Localization of Mobile Robots Using Magnetic Fields

Cory McKay
Department of Physics
McGill University
3600 University Street
Montreal, QC, Canada, H3A 2T8

Abstract

Methods that robots could use to automati-
cally determine their position in different envi-
ronments were explored. Experiments were con-
ducted using a compass, where our robot con-
structed maps of the magnetic fields in environ-
ments and later used them to find its position.
Some discussion was also made of localization
methods that use sonar. Our results showed that
our robot had little trouble determining its posi-
tion in environments that include a reasonable
amount of variation in magnetic fields, such as
buildings containing metal structures.

1) Introduction

Mobile robots are extremely useful in a di-
verse range of fields. A vast array of equipment
can be mounted on them, enabling them to per-
form innumerable tasks that would be difficult
for humans to do and allowing them to perform
precision operations. They are also extremely
useful in locations which are hostile to human
life, such as radiated areas, or clean environ-
ments which human workers could contaminate.
By automating these robots, as opposed to oper-
ating them directly from a remote location, the
robots can perform tasks more precisely than
they could under direct human supervision and
they can easily perform extremely repetitive
tasks that could cause a human operator to be-
come bored and careless.

One of the central issues in implementing
this automation is enabling the robot to inde-
pendently determine its position. A simplistic
approach is to use stepper motors on the robot.
Knowing the radius of the robot's wheels, it's
position relative to some starting point can easily
be found by measuring the number of revolu-
tions that the wheels have made. However, errors
can crop up in the stepper measurements, render-
ing them essentially meaningless after a certain
number of movements have been made. This is

The Minh Luong
Department of Physics
McGill University
3600 University Street
Montreal, QC, Canada, H3A 2T8

particularly true if the movement of the robot
involves many starts and stops or if the move-
ments are very short. Despite these limitations,
many companies and research institutions still
use this method. They have a technician periodi-
cally recalibrate the robot manually so that the
stepper error does not have the opportunity to
accumulate. However, it would be much prefer-
able to eliminate this human interaction and have
the robot perform autonomously.

Research has been done into many different
methods of automated position determination.
Which method is the best depends on the type of
environment that the robot will be operating in
and what types of jobs it will be performing. For
example, one method is place geometrical pat-
terns on either the robot or in the environment
and have the robot use a camera to extrapolate its
position relative to these patterns. This is a very
useful method in static environments, but its
limitations become apparent in environments
where there are moving objects which can block
the field of view from the camera to the pattern.
This kind of limited utility is typical of most of
the orientation methods which have been devel-
oped to date and one needs to select the method
that is best suited to one's particular needs.

Many of the successful methods do use the
stepper measurements discussed earlier, but they
periodically measure some other characteristic of
the environment, and use this information to
automatically recalibrate the stepper readings so
that stepper error is eliminated before it has the
chance to accumulate to significant levels. To do
this, the robot must first construct a map of the
environment that it will be operating in with re-
gards to the characteristic that is being measured.
Again, what this characteristic is depends on the
particulars of the environment. This map is then
kept in memory, and the robot can use it to find
its position. A major advantage of this method is
that it allows the robot to easily and automati-
cally operate in new environments, since it can

simply construct a new map on demand. It was
thus our goal in this lab to produce a method
whereby a mobile robots can be placed in an
environment, automatically map it out, and then
use this map to determine its location reliably
and easily. Ideally, it should be possible to place
the robot in a random location in the environ-
ment and have it be able to tell where it is .

The method that we focused on involved
constructing maps of magnetic fields. There is a
certain amount of variation in the magnetic field
of the earth, and we had our robot use this varia-
tion to distinguish between different points in an
environment. The variation is quite small, so a
very sensitive compass is needed to detect it.
However, the variation can become relatively
large in regions that contain a large amount of
metal. Since the support structures of most build-
ings contain a good deal of metal, there should
be more than enough spatial variance for a de-
cent compass to be able to distinguish between
different points. Our goal in this experiment was
to discover if there was enough variation in the
magnetic fields of such an environment for the
robot to be able to determine its location success-
fully, and to devise a method by which this could
be done.

We also looked into localization methods
involving sonar measurements. However, this is
really an entirely different project and time con-
straints prevented us from writing code to actu-
ally implement the method we devised and see-
ing if it works. An outline of it will still be in-
cluded in this report, though, since the method
could be quite useful and it would be an interest-
ing area for future experimenters to explore.

2) Experimental Methods, Results and
Discussion

2.1) Environment

Our experiment was conducted in the Mo-
bile Robotics Lab in the McGill Center for Intel-
ligent Machines. We were not permitted to take
the robot outside of this environment, which was
unfortunate, as we would have liked to see how
our orientation method worked in other buildings
or outside. Even so, there is a large testing space
in the Mobile Robotics Lab, so we had no trou-
ble performing our experiment there. We found
that there was a great deal of spatial variation in
the magnetic field near the walls of the room and
near computers, and much less variation in the

center of the room. This enabled us to check our
procedure in both types of environments. Large
plastic sheets were available for us to simulate
walls, so that we could divide the testing area
into sub-areas.

Figure 1: The Nomad 200 robot.

