Design Document

E-Elections Software
“The Pericles Project”

Produced by: Team Dragon

Amir Reda Atalla
Mathew Evans
Mike Levy
Cory McKay
Sitai Sun

TABLE OF CONTENTS

L INTRODUCTION. ...t e 4
1.1 Purpose of this Document...............cccoviiiiiiiiiiiiiiiieeens 4
1.2 Scope of this Document.............c.coiviiiiiiiiiiiiceeeae 4
1.3 Structure of this Document.................cooiviiiiiiiiiiiine e, 4
II. GENERAL DESCRIPTION. ..ot 5
2.1 System ODJeCtiVES....viieiieti it 5
2.2 Design CONSLIAINESvvivireeeeteet et etetteneteineaneneenneaneanenans 5
2.3 Design Limitationsccoueeeuiiiiieiiaiit ittt eeieeiieenieenaas 5
HL DESIGN OVERVIEW. ... 7
3.1 Class DIiagramcoiiiiiiiiiiiiiet i 7
3.2 HUMAN USEIS. . uuiietiiitiitt ettt et e e e et e eeeeeeeaaaeaas 7
3.3 Software COMPONENLS.vvviiriirteteteterteeeeeeeeeeeenannes 8
TR S Y 0 1 11
IV. CLASS SPECIFICATIONS. ... 14
4.1 Server System Classes........ouvvieeententenieteirerieeeeieaieeneeeennnns 14
4.2 Client System Classes......cverirriitiiriiriie et eieeirerrenrenreanenns. 21
4.3 Election Editor System Classes...........c.ovvivriviiiiiiiiiiieniannannn, 22
4.4 Election Administrator System Classes............ccevvvvriniiininnn... 23
4.5 Database Classes......o.vvriirtiieititanterte et ieeeeeeeneeaanaes 25
4.6 Shared ClasSes......c.ovriirieriiti ettt e ee e e e e e 26
V. COLLABORATIONS. . ..o 30
VI.CLASSHIERARCHIES. ... 33
VIL JUSTIFICATION. ... e 34
7.1 System Administrators & Elections Officers............................ 34
7.2 Server ATChiteCtUIe.vet it et ettt eeeaeaens 34
7.3 Voting CLent.......ovviiiii i e 35
T4 Database......ccuiiii it 35
7.5 GUIS it 35
7.6 E-Mail....ooi 35
7.7 Configurability.......c.ooviiiitiii e 36
VIIL. EXTENSIBILITY AND SCALABILITY...........coociiiiiiina, 37
TR S 1<) 3 37
8.2 Database..... oottt e 37
8.3 QUL e 37
84 E-Mail. .o 37
8.5 BallotS. . it 37
8.6 Voter Identification Information.....................coooiiiiiiinnae. 37
NN 75 T (- P 38
IX. TEST PROVISIONS 39

L2 B 053V LA <] o = 39

9.2 Functional Testing..........c.oviiiiiiiiiiiiie it e eeae e 39

9.3 System Stress TeStiNg.ovvvuivriiiieeieieieee et eieeieeeeenanns 39
9.4 Data Verification Testing..........ccoovvvriiiiiiiiiiiiiiieieiiennennenn 39
0.5 INPUt TeStING. . ..viitt ittt 39
9.6 Security TeStiNg.....couiiiiiiiii i 39
9.7 Recovery Testing.......ccovviiiitiitiiii i eeeeeaeans 40
X. EXTRA FEATURES AND OPTIONAL FEATURES................ 41
10.1 Extra Features.......oouviiuiiiiiii i 41
10.2 Optional Features........oovviiiiiiiiitiiii i 41
XI. GLOSSARY AND REFERENCES............c..oooii 42
I € 10 T 42
11.2 RefOIENCES. . .uuentit e, 44
APPENDIX I—GUI INTERFACES..............ooiiiiiiieeen, 45
APPENDIX II—DATABASE TABLES...........c.coiiiiiin, 52
APPENDIX III—BALLOT FORMATS........coiiiiiiiieecee, 54
APPENDIX IV—E-MAIL FORMATS.........cooiiiiiiiiee, 57
APPENDIX V—ENUMERATION LIST FORMATS.................... 59
APPENDIX VI—LOG FILE FORMATS.............ocoiiiiien, 60
APPENDIX VII—RESULT FILE FORMATS................ooiiiiiee 62

APPENDIX VIII—CONFIGURATION FILE FORMAT............... 63

I. INTRODUCTION

1.1 Purpose of this Document

This document is meant to outline the design of the Pericles Elections Software. It will be used
to give clear guidance to those who implement the software and to ensure that they conform to
the overall goals of the Pericles Project. This document will also be used by those maintaining
the software in order to help them assess the structural ramifications of any changes that they
wish to make to the software. Finally, this document will be used as a means of verifying the
design with the client in order to ensure that it meets her needs. This document will include
justifications for the design choices that were made, in order to ensure that those who are
maintaining the software are aware of why the choices were made.

1.2 Scope of this Document

This document is not intended to be a comprehensive guide to the requirements and goals of
the Pericles Project. Although this information is touched upon briefly on in this document, the
main focus is on design. The reader is referred to the Requirements Document for any
clarification that is needed relating to requirements.

1.3 Structure of this Document

This document begins with a very high level overview of the design, and then gradually
focuses in on actual class structures, their interactions and their inheritance patterns. This is
then followed with a justification of the design, an exploration of the design’s extensibility, an
explanation of the testing that will be conducted following implementation and an outline of
those extra features which have been incorporated into the design and those which have not
been but might eventually be useful. There is also a glossary and a list of references included.
The reader is referred to the glossary if he or she is unsure of the precise meaning of any terms
that are encountered.

It is not necessary to read the appendices of this document to understand the design of the
Pericles Project. They are included, however, because they will be an excellent resource for
the implementers and maintainers of the software. They are also a useful resource for readers
who desire more precise information on a specific aspect of the project.

The first appendix is an outline of how the GUIs of the various components of the Pericles
software will operate. This section will be useful to readers who would like a more in-depth
look at user processes than is provided in the use cases of Chapter III. The second appendix
gives an outline of the database schema. The remaining appendices are outlines of various
format conventions. They are included in this document in order to prevent confusion between
different members of the implementation team who are working on different parts of the
project.

II. SCOPE

2.1 System Objectives

The goal of the Pericles Project is to generate a piece of software that will allow elections to be
held electronically over a distributed network. Voters will be able to use a generic Pericles
Voting Client that will allow them to log onto and vote on elections running on a Pericles
Elections Server. The parties holding electronic elections will be able to customize the settings
of each election as well as custom design ballots. All data communicated to or from the voters
will be secure, so that nobody will be able to vote unless they are authorized to do so and
nobody will be able to tell how anybody else voted. The storage of the voting information will
similarly be secure and private.

This version of the software is meant to be an initial exploration of electronic voting software.
The main objective of the software is therefore to provide a base upon which more
sophisticated election software can be built, which is why there is strong emphasis on
scalability in the design. The initial release of the Pericles software is not expected to be
perfect or fully comprehensive, nor will it be able to handle system loads such as would be
encountered in a federal election. It is, however, designed to be easily modified and expanded
as the technology, legal issues and ethical matters relating to electronic elections are further
clarified.

2.2 Design Constraints

The following design constraints were imposed by the client:
a) All database interactions must be made using Postgres or MySQL.
b) All software must be written in Java.
¢) The Voting Client must run in both Linux and Microsoft Windows environments.
d) The Elections Server must run under Linux.
e) Ballots must be described using XML.
f) All configuration files must be in XML.
g) Statistics reports must be in HTML.

2.3 Design Limitations

The following design limitations were decided upon by the design team:

a) All database interactions must be made using MySQL. This decision was made
because the implementation team has a much greater familiarity with MySQL than
with Postgres, and Postgres has no obvious advantages for this system.

b) All communications between the client and the server will be implemented using
RML. It was chosen out of the three options of CORBA, sockets and RMI. RMI is
the easiest to implement, and the advantage of CORBA being language
independent is not relevant to this project, since it is a design constraint that Java
must be used to implement all aspects of this project.

