Design Document

Travel Agent File Transfer Software
“The Journey project”

Mark Cunningham
James Dyer
Zhili He
Cory McKay
Maru Newby
Jonathan O'Hara
Tristram Southey
Sitai Sun
David Tarc
Xinli Wang

D
1)
I11)

V)

V)

%)

VII) Error Handling

X)

Table of Contents

Introduction

3.1) Definition
3.2) User Requests Handling Model
3.3) Information Storing
User Requests Handling
4.1) Connection

Adaptor
5.1) Transfer Adaptors
5.2) Exceptions
5.3) Other ADT’s
Protocols

7.1) Exceptional Event Handling

9.1) Unit Tests
9.2) Functional Tests
9.3) Integration Testing
Conclusion

[N T N0 T N T N T N T N g S T T e Y SO S Gy S Gy S G S Sy SN
R —m = m = O WO AN NNUNWWE O PO ON0NXIIII AW

I. Introduction

This is the specifications document for the Journey software project. It is
essentially a client that will allow files to be transferred from remote servers to local
computers using Windows File Sharing, FTP or telnet connections. It will have an easy to
use and intuitive GUI and will have complete error protection that informs the user of
errors in a precise and understandable manner. One interesting characteristic of this
program is that it will allow users to form a queue of files that will be automatically
downloaded at a later date.

There are four main sections to this project. The first is the front end of the GUI,
which will include no functionality beyond supplying the users and conveying their
requests to the other parts of our program. The second section is the backend of the GUI.
This section will take the commands of the users and make sure that they are processed
properly. All state information will be stored here. The next section, the adaptor, will act
as an interface between the requests from the backend of the GUI and the low level
interactions from the three communication protocols. It will allow the backend of the
GUI to issue requests and receive responses in ways that are independent of which
communications protocol is being used. There is also a final section to this document that
outlines the protocols that will be used.

II. GUI

The first action required from the user is a login, automatically prompted upon the
execution of the program. This will ask for user ID, password, host name, and finally
transfer method. The transfer method describes whether the user specifically wishes to
implement ftp, telnet or the windows file-sharing mode for transferring their files. The
default value for the transfer method is “Automatic”, allowing the program to pick an
appropriate method. During the session, the user can change to another remote machine
by using the connect menu item from the connectivity menu, which will again bring up
the login window. Passwords are not displayed when they are typed in.

During the session the user will be able to select files on either the local or remote
machine, and transfer them using the arrow buttons separating the two file trees. File
selection will be similar to the methods used in most windows applications: shift and
control can be used to select multiple files at once. If the user wishes to create a queue for
overnight down loading this can be accomplished by pressing the “Queuing Mode”
option. When this is activated then the “Queue” window will appear at the bottom of the
screen. Now instead of transferring the files immediately, all transfers are simply placed
in the queue. These transactions will be listed in this window and can be removed if
desired, by selecting the transfers to be cancelled and pressing the delete button. When
the “Regular mode is selected” or the queue window is closed the queue will be
maintained, and should queuing mode be reinitiated this session these files will reappear.
The transfers can also be initiated by using the appropriate button on the queue window.
When the list of files has begun transferring, successful completion, errors, or progress
will be reported in the log window. The transfers in the queue list will show the complete
path of the file to transfer, and the direction of the transfer. Other functions available in
the queue window are move a file up or down in the list, and delete a transfer from the
list.

Each time a file or queue is being downloaded there will appear a dialog
containing a status bar showing the progress of the transfer of the current file, as well as a
status bar showing the percentage of all transfers so far completed. This dialog will also
contain three buttons: “Pause” to pause or resume the transfer, “Cancel” to completely
cancel the transfer of the current file, and “Cancel All” to cancel all downloads currently
queued.

The “Connection” menu option can be used to connect to or disconnect from a
server, and exit the program. “Connect” opens the login window allowing the user to
connect to the given host. “Disconnect” closes the connection with the current host.
“Exit quits the program.

The “Edit” menu option can be used to call the queue window, and change the
default directory. “Display Queue” will open a window allowing the user to see a list of
all the files they want transferred. “Change Default Directory” will change the starting
path of the client to whatever the user specifies.

Finally, using the “Help” button can access help. This is discussed further in the
Help section of this document. Also, “About the Journey” will just inform the user about
the program and who made it.