2.2) Equipment

A Nomad 200 robot was used, of the type
shown in figure 1. It is able to move and rotate
with a high degree of accuracy, and it can meas-
ure the number of rotations that its wheels make
so as to provide stepper motor data. It attempts to
keep track of stepper error as well, which is a
very useful feature. For example, if the robot is
instructed to move forwards 100.00 centimeters,

it might actually only move 100.82 centimeters,
and the position values returned by the robot
reflect this. Although there is some stepper error
which the robot does not account for, these indi-
cations helped to provide an indication of what
order of error to expect. It is also equipped with
several sensory devices, including a compass,
sonar (which takes readings in 360 degrees si-
multaneously), laser range-finder and video
camera. We were able to communicate with the
robot from our UNIX workstations using a radio
modem.

The compass that was used is a digital C100
Compass Engine. It is a microprocessor-
controlled fluxgate compass subsystem which
consists of a fluxgate sensing element and an
electronics board that allows it to be accessed by
external software. It interfaces to the robot
through a serial port. This was a major source of
difficulty for us, as the software used to control
the robot is not compatible with the compass,
and low-level code had to be written to acquire
readings from the serial port (using the PERL
language). This was very inconvenient, as we
had to write all of our code to communicate si-
multaneously with two entirely different inter-
face systems. Once this difficulty was overcome,
however, the compass worked very well. The
biggest problem was that it takes some time for
the computer to access the compass, meaning
that it was very time consuming to make maps of
large areas. The efficiency of the method we
used here could be greatly increased if a compass
that was designed to interact more naturally with
the MRL's controller software could be found, or
if the controller software were rewritten to ac-
commodate the compass. In any event, the com-
pass that we used is fine if the robot only needs
to operate in a small environment, or if time con-
straints are not an important issue.

According to the manual, the compass has a
minimum error of 0.5 degrees, but we found that
it is considerably more accurate than this, at least
in terms of random error. By taking readings at
the same position at different times, and by mov-
ing away from the position and then returning to
it, we found that the compass consistently re-
turned the same readings, with a variance of
only 0.1 or 0.2 degrees once time variance had
been averaged away (time variance is discussed
in section 2.4). The measured variations in the
magnetic field were consistently higher than this,
S0 compass accuracy was not a problem in this
experiment. It is quite possible that the 0.5 de-
grees that the manual refers to is systematic, but

such an error is not relevant to our experiment,
since we only cared about variances from point
to point. It is of little importance to us if all of
our readings are off by 0.5 degrees in the same
direction, since the variance from point to point
remains the same.

The compass returns a value from 0.0 de-
grees to 360.0 degrees. It would have been better
if the compass ended at 359.9 degrees or started
at 0.1 degrees, but it was a simple matter for us
to write code to transform readings of 0.0 de-
grees to 360.0 degrees to avoid errors. The com-
pass also returns a reading of 800 degrees if it
notices too much rapid variation in the magnetic
field. This was quite useful in helping us to
quickly recognize bad data points. The compass
was unable to measure the strength of the field. It
would be nice if a compass could be found
which measured this as well as the direction of
the field, since this would give the robot more
information which it could use to find its posi-
tion, but the information about the direction
alone is still sufficient.

It takes about four seconds for the reading of
the compass to stabilize after being moved. For
this reason, we set up all of our programs to wait
five seconds after each movement before taking
data from the compass.

It was important that the compass be placed
directly on the robot's axis of rotation. If this was
not done, the compass would have been spatially
displaced when the robot rotated, leading to
readings at any one location that would not have
been indicative of the actual location that was
expected. The compass also had to be placed
outside the robot to prevent its readings from
being shielded from the room's field by the metal
casing of the robot.

2.3) Programming issues

A program called Robodaemon was used to
interface with the robot. It allowed us to give the
robot instructions to move and it returned the
stepper position measurements of the robot. It
tracked the distance moved and the change in
orientation relative to its starting point. It also
allows the user to use some of the robot's de-
vices, such as its laser range finder and sonar.
However, as mentioned earlier, the compass is
incompatible with Robodaemon, and we had to
use a separate program to communicate with it.

Robodaemon also has a feature which al-
lows it to create a simulated environment. This

Standard deviations of averages for different group sizes of
compass readings

0.35

0.3 +

0.25 +

o
o
‘

i

0.15 +

Compass reading
o©

0.05 +

1 2 3

L TR T

Group size

Figure 2: The standard deviations of the averages of compass readings of different group sizes. This was
done to eliminate the effects of time variance. The standard deviation was 0.1 degrees with group sizes of

seven or more, which was acceptable for our purposes.

was extremely useful in allowing us to debug our
programs, since the Nomad 200 was often under
repair and unavailable to us, and it also has bat-
teries which can only operate for a few hours
before needing to be recharged.

C programs were used to automate the ro-
bot's mapping and localization procedures. The
first programs that we wrote was MAP, which
causes the robot to automatically construct a map
of any rectangular environment. The user can
specify the dimensions of the environment, as
well as the desired density of the map (i.e. the
distance between the points that MAP takes read-
ings at) and the number of readings and orienta-
tions at which the robot takes data at each point.
The other two programs that we wrote, STA-
TIONARY and ANALYZE, respectively allow
the robot to take readings at its current position
and to compare these readings to its map and
extrapolate its position from them. MAP and
ANALYZE can be found in Appendix 1. The
details of how they work will be discussed in
sections 2.5 and 2.6. The first two programs
made use of programming libraries to interface
with Robodaemon and our PERL program, and
were thus able to pass instructions directly to the
robot and record readings from it.