¢) Voters should have access to a secure e-mail address. This is to increase security.
In the situation corresponding to maximum security, the Pericles Elections Server
will generate a random username and password for each voter, which will be
automatically sent out over e-mail. This will help to ensure that no second parties
have access to the voter identification information. However, it is recognized that
this does impose limits on accessibility. The software therefore does allow

d)

2

elections where usernames and passwords are specified by the election authorities
and access to e-mails is no longer necessary, but exercising this option is viewed
as a serious security risk.

The Pericles Election Software only accommodates ASCII characters. This
decision was made because ASCII is recognized as an international standard and
the implementers will not have the time or the knowledge of foreign alphabets to
implement alternative character sets.

Voters and elections officials must have some familiarity with English. Although
the ballots can be written in any language that uses the ASCII character set, the
interface elements of the software (such as login prompts) will be in English. This
limitation was decided upon because the initial release of the software will be
limited to North America because of legal issues related to encryption: technology.
The system will only be guaranteed to function properly under conditions that can
be simulated in the Reynolds 008 computer lab. The testing team will not have
access to computer systems or a network environment that could simulate greater
demands on the elections software, nor do they have the means of penetrating the
University of Guelph firewall to simulate conditions that the system would face in
the real world. The testing team and the implementation team also do not have
root access to the Reynolds 008 computers, which imposes further limitations of
their ability to verify the robustness of the software, particularly in regards to the
database administration

All questions asked on the ballot must be multiple choice. This is to simplify the
collection of statistics so that they can be easily tallied without any human
intervention. Future versions of the software may incorporate text fields for use in
situations such as surveys.

III. DESIGN OVERVIEW

3.1 Class Diagram

The following class diagram can be used to give an idea of how an election on a Pericles
Elections Server will operate, on a very high level. The remaining sections of Chapter I1I will
further expand the some of the concepts introduced in this diagram. This diagram is not an
outline of the actual implementation structure of the software, but is rather an introduction to
the higher level concepts relating to elections. Please see Chapter IV for diagrams linked to the
actual implementation of the software.

Elections Ofbcer

TT . 1 &
WVotier 1.*
Election System Administrator
R T P 1 * 1
LA T OTTIALIOTL Lo i
Contact Information Tratoe Ty Tl i
i . LAELES) L ‘1 LA AT OTTIIALLOTL
Welghting Configuration Options 15 sulIISIET RS Dy Global Confizurations
1 *
votes 1
with
1 =* q
[L
T a S | R o R | . P
Doabiot Coanot o 4 falies ooesits
e ot o Tr oo T)
Chuestions o) Votes Recorded) Winners
T coiide 1= 1 1 1 G i
Possible Answers Statistics
S piled Allamrad
=poiled Allowed
oo oA ;
Fefusal Allowed
Comments

Figure 3.1: High level class diagram of an election.

3.2 Human Users
The following classes of people will be involved in the use of the Pericles Election Software:
3.2.1 System Administrators

A system administrator will be required to oversee the installation and overall
operation of each Pericles Elections Server. System administrators will not have
control over or access to any particular elections once they are started on a server, but
they will be the only ones able to authorize Elections officers to start new elections.
They will also be involved, along with elections officers, in suspending and restoring
elections.

Systems Administrators will also be able to impose global maximums on how many
people can vote in each election and how long election data can be held. This will be
done to prevent single elections from overloading the limits of the systems that they
are installed on.

Systems administrators will inevitably have root access to the systems that elections
are run on, so they constitute an important security risk. As a precaution, data will be
stored in such a way so as to prevent them from being able to tell how individuals
voted.

3.2.2 Elections Officers

Elections officers are impartial individuals who are given responsibility for overseeing
individual elections by the organizations holding each election. There may be one or
more elections officer per election, and there will be a customizable minimum of
elections officers that will be required to enter their login information to alter any
elections settings. Elections officers will be responsible for writing ballots, configuring
elections settings, entering enumeration lists of authorized voters, posting election
results, suspending and restoring elections in the case of problems that arise and
answering questions from voters by e-mail.

3.2.3 Voters

Voters are those people who are authorized to vote electronically by elections officers.
They will use the Pericles Voting Client to do so.

3.3 Software Components

The Pericles Election Software will be made up of several software components. See
Appendix I for a more detailed description of each of these programs in the context of their
graphical user interfaces. The main components are as follows:

3.3.1 Pericles Elections Server

The elections server will be made up of three executable components that interact with
the MySQL database which stores all of the election data:

3.3.1.1 Pericles Elections Administrator

This program will be used by the systems administrator of each system to
authorize elections officers to create new elections, suspend elections that are
in progress when something goes wrong, restore elections that have been
suspended, set global limitations on all systems that are in progress and
change the systems administrator passwords. The elections officer(s)
concerned must also enter their identification information for all but the last of
these functions. This is to prevent the systems administrator from having too
much individual power over elections. This program will also allow the setting
of how many elections officers must log in at a time in order to edit election
settings.

3.3.1.2 Pericles Elections Editor

This program will be used by elections officers to create and edit (this can
only be done before elections actually start) election settings as well as change
their passwords. This includes configuring the details for each election,
designing ballots and authorizing voters. The settings for each election will be
stored on the database. Under the default setting, this program will also
generate information such as voter logins and passwords and store them in the
database. The elections editor will also formulate ballots as they are created
and save them in XML form on the database. The settings that can be
configured are:

a)
b)

c)
d)

e)

2
h)

3

k)

D

Date and time to send e-mails: when to send e-mails informing
voters of the information that they need to register their votes.
Date and time that voting begins: The date and time that voters
may begin to have their votes registered.

Date and time that voting ends: The last date and time that voters
may have their votes registered.

Date and time to publish results: The date and time that the results
of the election will be released.

Date and time to remove voter information: The date and time that
all voter information is deleted from the system.

Time window: The amount of time leeway that voters will be
given to enter their votes because of differences in system times
on different computers.

Allow voters to change their votes: This option will allow voters
to change their votes if they have already voted.

Allow weighted votes: This option will allow elections to be held
in which different voters have differently weighted votes, such as
shareholders’ elections.

Username specified: This option will allow usernames to be
specified in the enumeration list rather than randomly generated,
as is the default. This is to accommodate situations such as
surveys where voting does not need to be done anonymously or
where it is desirable to use existing information such as a valid
student numbers as identification information.

Password specified: This option will allow passwords to be
specified in the enumeration list rather than randomly generated,
as is the default. This is to accommodate situations where it is
desirable to use passwords that already exist on other systems.

Do not require password: This option allows for elections where
voters do not need passwords, such as surveys.

Do not distribute ID information by e-mail: This will disable the
default of sending election codes, user names and passwords out
over e-mail to voters. Elections officers will then be responsible
for ensuring that voters are made aware of all of the information
that they need to register their votes.

Allow refusal of ballots: This option allows voters to refuse their
ballots before reading them.

Allow spoiled ballots: This option gives voters the option of
spoiling individual questions on their ballots.

0) E-mail address of elections contact: The e-mail address that will
be distributed to voters so that they will have someone to contact
with any questions that they might have. This will usually be one
of the elections officers’ e-mail address.

p) Ballot comments: Comments that will appear at the top of all
ballots in an election.

q) Question comments: Any comments preceding any questions.

r) Question: The texts of questions that voters will be asked to vote
on. There may be an arbitrary number of questions per ballot.

s) Choices: The options that correspond to each question. There may
be an arbitrary number of choices per question.

t) Statistics to be reported: The statistics that will be reported at the
end of each election. The options are the text of the winning
choice, the total votes for each choice and the percentage share for
each choice.

u) Location of statistics: Where to e-mail the web pages containing
the results of elections.

v) Authorized voters: The elections officer(s) will enter a file
containing the enumeration list of all voters that are authorized to
vote in each election and any related information. See Appendix
V for more information.

3.3.1.3 Pericles Elections Generator

This program will be responsible for handling the mechanics of all elections.
Once it is running, it will check the database regularly to see if any actions
need to be taken. These actions include checking to see when e-mails need to
be sent out to voters, when votes should start being accepted for a new
election, ensuring that the system is working properly, when votes should stop
being accepted for a new election, when to send out statistics for an election
and when to delete information from the database.