. Client =
Connection Edit Help
Local System Fiemate System
s [- s [-
24 Program Files o 24 Program Files
£ Devsudio £ DevSiudio
I:_'j Help T I:_'_l Help
L100BC L 100BC
I__| report ~ uuewihg I_j report
I:_'] Repoztry i ode I:_'] Repoztry
I__J zamples A~ Fegular LJ zamples .
l__'] Setup Mode [_] Setup
.__'| setupkit .__'| setupkit
|_] Template _:I I_] Template _:I
Log WWindow
| Status | 2/14/00 | 2:40 P o

Main Client Window: Will list files along with their name, size, and path.
Will support directory maneuvering as well.

- Trarster Combal = Eo
o R =l

Login Window: Allows user to type in host’s name, user name and password,
Also allows user to specify which transfer type to use (defaults to FTP)

. Queued Transfers [E= B3

Lizt1 -
Beain Tranafers Dielete
bove ToBottam | Move ToTop
b e Do Mave Up
Change [Tzum -
Skart Time —Ele.ar L |

o Transbers will start ab: 630 0

The Queue Window: Here the user can see the files they are uploading and downloading
The user can change the transfer list or remove files from it.

III. Backend of GUI

3.1 Definition

The back-end of the GUI is responsible for communicating requests from the GUI
front-end to the Adapter, and Adapter will connect to FTP server to finish
information transfer. Back end is also responsible for communicating the response
to these to the front-end. In addition, GUI of FTP shall be responsible for transfer
information temporarily storing.

3.2 User requests handling model

FTP

GUI GUI ——>
<—= Server

: : Adapter
frontend | <——| backend |<——

User Requests Handling Model

3.3 Information storing.

3.3.1 Information to be stored:
3.1.3.1 user login information
hostname
username
password

3.1.3.2 file information
current directory
alarm clock

3.3.2 Data structure
3.3.2.1 Variables Used:
String hostName: remembers the hostname currently connected to.
String userName: remembers the login id used.
String password: remembers the password used.

String currentDir: remembers the current directory.
double downDone: remembers how much of file is being
downloaded.

int ErrorCode: int, keeps track of error that occurred.
outStream: the output link used for uploading a file.
inStream: the input link used for downloading a file.

3.3.2.2 Data Structures:

Queue: a list of files needed to be downloaded or upload

String name: the name of file to be downloaded or upload.
String path: Location of server to where file is.

long size: how big the file is.

long done: how much has already been downloaded.
String request: upload /download

Server: URL of server to get the file.

String login: ID needed to login to server.

String password: Password needed to login.

VVVVYVYYYVY

ErrorList: a list of error messages
» Type: the type of error (int)
» Time: the time the error occurred at.

IV. User Requests Handling

4.1 Connection
4.1.1 pass connection request to Adapter
4.1.2 pass connection information to Adapter:
» hostName
» userlD
» password
» Connection method: Telnet

4.1.3 check results from Adapter and reply them to GUI
if connected
reply: connection by Telnet successful
else pass FTP connection request to Adapter
check results from Adapter and reply them to GUI
if connected
reply: connection by FTP successful
else pass WFS connection request to Adapter
check results from Adapter and reply them to GUI
if connected
reply: connection by WFS successful
else
reply: connection failed:
Host not found
Error login name or password

4.2 Disconnection
4.2.1 pass disconnection request to Adapter
4.2.2 check results from Adapter and reply them to GUI
if disconnection failed
reply: disconnection failure to GUI
else
reply: disconnection successful to GUI

4.3 Download
4.3.1 pass download request to Adapter
4.3.2 pass download information to Adapter
fileName
OutputStream

4.3.3 check results from Adapter and reply them to GUI
if source file cannot be read
reply: source file cannot be read
else if source file is a directory
Ask user to download the directory and its contents or not
if user answer yes
Send start download request to Adapter
else
Send request to Adapter to stop download
else if destination file exists
if destination file is a directory
reply: destination file cannot be written
else ask user to choose overwrite/append/no and
reply: user's request to Adapter again
if user doesn’t want to go on download
send request to Adapter to stop it
else
send request to Adapter to begin

4.4 Upload
4.4.1 pass upload request to Adapter
4.4.2 pass upload information to Adapter
fileName
InputStream
4.4.3 check results from Adapter and reply them to GUI
if source file is a directory
Ask user to upload the directory and its contents or not
if user answer yes
Send start upload request to Adapter
else
Send request to Adapter to stop upload

else if source file cannot be read
reply: source file cannot be read
else if destination file exist
if destination file is a directory
reply: destination file cannot be written
else ask user to choose overwrite/append/no and
reply: user's request to Adapter again
if user doesn’t want to go on uploading
send request to Adapter to stop
else
send request to Adapter to begin

4.5 List
4.5.1 pass request to Adapter
4.5.2 check results from Adapter and reply them to GUI
reply: GUI the list result

4.6 Change Directory
4.6.1 pass request to Adapter
4.6.2 pass directory information to Adapter
pathName
4.6.3 check results from Adapter and reply them to GUI
if path is an effective directory
reply: change successful
else
reply: directory change failure

4.7 Help
4.7.1 pass request to Adapter
4.7.2 pass results to GUI

10

11

V. Adaptor

5.1 Transfer Adaptors

The three protocols will each have a corresponding transfer Adaptor. Each
transfer Adaptor will implement the TransferAdaptor interface, which allows client
systems to ignore the details of the underlying transfer implementation.