2.4) Preliminary measurements

We noticed early on that multiple compass
readings at a single point fluctuated as much as 3
degrees at some places in the room, yet were
completely stable at other locations. The time-
variance was particularly large in areas where
there were a lot of electronics. Since the time
variance in the worst areas was strong enough to
mask the spatial variance that we were measur-
ing, it was necessary to deal with it. To do this,
we positioned our robot at the position in the
room that showed the most time-variance and
had it take many readings at each position. We
then divided these readings into groups of differ-
ent sizes and found the average of each group.
We then took groups of the same size and found
the standard deviation of their averages. Our data
is shown in figure 2.

As one would expect, the standard deviation
decreased as the size of the groups increased.
However, we did not want group sizes that were
too large, as it took a sizable amount of time to
get each compass reading (roughly ten seconds
per reading), and maps would take too long to
construct if the group sizes were too large. We
settled on group sizes of seven readings, since
the averages of the groups of this size showed a
standard deviation of 0.1 degrees, which was

Readings for rotation at a single point

220.0

200.0 1

180.0 1

160.0 -

140.0

Compass readings

120.0

100.0 1 1
0 45 90

145

180 225 270 315

Stepper motor coordinates (degrees)

Figure 3: Results when the robot was rotated through 360 degrees at a single position. Rather than going
through 360 degrees, the readings only swept through 60 degrees. Note the small size of the error bars.

small enough not to mask the spatial variations
in the field. Also, this standard deviation of 0.1
degrees was found in the region of the lab that
showed the most time variance, and fell to zero
in areas with little time variance. So, all of the
compass readings given in this lab are actually
the averages of seven compass readings taken at
single positions and orientations. This signifi-
cantly reduced the effect of time-variance on our
results.

The next experiment that we performed was
to hook the compass up to our work station di-
rectly, rather than to the robot, and take readings
by hand. This allowed us to get a rough feel for
how the compass behaves, and the compass be-
haved exactly as the manual indicated. However,
when the compass was actually mounted on the
robot, it was discovered that turning the robot
180 degrees did not result in a compass reading
change of 180 degrees, as it had when the read-
ings were taken by hand. Rather, the changes in
compass readings were significantly different
from the actual changes in robot orientation. To
get a quantitative idea of this, we had the robot
take readings at multiple orientations at the same
position. Our results are shown in figure 3. We

found that the exact shape of this curve varied
from position to position, which gave us one
more means to distinguish between points when
constructing our map. Because of this, we set up
our mapping program to take readings at multi-
ple orientations at each point.

We believe that this effect was due to the
strong magnetic field produced by the robot's
internal systems, which is somewhat stronger
than the earth's magnetic field. As the robot
changed its orientation, the direction or the field
that its electronics produced changed as well.
Fortunately, the robot's field was not so strong as
to overwhelm the effects of the ambient field in
the lab, and the spatial field variations were
strong enough for our compass to detect them.
The robot's field made it difficult to know which
way was true north, but this was not relevant to
our experiment, since the only information
which was important to us was the field varia-
tion, not its absolute value.

Readings at different positions along a line and at one orientation

152.0 ¢
151.0 |
150.0 -
149.0
148.0

147.0 +

Compass reading (degrees)

146.0 +

——— w ithout chair

——— wi ith chair

145.0 f f f f f f
L O T O ¥ O
4 BN 9 N
®m M O O < <

300

<

<

| | |
t t t

N A

N O

[Ye)

, ,
} }
[e)] [
<r N
Ye] Ye]

623 +
648 +
673 +
698

|
t
[eo]
(2]
Yol

Location of robot (centimeters)

Figure 4: Compass readings when the robot was moved through the environment along a straight line and
with no change in orientation. Two trials were done, and a metal chair was placed in the middle of the envi-
ronment during the second trial. Note how this caused the readings to drop systematically almost every-
where, and how there was a large dip immediately near the chair.

Next, we moved the robot in a straight line
and took data at a fixed orientation. This was
done to give us an idea of the variation in the
room's magnetic field at different positions. Our
results are shown in figure 4. We were pleased to
see that the deviation in the field between two
consecutive points was over 0.1 degrees at all
points but one (0.1 degrees being the maximum
standard error measured earlier), and went well
over 1.0 degrees several times. This was for
point separations of 25 centimeters, which is
relatively small, and the spatial variance of the
field increased when the separation was in-
creased. We then repeated the experiment, using
the exact same path, but this time placing a metal
chair near to the middle of the path. As can be
see in figure 4, this had a very significant effect
on our readings. This is both a good and bad
thing. It means that simple magnetic objects
could be used as beacons to introduce enough
variation in environments with uniform magnetic
fields (such as out of doors) so that our localiza-
tion method would work. The bad side is that the
robot is very sensitive to changes in its environ-
ment, so our method would not be suited in
situations where a robot needs to operate in envi-
ronments with many moving magnetically inter-

esting objects, since the constantly changing
magnetic field would render its map useless. We
also found that the compass is very sensitive to
electronics. For example, we discovered that
turning a monitor off near the robot has a signifi-
cant effect, as does speaking on a cellular phone.

2.5) Construction of maps

As mentioned earlier, the procedure by
which the robot finds its orientation is to first
construct a map of an environment and then,
when it desires to know its location, take read-
ings about the magnetic field and compare these
readings to the map to find its location.

The mapping procedure which we used is as
follows: the robot moves to equally spaced nodes
in the environment, and takes compass readings
at each node at different orientations. As dis-
cussed earlier, we found the best balance be-
tween quality of data and efficiency of data
collection when measurements were used at four
orientations per node and seven readings were
taken and averaged out at each orientation.