When a new election is ready to be activated, the Elections Generator will
create a unique Server Object for that election. This object will be responsible
for sending out e-mails to voters and elections officers, validating voters who
attempt to vote, sending uncompleted ballots to voters, parsing completed
ballots, recording votes on the database and acknowledging votes by
generating and sending voters verification numbers. The Server Objects will
handle all communications with Voting Clients, including the encryption and
unencryption of messages.

The Elections Generator will be responsible for creating, destroying and
telling Server Objects when they need to take scheduled actions. The Elections
Generator will also check on these objects regularly to make sure that they
still exist and are accepting votes. This is to help ensure that there have been
no security breeches. If there is a problem, the Elections Generator will send
an e-mail informing the elections officer(s).

3.3.2 Pericles Voting Client

10

This is a generic piece of software that can be used to interact with any election
running on a Pericles Elections Server. It will send voter authentication information to
Elections Servers, receive ballots, interpret and display the ballots, allow voters to
enter information on the ballots, return the ballots to the server and display verification
numbers and error messages returned by the server to voters. It will also encrypt and
unencrypt all communications with servers.

3.4 Use Cases

o -

Change Wote

Figure 3.2: Use Case Diagram

Use Case: Install Pericles Election Server
Actors: System Administrator

11

Type:

Descriptions:

Use Case:
Actors:

Type:

Descriptions:

Use Case:
Actors:

Type:

Descriptions:

Use Case:
Actors:

Type:

Descriptions:

Use Case:
Actors:

Type:

Descriptions:

Use Case:
Actors:

Type:

Descriptions:

Secondary

The systems administrator acquires the Pericles Election Software and copies
it onto a computer that is connected to a distributed network and has a secure
MySQL database up and running. The systems administrator uses the
installation software provided to set up the Elections Generator and enters the
settings on the configuration file (see Appendix VIII). The systems
administrator then runs the Elections Generator.

Set Global Elections Settings

System Administrator

Secondary

The systems administrator runs and logs in to the Elections Administrator. He
or she then defines global rules that apply to all elections on the server.

Authorize New Election

System Administrator, Elections Officers

Primary

The systems administrator runs and logs in to the Elections Administrator. He
or she then uses this program to enter the minimum number of elections
officers needed to make changes to the election and allows the elections
officer(s) to enter their identification information and the election code of the
new election.

Suspend Election

System Administrator, Elections Officers

Secondary

This use case occurs if an emergency such as a security breech occurs or if an
election gets called off. The systems administrator runs and logs into the
Elections Administrator. The minimum number of elections officers needed to
make changes then enter their usernames and passwords. The election is then
suspended, with no more votes or other changes to the database allowed. An e-
mail is automatically sent out to all voters and elections officers in the election
to inform them of this development.

Restore Election

System Administrator, Elections Officers

Secondary

This use case occurs if an election was suspended deliberately or due to some
unforseen circumstance as a power failure, and the elections authorities wish
to get it back into operation. The systems administrator runs and logs in to the
Elections Administrator. The minimum number of elections officers needed to
make changes then enter their usernames and passwords. The election is then
restarted, with the settings restored to the state previous to the suspension of
the election. An e-mail is automatically sent out to all voters and elections
officers in the election to inform them of this development.

Set Election Settings

System Administrator, Elections Officers

Primary

This use case occurs when an elections officer wishes to configure a new
election or edit an existing election before it has started. The minimum number

12

Use Case:
Actors:

Type:

Descriptions:

Use Case:
Actors:

Type:

Descriptions:

Use Case:
Actors:

Type:

Descriptions:

Use Case:
Actors:

Type:

Descriptions:

Use Case:
Actors:

Type:

Descriptions:

of elections officers needed to make a change to the system run and login to
the Elections Editor and enter the election settings, ballot and enumeration list
of authorized voters.

Obtain Voting Client

Voter

Primary

The individuals authorized to vote must either be provided with a version of
the Pericles Voting Client by the elections authorities or they must be given
access to computers running the software. The Voting Client will be included
with the rest of the Pericles Election Software with an installation package that
will allow it to be easily installed on computers.

Receive Voting Instructions

Voter

Primary

The default will be for voters to automatically be sent an e-mail by the Pericles
Elections Server giving them all the information that they need to log in and
vote in the appropriate election. This option may be disabled by elections
officers, in which case the elections authorities will be required to provide the
appropriate information to voters.

Ask For Help

Voter, Elections Officer

Secondary

This use case will occur when a voter encounters a problem that he or she is
unable to solve independently. The voter will then have the option of writing
an e-mail to the elections contact, whose e-mail address was distributed along
with the e-mail providing voters with login information. It will then be the
responsibility of this contact, usually an elections officer or officers, to
respond.

Vote

Voter

Primary

The voter will run the Pericles Voting Client. The voter will then enter his or
her login information, election code and the address of the Elections Server.
This information will be sent to the Elections Server, after which the Voting
Client will either be sent a ballot to fill out or a message explaining why the
connection was unsuccessful. The voter will then send the completed ballot to
the election server, after which he or she will be sent back a verification
number to confirm that the vote was successful or a message saying that the
vote could not be recorded.

Change Vote

Voter

Secondary

This will only be allowed in some elections, as decided by the elections
officer(s). The voter will proceed exactly as under the Vote use case above. If
the voter is not permitted to change his or her ballot then the voter will be sent
back a message saying why.

13

IV. CLASS SPECIFICATIONS

The reader should note that the following class diagrams and class descriptions do not include
the GUI information. This is because the system is designed to keep the functionality
described in the class structures independent from the implementation of the GUI. See
Appendix I for a description of how the various GUIs will operate.

4.1 Server System Classes

s S B - S
-UEILLL LA HOIL LASLEIIET

Election Listener

& creates
= Ohbiect
cenerates b 0 * erwet Ubjec
0.*
A agsions tasks
: 1
Jenerator Taszk IManager
1 1
main) +start election
+zend emals

Figure 4.1: Server Overview

The Generator will be responsible for creating the individual server objects and the associated
Election Object for each election. A Task Manager will hold a list of tasks for the Server
Objects to perform. There will be one Task Manager and one Generator that oversee all
elections, however each election will have its own Server Object and Election Listener. The
Generator checks the database for new elections and tasks to perform on a regular basis.

14

1

Server Obiects

DEQuery 1 s 1 DEConnect

Figure 4.2: Server-Database Diagram

The Server Objects will hold a POOL of connections to the database. Whenever a Ballot Box
needs to query or write to the database it will request a connection from the pool and release
that connection back to the pool when finished with it. Because of this, Objects do not need to
connect and disconnect from the database every time they need to access it. This should help
performance. Note DBQuery uses DBConnect Object for any database connections. The
DBConnect class grabs connections to the database through the Connection Pool, which
resides as part of the Server Object.

Client
o.* 0.*
1 1
Electionlistener provides BallotBox
1 * -
login
HaEs submitBallot
POOL
EallotBomxstacl:
getBallotBox)

Figure 4.3: Client-Server Diagram

15

This diagram demonstrates the Client connection to the Server. The voter always connects to
one ElectionListener object on the server. From this object, the client receives a BallotBox
object which can fully service the client for the entire session. The ElectionListener pools
BallotBox objects so that when server load is high, one BallotBox object is not responsible for
servicing all Client systems.

et PR RC = E N, - J it (Maaana
LAC L LU e e L e VLB G L O LUy A UCLIL A rldoa b
uses
"
[
- 0o n*
ugsg
o 1 o+ |
i F
Electionlistener EallotBox
Creates naes
| .
PoolBallotBoxes 0w
o T g™
LOE)
Sy stem GetBallotBo:) SubmitVotel)
Admdndstrator
F 3
uzges 1
Creates
e Creates . uses 1 1 i e
L ¥ g
! TaskManager !—,bv! ElectionDescripter !i!— Serverthiect —!JI ElactionFeport el DEChery !
[[!
F - F Y
L
1 o.* i uses
0.* 1
1
H | — | ———
Electionhlail —.—I_DBW’riter
Creates 18e8
Creates
1nses
Creates uses
1
h 4 P V- T h 4
'7_| '——| ARl IR IO I L DOITL '7_|
—I Cenierator Poolidt | DBConned |-17

Figure 4.4: Complete Server Diagram

The digram represents the whole picture of the server model. This model demonstrates the
objectives already described in the previous figures. It shows how the ServerObject pools
database connections and the ElectionListener pools the Ballotbox objects. Added into this
picture is how the Task Manager creates Election Descriptions for the ServerObject to use.
These Election Descriptions have all the information about where the ElectionListener is to be
registered with RMI and the connection information for the database. This enables a
ServerObject to connect to any database. Also, the ServerObject functions to produce
ElectionReports or ElectionEmails whenever the TaskManager assigns tasks to the
ServerObject. The ElectionSSLSOcketfactory is also introduced in this diagram It is used by
the Client Classes and the ElectionListener to establish secure transmission of data between
the client to server through RMI. The System Administrator was also added to the diagram to
show that he or she can add tasks for the Task Manager to perform by using the Elections
Administrator.