The following is an ADT representation of the TransferAdaptor interface:
Please note that the TransferAdaptor interface implements the ObservableTransfer
interface as well, these methods and those of ancillary ADT’s are found at the end of this
section.

public void connect(ConnectionInfo info) throws ConnectionFailedException,
ConnectionRefusedException,
PermissionDeniedException,
HostNotFoundException;

Opens a connection to the server with the provided connection info object.
If the method returns without throwing any exceptions, the connection was
successful.

public VirtualFile[] list() throws ConnectionFailedException;

Lists the files and directories available in the working directory on the server, and
returns them as an array of VirtualFile objects.

public String getWorkingDirectory(String path) throws ConnectionFailedException;
Retrieves the path of the working directory on the server.
public String setWorkingDirectory(String path)
throws ConnectionFailedException,
ResourceNotFoundException,

PermissionDeniedException;

Sets the current working directory on the server, returning the new working
directory. The provided path must be the fully qualified.

12

public void getFile(String fileName, OutputStream out, long offset)
throws ConnectionFailedException,
ResourceNotFoundException,
PermissionDeniedException;

Retrieves the file identified by fileName from the working directory of the server
and writes it to the given output stream. If the offset is non-zero, the stream must
be set to the correct offset, and the method will ensure that it begins receiving data
from that offset.

public void putFile(String fileName, InputStream in, long offset)
throws ConnectionFailedException,
ResourceNotFoundException,
PermissionDeniedException;

Sends the data from the provided input stream to the server, where it will be
written to a file called fileName in the server’s working directory. If the offset is
non-zero, the stream must be set to the correct offset, and the method will ensure
that it begins receiving data from that offset.

public void disconnect() throws ConnectionFailedException;

Disconnects from the server. Any errors in closing the connection will be
indicated by the appropriate exception.

public static void getFile(QueuedFile file, OutputStream out, TransferObserver observer)
throws QueuedFileTransferException;

Establishes a connection to a server — file has a reference to a ConnectionInfo
object — and transfers a named file from the server to the supplied OutputStream.
When the transfer is completed, the connection to the server is closed. The given
TransferObserver will be aprised of the transfer status.

public static void putFile(QueuedFile file, InputStream in, TransferObserver observer)
throws QueuedFileTransferException;

Establishes a connection to a server — file has a reference to a ConnectionInfo
object — and transfers the file named in file from the supplied InputStream to the
server. When the transfer is completed, the connection to the server is closed.
The given TransferObserver will be aprised of the transfer status.

13

The static methods getFile and putFile are convenience methods that use a
TransferAdaptor object to connect to a server, transfer a file, and disconnect, using
TransferAdaptor objects. They are non-interactive by nature, and are intended to allow
easy implementation of deferred file transfers.

The TransferAdaptor's regular instance methods will be utilized by the GUI back end to
provide interactive functionality to the user.

The connection protocol subclasses will communicate to the adaptor the file transfer
progress using an object which behaves as an observer. The adaptor will then
communicate this information to to registered observers. It is intended that the GUI shall
register as an observer with the Adaptor it is using to receive transfer status notification.

5.2 [Exceptions:

ConnectionFailedException
- a protocol’s server connection has been terminated

ConnectionRefusedException
- aserver is either unable or unwilling to accept a connection

PermissionDeniedException
- the desired operation cannot be completed due to invalid security
credentials

HostNotFoundException
- the given host was not locatable

ResourceNotFoundException
- afile or directory could not be located

QueuedFileTransferException
- aqueued file could not be transferred for any of the above reasons

5.3 Other ADT's

Connectionlnfo ADT
It supplies all the necessary information for a connection (host machine name,
user name, password) to the Adaptors.

QueuedFile ADT

This object represents a file that has been queued for a scheduled transfer. The
backend of the GUI will pass this object to the static methods getFile and putFile
contained in the Adaptor interface. The QueuedFile chall have public methods
for accessing all the information that these static methods require.

ObservableTransfer ADT
Objects implementing this interface can register TransferObserver objects and
notify them of transfer status as required.