This mapping procedure worked quite well
for small maps, but it became apparent that

Sample magnetic map of part of the MRL lab

Compass reading

360

420

Stepper x-coordinate

—_—

Stepper y-
coordinate

479

Figure 5: A magnetic field map of a 1.8 m x 1.8 m area of the MRL. Compass readings are only shown at
one orientation, but the maps we used actually had four readings at each (x,y) point, each corresponding to

a different robot orientation.

stepper motor error was compromising our re-
sults when larger maps were constructed. The
purpose of the whole localization procedure is to
have the robot take readings and compare them
to its map so that it could correct for stepper mo-
tor, but this is obviously not possible when step-
per error becomes significant in the map itself.
One possible solution was to have the robot con-
struct a small segment of the map, then return to
the starting point where it could be manually
repositioned, then have it go out to construct the
next small segment of the map and so on. While
this would certainly eliminate the stepper error, it
is preferable to have a procedure where the robot
could construct the map entirely without human
interaction, so this method is a last resort.

We ended up noticing that whenever the ro-
bot rotated in one direction, the error systemati-
cally ended up being in that direction as well,
and vice versa when it was rotated in the other
direction. Since our original mapping program
instructed the robot to move counter-clockwise
whenever it rotated, it was no wonder that the
stepper error accumulated. We modified our pro-
gram to alternately rotate the robot clockwise
and counter-clockwise, in the hope that the rota-
tional stepper error would thus correct itself, and

indeed, this turned out to be the case. Transla-
tional stepper error was eliminated in a similar
fashion, by having the robot move alternately in
different directions, since the direction of the
translational stepper error was also systematic. It
was found that, even for maps of the entire MRL
testing area, the stepper error was essentially
negligible when constructing maps. Of course, if
the robot had been performing many movement
in a non-systematic manner over an extended
period of time, the stepper error would no longer
be negligible, but the whole purpose of the map
and localization procedure was to solve this
problem.

We experimented with several grid sizes and
densities. Obviously, as the grid size and the
density of the nodes increase, so does the time
that it takes to take data. Our localization proce-
dure returns the coordinates of the closest node
in the map, so a large node density increases the
precision of the robots localization. Unfortu-
nately, the stepper error is quite large for small
movements, and the magnetic field variation is
also small at small distances. This means that
grid densities beyond are certain minimum are
inaccurate enough to more than counteract the
advantages of the increased precision. Very good

results were achieved for node spacings of 30
centimeters and above, but our localization pro-
cedure sometimes mistook a node for one of its
neighbors when smaller grid densities were used.
For this reason and because it was considerably
less time consuming, we constructed maps with
node-spacings ranging from 30 centimeters to
100 centimeters.

We were limited to conducting experiments
in the MRL lab, but we successfully mapped out
areas ranging from one meter squared to the
whole testing area, thus showing that our method
could be used successfully in a wide variety of
environment sizes. Figure 5 shows one of our
maps plotted in space. Because it is very difficult
to plot things in six dimensions, this figure only
shows the compass readings taken at one particu-
lar orientation, but the maps we actually used
contained data taken at four orientations at each
node.

2.6) Localization procedure

The robot's position can be estimated once
the map is constructed. After being placed at any
point inside the space that has been mapped, the
robot collects compass data at pre-specified ori-
entations at the stationary point. The estimated
position of the robot is that at which these mag-
netic readings are most consistent with those on
the map, i.e. where the deviation in compass data
between points of like orientation are minimum.
The deviation is given by:

dev = [(Ci(y1-X1)22+1§322(Y2-X2)2 +Ca(yaxa)+ ... (1)
*+ Cn(YnXn)]

where:

i is the index representing robot orientation

x; is the compass reading at the map node

y; is the compass reading at the stationary point
¢; 1s a coefficient

Note that the robot has taken data at n orien-
tations at each point.

The coefficients are used in order to take
into account the different variances between
compass data at different robot orientations. The
coefficient that we used in the experiment is the
standard deviation o; between elements of orien-
tation i divided by the highest one max(c;). This
process is repeated for each point on the grid.
The closest point on the grid is estimated to be
the point at which the deviation is smallest.

The following is an example of how this is
done:

(x,y) Position ' Robot Compass
(centimetres) = Orientation Reading
(degrees) (degrees)

(300,300) 360 205.5

90 176.6

180 148.0

270 149.1

(400,300) 360 209.5

270 142.5

180 148.3

90 178.8

TABLE 1A: grid data at two different nodes

Robot Orientation Compass Reading
(degrees) (degrees)

360 204.9
90 177.4
180 149.0
270 149.1

TABLE 1B: data at stationary point

Sample Calculation:
Position (300,300):

Deviation = [(204.9-205.532 + (177.4-176.632 +
(149.0-148.0)“ + (149.0-149.1) 9]
=1.38

Position(400,300) :

Deviation = [(204.9-209.5) % + (149.1-149.1) % +
(149.0-148.3)2 + (177.4-178.8) "2
= 4.86

Note: for simplification, all ¢; are set to 1.

Since the deviation between the compass
readings at the two points is less at position
(300,300), we estimate the robot to be at
(300,300) at the stationary point.

In order for our comparison of compass
readings to work, the robot must start at the same
orientation as in previous trials when taking its
stationary magnetic data. In our case, the robot
has been programmed to automatically initialize
itself to the same orientation (relative to a sta-
tionary ring which does not turn relative to the

ground) at the beginning of trial runs, so this did
not turn out to be a problem.