16

Election Generator

The Election Generator is responsible for instantiating new elections and running a
TaskManager which does periodic checking of the elections. The Election Generator also
queries the database on a regular basis for new or updated information about elections.

Method Name Formal Return Values Actions or Algorthim
Parameters

Main Starts all of the server
objects that are required for
each election and runs a
thread for the TaskManager
to do checks on these
objects

DoTaskManager Spawns off a TaskManager
object which will perform
system monitoring on a
regular basis.

TaskManager

The task manager runs on a timer and is a RMI server to the Administrator program. If any
election needs to be suspended or restored, the task manager assigns the responsibility to the
appropriate Server Object. The task manager also regularly checks the status of elections. If
any election is not available for connection but should be, the task manager emails the
elections officer(s) to inform them that an election is not running. It also analyzes the election
reports to see how many voters each server has served. If the amount is extremely high or
volumes have changed drastically then an email is sent to the system administrator advising
him/her to look at the log files (described in the appendix) for potential attacks.

Method Name Formal Return Values Actions or Algorthim
Parameters

GetAnyNewElections Vector of Strings | Checks the database to see
if there are any new
elections that need to be
created If any are created,
a set of election codes are
returned

CheckOnEachElection reportObject From all the elections that
are created, check to see

that they are active and get
a report form each of them

CheckAnyStopElectio Sees if any elections need

n to be suspended

RestoreElection String Election Creates the ServerObject
Code for the election and sets the

ElectionDescription for the
server object. Adds the
server object to its regular

task schedule.
HaltElection String Election Passes the command on to
Code the appropriate

17

ServerObject depending on
the election code.

ElectionListenerImpl

The election listener hosts the Pool of BallotBox objects. When a client searches the RMI
registry for a connection to the election, it connects to the election listener. The election
listener passes the client a BallotBox object from the pool. This should speed up interaction, as
all clients will not be using the services of the same object for every task. The election listener
will pool BallotBox objects as well as db connections for the BallotBox objects. The client
may take time to fill in the ballot which will tie up connections to the db, which is why they

are pooled.
Method Name Formal Return Values Actions or Algorthim
Parameters
SetAllowVoting Boolean None
SetElectionDescription | ElectionDescripti | None Sets the object that
on describes the Election
Description
SendEmail Enum email type | None Sends email messages
depending on the type of
email message that is
required.
StopElection None Boolean Makes sure that all
Ballotbox objects in the
Pool are destroyed.
Constructor Creates pool of BallotBox
and ServerSQL objects.
GetBallotBox None BallotBox, or Returns Null until
Null ElectionOn is true.
GetAllowVoting None Boolean
GetElectionDescriptio | None ElectionDescripti
n on
SetListenToOn Boolean None Flag as to whether or not
the election is on or not.
BallotBoxImpl

The BallotBox class represents the server object that the client classes will use to login, receive
a ballot, and submit a ballot to be counted. The ballot box will return a verification number to
the client classes. The ballot box will be an RMI object.

Method Name Formal Return Values Actions or Algorthim
Parameters

Login Login Object Ballot XML file Calls DBQuerry.Login to
see if the voter is legit for
the election.

private FetchBallot Ballot Type Ballot XML file If the login was legit, the
ballot type is legit, if the
login was not legit, the
Ballot Type will be "could
not login"

SubmitBallot Ballot XML file String Verification number

18

Finalize

If client times out,
BallotBox puts itself into
the pool of BallotBoxes

ElectionReport

These attributes are meant to tell the Generator how the workload is and if there are any
sudden bursts of activity. The ClientsServed is the number of clients served since the last time
report was generated. The Generator will use this report to detect any high volume rushes.

Method Name Formal Return Values Actions or Algorthim
Parameters

setElectionCode String

setBallotBoxCount Integer

setClientsServed Integer

setConnectionCount | Integer

getElectionCode String

getBallotBoxCount Integer

getClientsServed Integer

getConnectionCount Integer

ServerObject

The server object knows everything about a particular election. It ensures tasks get done that
the ElectionGenerator requires to get done.

Method Name

Formal
Parameters

Return Values

Actions or Algorthim

getElectionReport

ElectionReport

Returns an election report
that gathers all of the
information from the
ElectionListener about the
ongoing election

sendElectionEmails

Boolean

Creates an object that sends
all of the election emails
that will be necessary for
the given election

getElectionResults

ElectionResult

Creates an ElectionResult
Object that gathers all of
the election results and
returns it to the
ServerObject

getDatabasePool

Pool Object

Returns a handle to the
connection pool

setElectionDescriber

ElectionDescriptio
n

Stores the necessary
election information locally

HaltElection

Destroys all of the election
objects associated with the
server Object. Removes the
ElectionListener from the
RMI Registry.

19

ElectionDescription

Describes all of the election-specific details for any particular election. This information is
required by the ServerObject so that it can create database connections and register the

ElectionListener with the RMI registry

Method Name Formal Return Values Actions or Algorthim
Parameters

SetDBURL String for db connections

SetDBHost String for db connections

SetDBPort String for db connections

setDBDriver String for db connections

setElectionCode String For the naming service

SetRMIComputerNa | String For the naming service

me

SetRMIPort String For the naming service

setServerLog String Sets location for the server

log file.
Pool

Contains a stack of objects that can be pooled or re-used rather than destroyed. This Abstract
Class will be used to pool BallotBox objects that serve clients connecting to the server and for
database Connections. Any class that is pooled must implement the Poolable interface.

Method Name Formal Return Values Actions or Algorthim
Parameters
Constructor() None
Get Object that is
pooled
Set Object that is
pooled
SetMaximum Integer Maximum amount of

objects at any one time

Interface Poolable

Before pooling an object, its class must implement poolable.

Method Name Formal Return Values Actions or Algorthim
Parameters

ObjectCreate None

ObjectReset None Reset any data that needs to
be cleared

ObjectExpire() None If the object has been in the
pool for some time, expire
it.

objectValidate() None Validate that the object is

in proper form to be used.

20

4.2 Client System Cl

asses

P PRSIt I |

AOETIE - QI QUET -~
|-

lomind)

L2

T e

getBalloi) .

submitBallot()
s

Figure 4.5: Client Diagram

ElectionListener

4
4

=
u
1]

3

The Client Classes for the Client System center around the ClientController class. When the
Client GUI needs to Login a voter it creates a LoginInfoElection object and passes it to the
ClientController to do the login. The client controller does all the RMI connecting and
performs any server interactions. The Client GUI uses the XML BallotInterpreter when it
needs to display a ballot. The ballot is stored in XML format.

ClientController

The ServerController is the way that the Client GUI interfaces with the server. The

ServerController uses the classes ElectionServerException and

and Help which are Shared classes.

ElectionSSLSocketFactory,

Method Name Formal Return Values Actions or Algorthim
Parameters

Constructor Creates the SocketFactory
layer for communication to
the server.

Login Login Object Ballot XML file Calls the BallotBox to do
this. The

GetBallot Calls the BallotBox to do
this

SubmitBallot Ballot XML file String Verification number

BallotBox

The BallotBox class represents the server object that the client classes will use to login, receive
a ballot, and submit a ballot to be counted. This ends up being an RMI stub on the client side.
The ballot box will also return a verification number to the client classes. The ballot box will

be an RMI object.
Method Name Formal Return Values Actions or Algorthim
Parameters

Login Login Object Ballot XML file Calls DBQuerry.Login to
see if the voter is legit for
the election.