TransferObserver ADT
Objects implementing this interface can add themselves as observers to an
ObservableTransfer to be notified of transfer status.

TransferStatus ADT
Contains simple transfer status information and provides the percentage
completion for the transfer in question.

VirtualFile ADT
Represents a file or directory on the remote system.

14

15

V1. Protocols

6.1 Protocol Overview

The user will be able to access one of the three file transfer protocols, namely,
FTP, TELNET, and Windows’ File Sharing (WFS) one at a time. The protocols
will be implemented in three respective modules. They take the user's requests
from the Adaptor, and pass them onto the server, then process and pass the
answers back to the Adaptors.

The special error codes in the implementation will be passed to the Adapters,
which will be mapped onto the back end of the GUI..

6.2 FTP

FTP uses the protocol "File Transfer Protocol" whose communication is
established by using the TCP/IP protocols. Our implementation will support the
following FTP commands.

CONNECT

Hostname, username and password are required.

If any one of these fails to be authenticated, a respective failure code will be
issued.

CWD
With this command, the user can change the directories of the remote machines.

LIST
This command will list the contents of a directory on the remote machine.

RETR
With this command, a copy of the remote file shall be transferred to and stored in
the user's machine.

STOR
This command uploads the user's file onto the server's machine.

STAT
This command will show the status of the operation in progress.

QUIT
This command terminates the user's connection to the server.

16

6.3 Telnet

With the Telnet Protocol a user with a terminal using the local telnet program is
able to run a login session on a remote computer where his communications needs
are handled by a telnet server program. The communication is established by
using the TCP/IP protocols. The following are the telnet functionalities that the
client is going to support.

OPEN
This command requests the hostname.

SET
This command sets operating parameters.

MODE
This command allows entering line-by-line or character at a time mode.

STATUS
This command prints status information.

DISPLAY
This command displays operating parameters.

QUIT
This command will end the telnet session.

6.4 Windows' File Sharing

The Common Internet File System (CIFS) defines a standard remote file-system
access protocol for use over the Internet, enabling groups of users to share files
across the Internet. CIFS is an enhanced version of Microsoft's open, cross-
platform, Server Message Block (SMB) protocol, the native file-sharing protocol.

It illustrates a typical message-exchange sequence for a client connecting to a
server, opening a file, reading its data, writing data to it and closing the file.

The supporting functionalities are as follow:

SMB COM_TREE CONNECT
It transmits the name of the disk share the client wants to access.

SMB_COM NEGOTIATE
It negotiates a file-sharing dialect to use.

SMB COM_OPEN
It opens a file and retrieve its handle.

SMB COM_READ
It reads a server file.

SMB COM TREE DISCONNECT
The client disconnects from the resource.

SMB COM_CHECK DIRECTORY

It verifies that a path exists and is a directory.

SMB COM_SEARCH
It searches directories for a file name.

SMB COM_WRITE
It writes data to a server file.

17

18

VIIL. Error Handling

7.1 Exceptional Event Handling
7.1.1 Prompting for User Decision

One exceptional event of interest and importance is when a file is attempting to be
transferred, but a file of the same name already exists, occupying the desired
destination. In this case the user will be prompted with a pop up box, which halts
all other processing, until the user chooses from one of the three buttons, Cancel,
Rename file to be transferred, or Overwrite. Hitting the rename will allow an
alternate name to be entered for the destination. If there is a queue being
downloaded, the system will continue to download the selected file.

7.1.2 Subject Matter Reported On:

There will be a fairly small number of errors presented the user, which will render
transparent the use of the different protocols and connection mechanisms. The
standard errors to be reported to the user are as follows:

e Unable to Establish Connection with Server

e Login/Password Invalid

File/Directory Not Found (this covers such situations as changes of file
structure which render previous information invalid)

You Do Not Have the Rights to Perform that Action

Transfer Incomplete (when a connection dies mid-transfer)

Insufficient Disk Space to Perform that Action

File Already Exists - Unable to Create (this will be an error limited to the log
window, to happen only during non-interactive transfers)

7.1.3 Display of Error Messages During Interactive Transfers

Errors, which occur during the interactive mode of transferring, opposed to those
occurring during the “batch transfer”, or “queued” transfers, will demand an
interactive acknowledgement from the user. This will be implemented using a
popup message box, containing the available details on the error that occurred.
No further activity will be allowed until the OK button on the message box has
been clicked. The message contained on the error will also be displayed in the
“Log Window”, near the bottom of the GUI. The log window will hold a large
number of the most recent errors during the current execution of the program. In
the event of more errors being generated than can be recorded in the log window,
the newer errors will bump out the older errors.