In cases where the robot has been moved by
some external means, the initialized orientation
is no longer applicable. We can reinitialize the
robot by simply moving the robot to an orienta-
tion that is characteristic of the initialized robot.
In our case, they were around 200 degrees on the
compass. Since we took readings at every 90
degrees, there was no overlap from compass data
at other orientations to this particular compass
reading. The robot would thus rotate until the
compass read 200 degrees. While this method of
initializing orientation is not too precise, it pro-
vides a good starting point for using the localiza-
tion method for different environments.

2.7) Success rates

The following sample trial runs show how
effective our localization procedure was at find-
ing the location of the closest nodes in the map
to the robot’s actual position :

|

(300,400) (300,400) good
(400,400) (400,400) good
(400,300) (400,300) good
(400,400) (400,400) good

Table 2: Success of localization procedure on a
100 cm x 100 cm grid with a 100 cm node sepa-
ration, taken in an area of the MRL with a high
spatial magnetic field variation. There was a
100% success rate in this experiment.

I

(300,300) (300,300) good
(375,300) (375,300) good
(450,300) (450,300) good
(450,375) (450,375) good
(375,375) (375,375) good
(300,375) (300,375) good
(300,450) (300,450) good
(375,450) (375,450) good
(450,450) (450,450) good

Table 3: Success of localization procedure on a
150 cm x 150 cm grid with a 75 cm node separa-
tion, taken in an area of the MRL with a high spa-
tial magnetic field variation. There was a 100%
success rate in this experiment.

i

R

(300,300) (300,300) good
(300,355) (300,360) good
(355,310) (300,300) no

(355,355) (360,360) good
(355,420) (360,420) good
(355,430) (360,480) good
(410,310) (420,300) good
(410,410) (420,420) good
(470,360) (480,480) no

(470,430) (480,480) good

Table 4: Success of localization procedure on a
180 cm x 180 cm grid with a 60 cm node separa-
tion, taken in an area of the MRL with a high spa-
tial magnetic field variation. There was a 80%
success rate in this experiment.

I

(300,300) (300,300) good
(300,340) (300,330) good
(337,340) (360,300) no

(330,360) (330,360) good
(360,330) (360,330) good
(360,360) (360,360) good

Table 5: Success of localization procedure on a
60 cm x 60 cm grid with a 30 cm node separa-
tion, taken in an area of the MRL with a high spa-
tial magnetic field variation. There was a 83%
success rate in this experiment.

(300,300) (450,300) no
(300,375) (300,375) good
(300,450) (300,450) good
(375,300) (450,300) no
(375,375) (450,375) no
(375,450) (375,450) good
(375,375) (375,375) good
(450,300) (450,300) good
(450,375) (450,375) good
(450,450) (375,450) no

Table 6: Success of localization procedure on a
150 cm x 150 cm grid with a 75 cm node separa-
tion, taken in an area of the MRL with a low spa-
tial magnetic field variation. There was a 60%
success rate in this experiment.

(300,320) (300,300) good
(300,400) (300,400) good
(300,600) (300,600) good
(400,400) (400,400) good
(400,500) (500,400) no

(500,435) (300,400) no

(580,320) (600,300) good
(600,400) (600,400) good
(600,600) (600,600) good
(640,410) (600,400) good
(680,320) (700,500) no

(700,500) (700,500) good

Table 7: Success of localization procedure on a
400 cm x 200 cm grid with a 100 cm node sepa-
ration, taken throughout the whole MRL testing
environment. There was a 75% success rate in
this experiment.

Observations:

e Our localization method is more effective at
larger node separation distances, but still
works accurately for the most part when
separations as small as 30 cm are used.

e Our method works significantly better at
places where there is a high amount of spa-
tial variation in the compass data

e The method estimates the position to within
1 node of the correct position almost all of

the time, even when an incorrect position is
returned.

We can conclude that this method should be
used in places where there are a large amount of
stationary magnetically interesting objects, and
not in a large empty space. This method also
very reliably places the robot to a point in the
room with a precision of about 75cm, provided
there is enough spatial variation .

2.8) Possible Improvements

One method that should make our results
even more accurate in theory would be to move
the robot to neighboring points in program
"STATIONARY". After estimating its position
in the manner used up until now by spinning in
place, it would move to neighboring nodes and
check to see if their positions correspond to the
neighboring nodes of the estimated position on
the map. However, due to time constraints, we
have not been able to explore the effectiveness of
this method.

The compass data can also be made more
precise if more readings are taken at each node.
However, this is not very feasible since the bat-
teries of the robot do not last very long, and it is
not possible to make maps that take excessive
amounts of time to make.

3) Sonar method

As mentioned earlier, there was not enough
time to implement this method, but it is still
worth mentioning as an area for future groups to
research and because it would be useful in envi-
ronments where the compass method would not
work, such as where there is little magnetic
variation or places where there are many mobile
magnetically interesting objects.

Sonar works by emitting pulses of sound
and measuring the time that it takes for the pulse
to return to the sensor after being reflected off of
an object. Since the speed of sound in air is
known, it is thus easy to calculate the distance to
the object that is reflecting the pulses. The No-
mad 200 is equipped with a sonar that allows it
to take sonar readings in 360 degrees simultane-
ously, thus allowing it to acquire information
about all of its surroundings at once. Ideally, this
would allow the robot to know how far objects
are from it at all times. Unfortunately, there are
serious problems when sonar is used in enclosed

10

Location of wall given by sonar

Actual location of wall

Figure 6: An example of how sonar can give faulty readings when used in enclosed areas.

spaces. First of all, nearby objects can cast a long
sonar shadow, thus obscuring large parts of the
environment from the robot's sensors. More seri-
ously, a pulse can be reflected off walls multiple
times before returning to a sensor, thus giving
the sonar faulty readings as to the position and
distance of the wall. An example of this is shown
in figure 6.