SubmitBallot Ballot XML file String Verification number

Finalize If client times out,

21

BallotBox puts itself into
the pool of BallotBoxes

ElectionListener

The ElectionListener class represents the server object that the client classes will use to make
first contact with the server. After connecting through RMI, they will receive a reference to a
BallotBox object that will serve them for the remainder of the connection session..

Method Name Formal Return Values Actions or Algorthim
Parameters
getBallotBox A reference to a Serves the Voting Client
BallotBox. software a reference to a

BallotBox Server object.
The client can then use the
BallotBox to participate in
the election.

4.3 Election Editor System Classes

LoginInfo DEQuery
d T
d T
~ T readBlectionDescrintion
/ — eadElecienDescnplion!)
e - - | readBallot{
S LAECTOIL AETEs T
/ e -
d e
/ S .
d DEConnect

T e T0 i A TTTT T o T sy, [y o P A Y

ElectionEditor3TIT ElectionStats setElectionDates!)
setElechonStats{) T
AN ™ seiBallot]) i

N ™ getBallot() - DEWrite
h N seiEnumerationdnfo]) T
AN AN BallotConfis L |
A N
™, . rd e i ctionDescription])
™ ™, T 4 . W ctionStats{ }
\ | / writeEnumerationTnfof)
AN Baliotlnterpreter A writeBallotXL()
AN d
\\ / :
ErmrnerationInfo

Figure 4.6: Election Editor Diagram

The election editor program is modeled similarly to the Client class, where an Editor controller
class interfaces to the GUI to do any of the interactions with the backend. This application is
not connected to the server in any way. The backend is a database. The DBQuery and
DBWrite are used to store election preferences and ballot descriptions. The description of the
look and feel of the ballot is stored in XML form in the database.

The only two objects specific to this system besides the GUI classes are the Editor Controller
and the EnumlInfo class. The rest of the classes are listed in the shared classes section.

EditorController

The EditorController is a controller class used to interface with objects that are created by the
GUI to represent user input. These objects are passed along to the appropriate DB class.

22

Method Name Formal Return Values Actions or Algorthim
Parameters
Constructor
SetElectionDates ElectionDate
SetElectionStats ElectionStats
GetElectionDates ElectionDate
GetElectionStats ElectionStat
Enumlnfo
This class is sub-classed from loginInfo to store information about voters.
Method Name Formal Return Type Actions or Algorthim
Parameters
SetEmail String
SetWeighting Integer
GetEmail String
GetWeighting Integer

4.4 Election Administrator System Classes

TEROuery
DBOuery
logm(}
- A
Lot nfol SAAmitisTraror GHniroler
=
A
A
o T
P DBConnect
A drmistrationGUL L
changePazswordilogininfo,
newpassword) |
™, [
. LIE\wrrite
N
ElectionLamt
writeElectionLarmit(rmt)

Taskllanager

Figure 4.7: Administration System Diagram

Modeled similarly to the ElectionEditor, the Election Administer application has an
AdministrationController which interfaces with the GUI and to the Database classes

AdminController:

This class will be used by System Administrator to authorize election officers to register
elections. It will Deal with security issues during elections and suspend and restart an election
that was security breached.

23

Method Name Formal Parameters Return Type Actions or Algorthim
ElectionAdmin Constructor
loginInfo
ChangePasswd paé;sword new Boolean Chat.lg.e systel’n
administrator’s passwd
Makes call to the Task
RestoreElection int electCode Boolean Manager to restore
election
Makes call to the Task
HaltElection int electCode Boolean Manager to halt the
election
SetElectionLimit ElectionLimit limit Void
BreachAlarm int electCode Void
Calls db class to add all
the election officers to the
RegisterOfficers registeredOfficer Void Elections Officers table
and the int minimum to
the election table.
ElectionLimits:
This class includes information about limitations that the system administrator imposes on the
system.
Method Name Formal Parameters Return Type Actions or Algorthim
ElectionLimits Constructor
int electTime
ElectionLimits ¥nt dataTime Constructor
int numVoter
int numElect
SetElectTimeSpan | int electTime Void
GetElectTimeSpan Int
SetDataSaveTime int dataTime Void
GetDataSaveTime int
SetMaxNumVoter int numVoter Void
GetMaxNumVoter Int
SetMaxNumElect int numElect Void
GetMaxNumElect Int
RegisteredOfficers:

This class will be used by the system administrator to authorize election officers to register

election information.

Method Name Formal Parameters Return Type Actions or Algorthim
RegisterOfficers Constructor
SetElectCode int electCode Void

SetOfficers vector loginlnfoElec Void

SetMinOfficer int min Void

24

4.5 Database Classes

The database has been broken into three classes. One is a connection class that holds the
information required to connect to the database and the connection objects to the database.
The other two classes hold the SQL to do writes and queries on the database.

DBConnection

This class is a container for holding a connection to the database. The database can therefore
be changed at will. The ServerObject class uses the ElectionDescription to get the database
settings. The DBConnections are pooled by the ServerObject.

Method Name Formal Return Values Actions or Algorthim
Parameters

Constructor()

Constructor() string pass,
string login,
string url,

string driver,
string server

SetPassword String

SetLogin String

set url String

set driver String

set Server String

GetConnection Connection Returns a connection to the
database

GetConnection Connection returns a connection to the
database

ConnectDB does the connection to the
database

DBError

The class extends exception

Method Name Formal Parameters | Return Values Actions or Algorthim

Constructor() String Error None

DBQuery

The class that contains all of the querries needed for getting results from the database

Method Name Formal Parameters | Return Values Actions or Algorthim

Constructor Connection

DBLogin Login Object Boolean Use the Login object to
validate that the user is valid
for the election code of the
project.

Private getConnection Connection Gets a Connection from the
DBPool to use for the query.

GetBallot BallotType XML file

DBWrite

The class that is used to write to the database. This classs uses DBConnect to write.

Method Name Formal Parameters | Return Values Actions or Algorthim

Constructor()

25

WriteElectionDates ElectionDate object,
election code

WriteElectionLimit ElectionLimit Stores all of the election
limitations set by the
administrator

4.6 Shared Classes

The following classes are used by more than one section of the system.

Help

System classes can use this static class to display help.

Method Name Formal Return Values Actions or Algorthim
Parameters

DisplayHelp String name of File for
wizard window appropriate help

LoginInfo

Used to store login information. This class will work for the administrator only. To login an
election officer or a voter, the extended LoginInfElection can be used.

Method Name Formal Parameters Return Type Actions or Algorthim
LoginInfo Constructor
. String id
LoginInfo String passwd Constructor
SetID String id Void
GetlD String
SetPasswd String passwd Void
GetPasswd String
LoginInfoElection

This class extends the super LoginInfo, which allows voters and elections officers to login to
our system.

Method Name Formal Parameters Return Type Actions or Algorthim
setElectCode int electCode Void
getElectCode Int

DataGenerator

This is a static class that will generate random string for user login ID and password and a
random number for voting verification number.

Method Name Formal Parameters Return Type Actions or Algorthim
GetID int key String ID
GetPasswd int key String passwd
getVerifyNum int key int number
ElectionStats

This class is used to encapsulate statistic information about a particular election. This class
holds what statistics are to be reported about an election and carries the task of generating the
statistics and putting them in the appropriate place.

26

Method Name Formal Return Type Actions or Algorthim
Parameters
- getNumQuestion int electCode | Int
- getVoteCount int choice Int
- getVoteResult String Void
filename
getDoDisplayWinners Boolean Stored in db
setDoDisplayWinners Boolean Stored in db
getDoDisplayNumbers Boolean Stored in db
setDoDisplayNumbers Boolean Stored in db
getDoDisplayPrecentages Boolean Stored in db
setDoDisplayPercentages Boolean Stored in db
carries out the report
process of generating the
doElectionStatsReport statistics. This interfaces
with DBQuery to get any
results it needs.
parses the results to
parseToHtm] HTML format.
postReport
setLocationGeneral strmg
location
setLocationComplete string
location
setLocationVoters strmg
location
ElectionDates

This class encapsulates all of the dates that are needed for a particular election. It is used by
the Election Editor to get dates from the GUI to the database.

