate knowledge 
sources based on expert heuristics. Another potentially 
beneficial addition would be to implement modules for 
facilitating post-processing. All of these extensions 
would add to ACE’s flexibility and breadth of processing. 
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