The way to get around this problem is to in-
struct the robot to ignore all readings that do not
return after a short period of time. This would
stop all pulses that return after multiple reflec-
tions from being counted. The trade-off is that
the robot is then incapable of knowing about
objects that fall outside its region of acceptance.
Fortunately, this is not important for the localiza-
tion method that we propose.

Just as in the compass method, we begin by
making a map of the environment. We have the
robot simply move forward until it comes en-
counters a wall, at a distance of perhaps one me-
ter or so, which is more than close enough to fall
within its region of acceptance. It then rotates so
that it can move parallel to the wall and follows
the wall until it finds a corner, at which point it
positions itself so that it can follow this new
wall. It proceeds in this manner until it has re-
turned to the place where it first started follow-
ing the walls. All this while, the robot keeps a
record of the lengths and relative orientations of
each wall. Once this has been done, the robot has

completed its map. Assuming that the environ-
ment is not immense, this procedure would in-
volve sufficiently few movements for stepper
errors to become significant in the mapping.

At later points, whenever the robot wants to
know its location, it could move to a wall and
follow it until it is able to match the length and
orientations of the walls uniquely to part of its
map. It will then know where it is in the room,
and can then move to any other desired point in
the room using its stepper motors. This method
requires a certain amount of asymmetry to work,
of course. If the robot were operating in a square
room, for example, it would have no way of dis-
tinguishing one wall from another. The solution
to this is to use the sonar method in conjunction
with some other measuring device. For example,
assuming that the magnetic field of the robot is
not so strong as to overpower the earth's field, a
compass could be used to determine which gen-
eral direction is north. As long as the direction of
the earth's field is shifted less than 45 degrees,
the robot will be able to distinguish the north
wall of a square room from any of the other
walls. It can then follow this wall until a corner
is reached, at which point it will know exactly
where it is. This method will not work in areas
with no corners, such as circular rooms, or out-
doors where there are no walls, but it should be
quite effective in other environments.

11

It should be noted that the robot will need to
be able to distinguish between walls and small
objects such as other robots for this method to
work. This can be done by having the robot only
treat objects of a certain minimum size as walls.
If they do not reach this minimum, then the robot
will simply move around them and proceed until
it encounters something which meets this mini-
mum size, whereupon it will start constructing its
map or begin its localization procedure. This also
prevents the map from incorporating potentially
mobile objects into its map.

4) Conclusions

This experiment was intended as a study of
the feasibility of the compass method in robot
localization, and as such it was a success. We
showed that there is indeed enough variation in
the magnetic field of the room that we studied
for the robot to determine its location with very
good reliability.

Our success shows that there is reason to in-
vestigate this area further, since there is a great
deal of room for future experimenters to build on
our work. For example, they could use different
robots to see how well our method works with
them. A robot that was built with the intent of
using these types of measurements could surely
be designed to generate a much weaker magnetic
field, and thus allow the compass to take more
precise measurements of the room's magnetic
field.

It would also be interesting to see if there
would still be enough variation in the magnetic
field in other types of environments. One could
see if our method works out of doors, or could
specifically design an environment using mag-
netic beacons so that the robot could be even
better able to find its position. And, of course,
the effectiveness of the sonar method could cer-
tainly be explored.

There are limitations to the usefulness of the
compass method, just as there are to any local-
ization method. It probably would not work out-
doors or in the middle of a large room, since
there is very little spatial field variation in these
environments. It does not work in situations
where there are mobile magnetically interesting

objects or intermittently operating electronics
which cause the magnetic field to change non-
periodically. However, we showed that the com-
pass method can be quite successful in environ-
ments where this is not the case.

Another limitation of the compass method is
that it is limited in precision by the density of the
map nodes, since the localization procedure re-
turns the location of the nearest node. All of our
positional determinations thus have an error of
one half of the node separation. This is a prob-
lem where very precise locations are needed.
However, we obtained excellent results with
node separations of 60 centimeters, and could
have obtained even better resolution if we had
had better stepper motors, since the ones that we
used have relatively large error when moving at
distances much smaller than this. Our method
will work perfectly fine in situations where a
great deal of precision is not needed, especially
since the positional error of one half the node
distance does not accumulate each time a posi-
tional determination, since the old coordinates
are thrown out when the new determination is
made.

We were very pleased to have success with
this method, as previous researchers had consid-
erably more trouble in localizing the robot. Our
results show future researchers with more re-
sources and time than we had could certainly
develop our work here into something with con-
siderable practical value, and we hope that future
groups will build on our results.

5) Bibliography

Cox, 1. Wilfong G., Autonomous Robot Vehicles,
New York: Springer - Verlag, 1990.

Kjellstrom, B., Be an Expert With Map and
Compass: The Orienteering Handbook, Har-
risburg (Pa): Stackpole Books, 1967.

Lee, D., Map-Building and Exploration Strate-
gies of a Simple Sonar Equipped Robot: An
Experimental Evaluation, Cambridge: Cam-
bridge University Press, 1996.

Press, W., Numerical Recipes in C, Cambridge:
Cambridge University Press, 1992.