Method Name Formal Return Type Actions or Algorthim
Parameters
setEmailSend datetime
setElectionStart datetime
setElectionEnd datetime
setElectionPublish datetime
setRemovalDate datetime
setTimeWindow datetime
setTimeZone enum
getEmailSend datetime
getElectionStart datetime
getElectionEnd datetime
getElectionPublish datetime
getRemovalDate datetime
SecureEncryption
Method Name Formal Parameters Return Type Actions or Algorthim
SecureEncryption Constructor
SecureEncryption int key Constructor

27

SetKey int key Void
GetKey int key
encryption String filename Void
decription String filename Void

ElectionSSLSocketFactory
This class is a sub-class of the Java RMISocketFactory class.

Method Name Formal Parameters | Return Type Actions or Algorthim
createSocket Strlng host Socket throws IOException
int port
createServerSocket int port ServerSocket throws IOException
ElectionException

This is a collection of exception classes defined in our Pericles system. All these exception
classes extend Exception class.

Exception Class Name

IDNotFoundException

PasswdNotMatchException

ElectionCodeNotFoundException

BallotNotFoundException

TimeOutException
LateVoteException
ElectionEmail
This is a class that can be used to send emails to voters, election officers or system
administrators.
Method Name Formal Return Type Actions or Algorthim
Parameters
Vector address
Constructor
Integer type
Constructor
SetEmail Type Integer type
parses through all of the
. email addresses in the
SendMail vector and sends the email
of the message type
XMLBallotConfig:
This is a utility class that will handle ballot configuration information. Loads and parses
ballots written in XML.
Method Name Formal Parameters | Return Type | Actions or Algorthim
BallotConfig String filename throws IOException
BallotConfig InputStream in throws IOException
GetDriverClass String
SetDriverClass String driverClass Void
GetHandlers Hashtable
SetHandler Hashtable handler Void

28

ParseConfiguration Void throws IOException

SaveConfiguration | String filename Void throws IOException

SaveConfiguration | OutputStream Void throws IOException
XMLBallotInterpreter

This class will handle the XML ballots and display them to the GUI.

Method Name

Formal Parameters

Return Type

Actions or Algorthim

DisplyBallot

String filename

display ballot config file to
GUI
throws IOException

SaveBallot

String filename

save ballot configuration as
XML file
throws IOException

29

V. COLLABORATIONS

! Felecton! hallathon = cetBalotBox | i

! | BIECTIONT DaUOio0E = Zeioaiiioos) | H

! i i !

1 H [H

|) | L |

i ey BallarE s H [i

1 retarn Ballotoox 1 [1

L — == = A e o - | 1

1 [1

I 1 1

! ! '

1 i 1

I 1 1

1 1 1

1 1 1

! Mhallath o] loon, H !

i |oalotoomx] o) i

i - i

! TIOT - o H

H DELoging) i
!

! L B

H ||

||

1 ||

1 ||

1 ||

! . . ||

! retutns hooleah |

1 " 1|

1 = === == e e -—

1

! a a4 N

! return bailot. zml

L it b bt —

|

i

|

i

Figure 5.1: Client Logs on and Receives Ballot

The Client Controller gets a remote reference to an ElectionListener by doing a lookup in the
RMI registry. It then gets a BallotBox reference remote object to do the login to get a ballot

description in XML format.

1
aATTT | R P R NN, | T ™ T TIr .
AT | EIECLIOIIC QTN OUET J_f'D'\.‘_dUE:I LA W ITILE
|
. . T T T

! logmi{usend) i . . i i
E » validate(uzerid) i i
i Ly i
1]
1 I
‘ - | |
i setElectionDates(dates) |]] | |
L writeElectionDates(ecode, dates) ! !
1 ' [
i | J
1 I
1]
i . i i i
! setElectionStats(stats) :)) : :
T wnteElechonStats(ecode, stats) i i
! | "
1]
1 I
i — i i
! setBallot(ballot) : . : :
| I wnteBallot{ecode, ballot) : :
i i v
1]
1 I
1]]
1 — I I
1]]
1 I I
1 I I

30

Figure 5.2: Creation of an Election
Figure 5.2 demonstrates the role of the ElectionController in interfacing with the database on
behalf of the GUI classes. First the elections officer must login, then set all the dates for the
election, the stats to be collected and then the description for the ballot which is parsed in
XML format.

T T
‘BlECTONASTENET

(o]
el
=
rel
5
=

A Ao
LA

| s o A
I tlaskivlanager LOErWErIBIECT }

T T
‘BlECTontmaller

e ot o i
10E=ingi j

TEW

et T
stariElEction

W

L4

[I—

Figure 5.3: Restarting an Election
This diagram demonstrates the series of events that occur when an administrator restarts an
election. The administrator must login, and then put in the election code of the election to
restart. The task manager creates a new serverObject and sets the description of the election on
the ServerObject. The ServerObject then creates the ElectionListener for the clients to connect
to.

31

ey e al i
i T i i
i i T L i i
i setlConnechionCoun = i i
i i i
] | 1]
! !
! I !
H cretBallatB o T ot H
! retBallotEoxCount . !
! !
1 1 |
i i i
i 11 || i
i cetChentsServed U i i
! o TR] - !
]]]
! ! R . !
| o setChentzerved |
1 1
| i |
i |
1]
i i
! !
i i
1 !

i =1

1

| n
1]
! !
! !
i i
el]
= i
i i
[} i
L t !

—
]
]
1

Figure 5.4: Checking on Election Servers
This diagram shows a typical TaskManager check of the Election Servers on the system. It
gets an ElectionReport from each of the ServerObjects to process and add to a log file. It then
gets any new elections registered into the database by the Election Editor. It creates a new
ServerObject for the election if it finds a new election.

32

VI. CLASS HIERARCHIES

T ae Moo i S
Ddse elddss L T
2 -
A
¢ s,
i ™,
s R
I ,
i ~,
s ™,
I ™,
i ™,
s ,
I s,
i ™,
N / S
— C s a1 " - R, — -
brrdamdad ((aon 11— Voonlntablacrhian By Inte
L G Lad3lss 1 LA o ra B CNOT LTS

Figure 6.1: Login Information Inheritance

The LoginInfo class is the base class for other login classes that are used for enumeration and

for all voter, election officer, and system administrator authentication

ElectionInfo

Tooe {Mooo
Lo Welddos

—
7/

N
NN

ElectionTode |] ElectionDates
s

\ ElectienReport

’ 7

&

N

"

N

*

E=xtended Class
x

I'ﬂl—h"n. Er
e

i
™™ i [TR
FPIECTION.STALS

[ny

echonDiescriphion

4
Al

Figure 6.2: Election Information Inheritance

The base class ElectionInfo ensures that all Extended classes hold election codes. These
classes all hold information about a particular election in the system. The Database Classes

use these classes to write and read from the database.

33

VII. JUSTIFICATION

The primary priorities of this design are, in order of importance:

1) Functionality: the first priority is making sure that the system actually works.
Without functionality, the system would be useless.

2) Extensibility: important because the primary goal of the first release of the
Pericles system is to provide a base upon which more sophisticated systems can be
built.

3) Security: nobody must be able to record unauthorized votes or interfere with the
proper operation of the system.

4) Privacy: it is essential that nobody be able to know how any individual voters
voted.

5) Scalability: it is desirable that the system could be easily scaled up to handle major
elections.

In order to accomplish these priorities, every effort was made to incorporate modularity,
information hiding, low coupling, high cohesion and data encapsulation into the design. Not
only are these important characteristics of object oriented programming, but they are also
particularly important in achieving an easily maintainable and secure system. The sections
below highlight some of the ways in which the design implements these five priorities:

7.1 System Administrators and Elections Officers

These two types of actors were assigned their roles in order to help guard against too much
power being placed in the hands of too few potentially corruptible elections officials.
Preventing the systems administrator from having access to any of the functionality of the
Elections Editor prevents him or her from having the power to corrupt ballots, influence
enumeration lists or make changes to elections settings. Preventing elections officers from
having access to elections other than their own limits the danger of their corruption, as does
the option of requiring more than one elections officer to make changes. Both elections
officers and systems administrators are required to log in in order to suspend or restart
elections because of the impacts of these actions, both legally and on the computer systems
running the Election Server. The differences between the roles of these two types of agents are
reflected in the software design by the distinction between the Elections Administrator and the
Elections Editor software.