19

7.1.4 Reporting of Errors During Queued Transfers
7.1.4.1 Prevalidation of chosen files to transfer

While the client is in the process of choosing files to transfer, even though
the transfer will not happen immediately, what validation can be done
immediately will be done. This includes the case of the file of the same
name and path already existing in the queue or on disk. The user
immediately be prompted by a standard Skip File, Rename or Overwrite
dialog as described above. Disk space limitations will also be checked. In
the event that a file comes into existence between this validation and the
time the transfer actually takes place, that file transfer will be aborted, and
the abortion noted in the log window.

7.1.4.2 Errors Occurring During Queue Mode

Contrarily to the way error messages are handled during interactive
transfers, the very nature of the queued transfers necessitates a different
approach. Errors of the very same type as during interactive transfers are
liable to occur, yet the application will take note of the type of error that
occurred, and report the error solely in the log window, just as is the case
with the interactive transfers, but there will be no pop up message box
demanding user input. Failure of one item in the queue will be recorded,
and the next queued file will be attempted, automatically. Any transfer,
whether it terminates in failure or a success will only be attempted once.

7.1.5 Additional Considerations for Error Reporting: Observer Mechanisms

One of the strategies that will be implemented to ensure prompt reporting of
errors will be the observer design pattern (Gamma et al 1995). This observer
mechanism will be used whenever possible in place of throwing exceptions to
allow the running methods to continue their work uninterrupted. Some
circumstances will demand the use of exceptions because of their critical nature,
and the impossibility of continuing normally. The observer makes use of a notify
method to alert the calling method, where the error handler will reside, that a
specific error condition has occurred. This will allow errors to be reported
immediately without the running method relinquishing control of the execution
sequence. The observer mechanism will also be used for other purposes such as
real-time updating transfer progress, as detailed elsewhere.

20

VIII. Help System

This is the general layout of the help system. There will be two types of help
available from the help menu:

e Help Topics

e About Journey Ftp

The Topic item will spawn a window containing a list of several topics in a side
frame and large text frame to its right. As the user selects a topic from the side
bar, the relevant help information will appear in the text frame. This information
will be broken down into numbered steps, which will walk the user though, the
use of the relevant function. The list of help topics will include:

e Introduction to file transfer concepts

e Connecting to server
Receiving files
Sending files
Setting up the queue
Troubleshooting

The About Journey Ftp menu item will spawn a window containing information
about the serial number of the Journey Ftp program being used and the creators.

21

IX. Test Provisions

In order to ensure system quality, a comprehensive regime of testing will be
implemented. The modularity of the described system will allow for automated testing
(unattended execution) of the unit and functional tests, but the integration tests will be
executed manually due to their GUI nature.

Automated testing will allow suites of tests to be run successively without user
input, ensuring that testing is performed in a consistent fashion. Unit tests will have to
complete successfully without error before the functional tests will be allowed to execute.

9.1 Unit Tests

Unit tests are required for any classes that contain non-trivial operations. A non-
trivial class can be described as any that operates on data. A trivial class is one
whose only purpose is to contain data.

Each unit test must fully exploit the functionality of each class to ensure that the
class performs as specified. Potential error conditions must also be tested, to
ensure that the class handles potential problems as specified.

When writing tests, the developer is encouraged to modify the tests to fail under
normal conditions. In many cases, this can function as a sanity-check, to ensure
the test is written correctly.

9.2 Functional Tests

Rather than testing individual classes, functional tests are geared towards
verifying class interaction in each sub-component (GUI, Backend, Adapters) and
their environment. This will largely be centred on verifying that the back end and
each adapter can perform their intended functions of communicating with a server
and transferring files.

9.3 Integration Testing

Integration testing will ensure that the GUI can integrate with the rest of the
system and provide all the functionality provided in the requirements document.
User requirements centre on providing functionality to the user of the software,
and all functionality must therefore be evident in the GUL

GUI testing will be a manual process, and as such must be specified in great
detail. Testing procedures for each requirement must be laid out in a step-by-step
fashion to ensure testing continuity. Detailed testing procedures will assist in
reproducing any inconsistencies that are uncovered by providing the sequence of
steps necessary to reproduce the problem.

22

X. Conclusion

So concludes the journey. With that the four main sections, front-end GUI,
backend GUI, Adaptor and Protocols make up our project. Each section will be designed
with the utmost care to achieve our goal. To make a program that will download all
needed travel agent advertisement files. The program will work with FTP, Telnet and
Windows File Sharing to ensure relative ease of the user to collect their data.