12

Appendix 1: Code Listings

MAP:
/* MAP.C: builds map and obtains robot's compass data

#include <stdio.h>
#include <time.h>
#include <math.h>
#include "RD10.h"

FILE *outfile;

/***************************************/

void delay ()
/* delays readings by specified time amount
1600 iterations corresponds to 1s
650 000 clicks corresponds to 1s*/
{ int tinitial;
int x;
x= 1;
tinitial = clock();
while (x < 3900000)
{ x = clock();
}
}

/***************************************/
int getreading(int nread)

/* gets compass readings */

{ char reading;

int i, 3J;

FILE *inputfile, *magfile;

magfile = fopen ("magnet.dat", "w");
for (j=1;j<=nread;++j)

{ inputfile = popen("c2", "r");

for (i=1;1i<=25;++1)
{ fscanf (inputfile,"%c", &reading);

if (i>7 && i<13) fprintf (magfile,"%c",reading);

}
pclose (inputfile);
fprintf (magfile," ");
}
fclose (magfile);
return(0);
} /* getreading */

/***************************************/

float compass (int nread)
/* puts compass data into data file */
{ FILE *magfile;
float data;
float sum;
float mean;
int j;
getreading (nread) ;
magfile = fopen ("magnet.dat","r");
sum = 0;
for (j=1;j<=nread;++j)
{ fscanf (magfile,"%f", &data);
printf ("$f\n",data);
sum = sumtdata;
mean = sum/nread;

}

fclose (magfile);
return (mean) ;
} /* compass */

*/

13

/***************************************/
int main(void)
{ RD_Pose_ Ptr place;

char filename[10];

char *hostname = "voyager.cim.mcgill.ca";
char *robot = "invader";
char *socket = "5090";

RD_Robot_ Type Robot Type = RD NOMAD;

float mag;

float *xmove;

float *ymove;

float *rotate;

float node distance, x distance, y distance, radial readings, degree interval;
float x_travelled=0, y travelled=0,angle rotated = 0;
float angle;

int cwise;

int orient;

float reading;

int nread;

xmove = (float *) 180;
ymove = (float *) 180;
rotate = (float *)180;

printf ("Hostname?\n") ;
printf ("Filename:") ;
scanf ("%s", filename);

outfile = fopen(filename, "w");

printf ("Connecting to Robodaemon...\n");
RD Connect (hostname, socket);
printf ("Connection complete.\n");

printf ("Creating a robot...\n");
RD Create (Robot Type, (char *) robot, (char *) NULL);
printf ("Creation complete.\n");

place = (RD_Pose Ptr)malloc(sizeof (RD_Pose));
RD Get Pose((char *) robot, (RD _Pose Ptr) place);
printf ("Posel is (x,y,theta)=(%f,%f,%f)\n", place->X, place->Y, place->Theta);

printf ("Distance between nodes (m): ");
scanf ("%f", &node distance);

node distance = node distance * 100;
printf ("X-distance: ");

scanf ("%f", &x distance);

x distance = x distance * 100;

printf ("Y-distance: ");

scanf ("%f", &y distance);

y distance = y distance * 100;

printf ("Radial readings: ");

scanf ("%f", &radial readings);

degree interval = 360 / radial readings;
printf ("Number of compass readings per point?");

scanf ("%1i", &nread);

orient = 1;

printf ("Moving the robot...\n");
cwise = 1;

angle rotated = 0;
while (angle rotated < 360)
{ delay();
printf ("Hoiles!");
RD Get Pose((char *) robot, (RD _Pose Ptr) place);
if (place->Theta < 20) place->Theta = place->Theta+360;
fprintf (outfile,"$f %£f $f ", place->X, place->Y, place->Theta);
reading = compass (nread) ;

}

fprintf (outfile, "%$f\n", reading) ;
RD Rel Rotate((char *) robot, degree interval, rotate);
angle rotated = angle rotated + degree interval;
}
while (y_travelled <= y distance)
{ x _travelled = 0;
while (x_travelled < x_distance)

{

RD Translate((char *) robot, node distance, (char *) NULL,rotate);
angle rotated 0;
cwise = (-1)*cwise;
while (angle rotated < 360)
{ delay();

printf ("Hoilesl1!");
RD Get Pose((char *) robot, (RD Pose Ptr) place);
if (place->Theta < 20) place->Theta = place->Theta+360;
fprintf (outfile, "$f £ £ ", place->X, place->Y, place->Theta);
reading = compass (nread) ;
fprintf (outfile, "%f\n", reading) ;
RD_Rel Rotate((char *) robot, cwise*degree_interval, rotate);
angle_rotated = angle_rotated + degree_interval;
}/* angle rotated */
x_travelled = x_travelled + node_distance;
} /* x-travelled */
if (orient == 1) angle = 90;
else angle (=1)*90;

if (y_travelled < y distance)
{ RD_Rel Rotate((char *) robot, angle, rotate);
RD _Translate((char *) robot, node distance, (char *) NULL,rotate);
RD Rel Rotate((char *) robot, angle, rotate);
cwise = (-1)*cwise;
angle_rotated = 0;
while (angle rotated < 360)
{ delay();
printf ("Hoiles2!");
RD Get Pose((char *) robot, (RD Pose Ptr) place);

if (place->Theta < 20) place->Theta = place->Theta + 360;
fprintf (outfile, "$f £ £ ", place->X, place->Y, place->Theta);

reading = compass (nread) ;
fprintf (outfile, "%f\n", reading) ;
RD_Rel Rotate((char *) robot, cwise*degree interval, rotate);
angle_rotated = angle_rotated + degree_interval;
} /* while */

boo/x it o+
y travelled = y travelled + node distance;
if (node distance == 0) y travelled = y distance + 1;
orient = (-1)*orient;