7.2 Server Architecture

The Election Generator was assigned the role of task master for the Election Objects so that
there would be one central object ensuring that everything is functioning as it should. This is
essential for detecting technical failures or security breeches like denial of service attacks that
would incapacitate the system. The log files can be used to track inappropriate uses of the
system (see Appendix VI).

The decision of having one distinct Election Object per election was made so that a breech in
security or an extraordinary load would only affect one election rather than all of the elections
running on an Elections Server. Another essential benefit of this is that it allows for the use, in
future versions of the software, of different Election Objects on different computers controlled
by a single Election Generator housed on a single computer. This is important in terms of

34

scalability, since it helps to accommodate large elections by using the resources of multiple
computers.

The use of separate objects to send e-mails, communicate with clients and record results is
important because it allows for the kind of specialization that is important for the sake of
extensibility.

SSL Socket Factories were used to provide encryption because they are the most advanced and
reliable means available to the implementation team for ensuring transmission security.

7.3 Voting Client

The Voting Client was designed to be simple and easy to use. It was designed to be little more
than a ballot reader so that it could accommodate a wide range of election types. It is thus very
casily extensible, since the only likely changes that would need to be made to it are in the
ballots descriptions and the associated XML tags. The Voting Client and the Elections Server
also communicate error messages and other types of information through XML “ballots,”
which is also very beneficial in terms of extensibility, since it allows for a changing variety of
communication types.

7.4 Database

The database schema is designed so that, even if somebody managed to gain direct access to it,
they would not be able to link a voter’s votes with his or her identity (as given by e-mail
address). The ways in which data is separated in the tables also makes it easy for changes in
design to be incorporated into single tables without impacting other tables.

The database schema was also designed to follow the rules of good relational database design.
There is no redundancy other than that which is necessary for security reasons, and the tables
are cleanly and logically divided. This makes the database easily extensible, as does the
inclusion of key columns that will not be used in the current implementation (such as
EmaillD). These could be used by future designers to link tables in the database in ways that
are not currently needed.

The system was also designed in such a manner that it would be easy to change it to
accommodate databases that are on different computers than the server. This is very beneficial
in terms of scalability, since it might be useful in large elections to use more than one database
located in more than one place.

7.5 GUIs

All of the GUIs in the Pericles Election System were designed with a sequential wizard-type
interface. This was done in order to ensure that no details got left out, since everything is
essential in an election system. It also makes the system easily extensible by simply adding,
removing or editing individual screens rather than the whole interfaces of the programs. All of
the functionality of the programs is designed to be external to the GUI classes, in order to
make the software more portable.

7.6 E-mail

35

Automatically generated e-mails were used extensively in the design for security reasons. By
having the system randomly generate e-mails and send them out to voters, it not only increases
security because there is no external access to identification information, but it also increases
privacy by allowing the database schema to be designed in such a way as to isolate the
information indicating the identity of voters from their votes.

E-mail also increases the extensibility of the system. If voters need to be informed of new
information, it can simply be incorporated into new ballots and new e-mails without requiring
any changes to the Voting Client or its associated help files.

The down side of the use of e-mails and randomly generated login information is that it
restricts accessibility to those who have access to e-mails. In order to compensate for this, the
design team has incorporated the option of not using e-mails and automatically generated login
information, at the discretion of elections officers.

7.7 Configurability
The Pericles Election System has been designed to be highly configurable when designing

elections, as is exhibited in section 3.3.1.2. This is essential for allowing the flexibility that is
needed to encompass the wide range of elections that are possible.

36

VIII. EXTENSIBILITY AND SCALABILITY

Extensibility and scalability are two of the key strengths of the Pericles Elections System. It is
designed so that changes can be easily made to certain portions of the design without requiring
major modifications to other parts of the system.

This is especially important because of the experimental nature of the Pericles system. It is
meant to be an exploration of the field of electronic voting, and as such will inevitably require
post-production modifications and improvements. Scalability is essential because of the
limited resources available to the testing team. Ideally, this system could eventually be scaled
up to service full large-scale elections.

8.1 Server

The use of Server Objects and the ways in which the database is accessed are designed so as to
need only small and isolated modifications to move the Server Objects and database onto
different computers from the one which houses that Elections Generator. This would
accommodate large elections by taking advantage of the resources of multiple computers. The
configuration file of the Elections Server is can be easily modifiable to reflect any such
changes.

8.2 Database

The database schema has been designed to have linking columns that are not currently needed
and tables are separated in such a way as to logically separate information. This means that the
new types of information can be added without needing to change more than a few tables. All
communications between the Election Server and the database are passed through a database
translator class, which means that this will be the only class that needs to be changed if a non-
MySQL database is accessed by a future version of the software.

8.3 GUI
The use of wizard-type interfaces means that changes can be made to single screens of the
interfaces without needing to change anything else.

8.4 E-Mail

Any changes to the information that needs to be communicated in the e-mail can be
incorporated directly into the files that are used as e-mail templates without needing to change
any compiled software.

8.5 Ballots

Any changes to the format and types of information that appear on ballots can be made directly
to the ballots and the associated XML tags without needing to change the Voting Client. In
addition, XML “ballots” are used to communicate error messages and other types of
information between the Server and the Client so that the Pericles Elections System can be
easily modified to exchange a greater diversity of material. The separation of the Elections
Editor from the Elections Generator makes it possible to make these kinds of changes without
needing to change the Elections Generator or its Server Objects.

8.6 Voter Identification Information

The option of using pre-existing usernames and passwords has been incorporated into the
design. This has been done so that it will be easy to set up future versions of the software to
download existing usernames and passwords from an external system. The database schema

37

has also been set up to isolate the information, for reasons of privacy, but the design of the
schema has unused columns in it that could be used in future versions of the software to link
isolated tables if so desired. This could be useful if, for example, it became desirable to have
the ability to contact or trace individual voters.

8.7 Server Statistics

There is an unused table in the database called ServerStats. A great deal of information is also
stored in log files (see Appendix VI). This will make it easy to change the software so that it
will provide statistics on use patterns so that the systems administrators will have the ability to
monitor and control network traffic.

38

IX. TEST PROVISIONS

9.1 Unit Testing

All modules of the code will be individually tested before being integrated with other parts of
the system. This is to help ensure that errors in the code are caught at the earliest possible
stage. Attempts will be made to test all possible paths of execution at this stage, although this
becomes more and more difficult with large modules. At the very least, all boundary values
will be tested.

9.2 Functional Testing

Functional testing will be conducted after the integration stage to ensure that no functionality
has been corrupted during the integration process. These tests will include:

e Registering a new election and creating a ballot

e Voting in this election

e Querying the database to ensure that the votes were properly recorded

e Checking that the generated results statistics are correct.

9.3 System Stress Testing

Once a single election is working properly, the system will be tested with additional elections
running simultaneously to ensure that running additional elections at the same time will not
corrupt any data. This will also help to determine how many elections can be run
simultaneously per system.

9.4 System Load Testing

For both single and multiple elections, system load testing will help ensure that the Election
Servers can handle the traffic they are likely to receive during real elections. Scripts will be
used to simulate multiple logons and votings during a short period of time so as to properly
test the network capacity of the server and response time during peak load periods.

9.5 Data Verification Testing

9.5.1 Calculation of Election Results

Testing of the database will be done using a large sample of data to ensure that results of
the election are properly calculated and reported. This testing will also attempt to overload
the database to ensure that large volumes of data can be safely stored.

9.5.2 Dates
Tests will be applied to the boundary conditions of all dates specified during election
setup. Tests will include:

a) Clients attempting to vote before start dates

b) Clients attempting to vote after end dates

¢) Large numbers of clients attempting to vote close to the end of an election

9.6 Input Testing

39

All parts of the system will be tested with erroneous input to help guard against misuse and
security breeches. The testing will also ensure that the appropriate informative error messages
are generated.

9.6.1 Client Input Testing

This test will ensure that a given voter can only vote in elections that they are authorized
for. Testing will also ensure that clients cannot alter their votes in an election where this is
not permitted.