} /* while */
printf ("Done\n") ;

RD Get Pose((char *) robot, (RD Pose Ptr) place);

printf ("Pose2 is (x,y,theta)=(%f,%f,%f)\n", place->X, place->Y,
place->Theta);

RD Destroy (robot) ;

RD Disconnect () ;

fprintf (outfile,"-1000\n") ;

fclose (outfile);
printf ("Program complete...\n");

return (0) ;
/* main */

15

Analzyze:

/* program ANALYZE.C : analyzes stationary data and grid data,
estimates robot's present position */

#define MAXREADINGS 15
#define MOTOR_ERROR 10
#include <stdio.h>
#include <time.h>
#include <math.h>

FILE *compfile,*gridfile;

struct grid {
float x; /* x coordinate */
float y; /* y coordinate */
float ol; /* robot orientation */
float cl; /* compass orientation */
}i
struct point {
float 02;
float c2;
}i

struct coord {

float x;

float y;
}i
/*************************************/
int round(float x)
/* round number to nearest integer */
{ int num;

num = (x+0.5)/1;

return (num) ;

}

/*************************************/
double power (float x, int n)
{ int 1i;

double pow;

pow =1;

for (i=1l;i<=n;++1i)
{ pow = pow*x;
}

return (pow) ;

}

/*************************************/

int stdev (int nread, char gfilename[12], double dev[20])
/* gets standard deviation of each orientation */

{ double sumsquares[50], sum[50];

FILE *gridfile;
struct grid gdata;

double mean;

double num[50];

int i;

int ind;

gridfile = fopen(gfilename,"r");

gdata.x = 0;

for (i=0;i<nread;++1i)

{ sumsquares[i] = 0;
sum[i] = 0;
num[i] = 0;

}

while (gdata.x > -500)

{ fscanf(gridfile,"$£%$£%£f%f", &gdata.x, &gdata.y, &gdata.ol,

if (gdata.x > -500)
{ 1if (sqgrt(power (gdata.ol-360,2))<MOTOR_ERROR)
{ sumsquares[0] += gdata.cl*gdata.cl;
sum[0] += gdata.cl;

num[0] = num[0]+1;
}o/xif x/
else

{ ind = round(gdata.ol/ (360/ (float) nread));

if (sqgrt (power (gdata.ol-ind* (360/ (float) nread),2)));

{ sumsquares[ind] += gdata.cl*gdata.cl;
sum[ind] += gdata.cl;
num[ind] = num[ind]+1;
}
} /* else */

} /* 1f */
} /* while */
if (num[0] == 0) printf ("Error:no data");
else
{ for (i=0;i<nread;++1i)
{ mean = sum([i]/num[i];
dev([i] = sqgrt((sumsquares[i]-num[i]*mean*mean)/num[i]) ;

}
}

fclose (gridfile);

return (0);
} /* stdev */

/*************************************/
int coefficient (int nread,double stdev[20],double coeff[20])
/* gets coefficient for each orientation */
{ int i;
double highest coeff;

highest coeff = 0;
for (i=0;i<nread;++1i)
{ coeff[i] = power(stdev[i],1);

if (coeff[i] > highest coeff) highest coeff = coeff[i];

}

for (i=0;i<nread;++1i)

{ if (highest coeff != 0) coeff[i] = coeff[i]/highest coeff;

}

return(0) ;
} /* coefficient */

/*************************************/
int main (void)
{ char filename[20],gridfilename[20];
int i,3j, nread, pt;
double diff, mindiff;

double dev[50],coeff[50];
struct grid griddata;

struct point pointdata[MAXREADINGS];
struct coord closestpt;

printf ("Compass data filename (at present robot position):

scanf ("%s", filename);
printf ("Compass grid data filename: ");
scanf ("%s", gridfilename);

printf ("Number of compass readings per point? ");
printf ("$s %s\n",filename,gridfilename) ;
scanf ("%1i", &nread);

&gdata.cl);

17

}

mindiff = 500;

gridfile = fopen(gridfilename,"r");
compfile = fopen(filename,"r");

stdev (nread, gridfilename, dev);
coefficient (nread,dev, coeff);

for (3=0;Jj<nread;++7)

{ fscanf (compfile,"%f%f", &pointdatal[j].o2, &pointdatalj].c2);
}

griddata.x = 0;
while (griddata.x > -500)
{ diff = 0;
for (i=0;i<nread;++1)
{ fscanf (gridfile,"Sf$£%$£%£f", &griddata.x, &griddata.y,
&griddata.ol, &griddata.cl);
pt= 0; /* get orientation on point corresponding to 1lst orientatio
on grid */
while (sgrt(power (griddata.ol-pointdata[pt].o2,2))> MOTOR ERROR && pt
<= nread)
++pt;

diff = diff + coeff[pt]*power (griddata.cl-pointdatalpt].c2,2);
} /* for */

if (diff < mindiff && griddata.x >-500)
{ mindiff = diff;
closestpt.x = griddata.x;
closestpt.y = griddata.y;
}o/xAf %/
} /* while EOF */

printf ("closest pt:%$f $f\n",closestpt.x,closestpt.y);

fclose (gridfile);
fclose (compfile);

return (0);
/* main */

18