9.6.2 Election Generation Testing
These tests will ensure that an election cannot be registered with incorrect options, such as
an end date before the start date.

9.7 Security Testing
The security of the elections will be tested in several ways:

9.7.1 Denial of Service Attacks
The testing team will attempt to shut down the servers using denial of service attacks and
ensure that that the system can detect the attacks and take action.

9.7.2 Encryption Breaking

The testing team will attempt to intercept and decode the transmissions between the
Voting Client and the Elections Server to ensure that encrypted data cannot be accessed
within the running time of the election.

9.7.3 Database Breaches

The testing team will attempt to breach the security of the database and access or change
the data contained therein. They must ensure that no information stored in the database
can be accessed and that, even if it can be, that the schema prevents the ability to glean
any useful information.

9.8 Recovery Testing
The testing team will kill the Elections Server in the middle of its operation in order to ensure

that it can be restarted and that the contents of the database will remain up to date and secure.
It will also ensure that a mailing goes out to contact voters and tell them that the server is back

up.

40

X. EXTRA FEATURES & OPTIONAL FEATURES

10.1 Extra Features

A number of features beyond those in the basic requirements given to the design team by the
client have been included in this design in order to make the software more functional, flexible
and secure. The highlights of these are as follows:

1)
2)
3)

4)

5)
6)

7)

Ability to accommodate elections with weighted votes

High level of configurability

The contacting of voters by e-mail to inform them of their registration in elections
or if an election is halted or restored in order to increase security

Allows more than one level of security

The system administrator has the ability to impose global limits on elections

The separation between systems administrators and elections officers and the
ability to require a minimum number of elections officers to make changes gives
an added increase in security.

Allows both refused ballots and spoiled votes

10.2 Optional Features

The following are extra features that have not been incorporated into this design, but which
may be implemented in this release if there is time:

1)
2)
3)

4)
5)
6)
7)

8)
9)

Elections officers and/or voters able to tailor the appearance and style of the ballot
The keeping of network traffic statistics

User verification numbers can be used to trace the votes of given voters if they
request verification of how they voted.

Allow for ballots with more than one answer allowed per question

Allow for ballots with questions that depend on the answers to other questions
Allow for ballots that permit voters to enter strings of text

Allow Server Objects to be instantiated on computers other than the one running
the Election Generator

Allow the Election Generator to access databases on external computers
Automatically FTP the web pages containing elections results to other servers

10) Allow voting to be done through e-mail rather than with the Voting Client
11) Give printing functionality to the Voting Client

12) Create graphical representations of election results

13) Produce printed copies of election results

14) Produce election results in formats other than HTML

15) Place requirements such as a quorum to make results binding

41

XI. GLOSSARY & REFERENCES

11.1 Glossary

ASCII: a standard 7-bit code for representing characters—Ietters, digits, punctuation
marks and control instructions—with binary values, the code values ranging from 1 to 127.

Authorized Voter: a voter who is on the enumeration list and who has been given the
means to use the Pericles Voting Client software.

Ballot: an XML file transferred between the Voting Client and the Elections Generator.

Client: a program that connects to a server. In the case of the Pericles system, the Voting
Client is a piece of software that Voters can use to connect to a Pericles Election Server
and receive ballots, send their votes and possibly change their votes if this is permitted in
an election.

CORBA: acronym for Common Object Request Broker Architecture. It is a
distributed object-computing infrastructure that automates many common network-
programming tasks.

Customers: peoples or agencies who purchase our Pericles system.

Database: any aggregation data. Files consisting of records (or tables), each of which is
constructed of fields (or columns) of a particular type, together with a collection of
operations.

Denial of Service: explicit attempts by attackers to prevent legitimate users of a service

from using that service. Examples include:

e attempts to "flood" a network, thereby preventing legitimate network traffic

e attempts to disrupt connections between two machines, thereby preventing access to a
service

e attempts to disrupt service to a specific system or person

Development Team: a team of people developing software.

Distributed Network: a network in which processing, storage and other functions are
handled by separate units rather than by a single main computer.

Elections Administrator: GUI based application that allows systems administrators to
authorized elections, set global limitations on elections, suspend elections and restore

elections, sometimes in conjunction with elections officer(s).

Elections Database: a MySQL database system used for storing the information used in
an election.

Elections Editor: Graphical User Interface (GUI) application that allows Election
Officers to change election settings, customize ballots and enter enumeration lists.

42

Elections Generator: a runnable program that creates Election Objects and works as a
task master for them.

Elections Objects: objects created by the Elections Generator that handle all
communication with Voting Clients.

Election Officer: an impartial individual authorized to run an election.
Elections Server: all of the Pericles software on the server side. Includes the Elections
Administrator, the Elections Editor, database interface objects and the Elections Generator

(and the objects spawned from it).

Encryption: the process to making information indecipherable to unauthorized readers.
This can be used for the storage and transmission of information.

Enumeration List: a list of identification information and other required information for
all authorized voters.

Enumerated Voter: a voter that is registered for specific election.
Expired Election: an election that has come to a completion.

GUI: a graphics—based user interface that incorporates icons, buttons, pull-sown menus
and a mouse.

HTML: an acronym for HyperText Markup Language. The document format used on the
World Wide Web. Web pages are built with HTML tags, or codes, embedded in the text.

Linux: a version of Unix.
Log: a record of activities that take place on a computer system.

MySQL: a relational database management system (RDBMS) that uses Structured Query
Language (SQL) for adding, accessing and processing data in a database.

Ongoing Election: an election that is currently in progress.

On-line Help System: a reference on how to use a piece of software that is integrated into
the software.

Operating System: the software responsible for controlling the allocation and usage of
hardware resources such as memory, central processing unit (CPU) time, disk space and
peripheral devices.

Packet Sniffing: the act of intercepting information traveling across a network.

Registered Election: an election that has been registered with a Pericles Ballot Generator
by a systems administrator and elections officer(s).

RMI: Acronym for Remote Method Invocation. It is a remote procedure call (RPC),
which allows Java objects stored in a network to be run remotely.

43

Security Breach: the act or a result of breaking the security of a software system.

Server: a program that serves clients and controls access to all or part of a computer’s
resources.

System Administrator: a person responsible for setting up and maintaining the
operational performance of a server and database.

Users: Persons who will use the Pericles system to run elections or vote. This includes
Election Officers, Systems Administrators and Voters.

Voter: a person with the right to vote for a given election.

Voting Client: client software that allows authorized voters to cast and possibly change
ballots by communicating with the Elections Server.

Weighted Vote: votes of unequal votes that are weighted based on criteria such as stake in
a company.

XML: acronym for eXtensible Markup Language. It is a subset of the SGML document
language designed for use on the Web and sanctioned by the W3C. It allows user defined
tags.

11.2 References

MySQL - Paul DuBois - New Riders Publishing, copyright 2000.
http://avirubin.com/evoting.security.html
http://internetdollar.com/elections/elections.html
http://notablesoftware.com/evote.html
http://www.but.auc.dk/jdk-1.2b3/guide/rmi/SSLInfo.html
http://www.cert.org/tech tips/denial of service.html
http://www.eli.sdsu.edu/courses/spring98/cs696/notes/
http://www.eli.sdsu.edu/courses/spring98/cs696/notes/rmiSecurity/rmiSecurity.html
http://www.javaworld.com/javaworld/jw-09-1999/jw-09-xmlmessage.html
http://www.mysql.com/doc/

http://www.netvoting.org/resources.htm
http://www.research.att.com/~lorrie/voting/hotlist.html

44

APPENDIX I—GUI INTERFACES

General note: all dialogue boxes for all of the below programs will have a “Help” button. This
will bring up a help window that will explain the particular dialogue box that they are using.
Each help window will have an “OK” button to clear the box.

AlL1) Elections Administrator

This program will be used by the system administrator to authorize the creation of elections, to
suspend or restore elections, to enter systems limitations for elections and to validate elections
officers. A series of screens will appear upon running the Elections Administrator:

1) The Elections Administrator Login Dialogue Box will ask the administrator to enter
his/her password into a text field. The password information will be starred out as it is
entered so that an observer will be unable to read it. There will be a button labeled “OK”
to accept the information and another labeled “Quit” to quit the Elections Administrator. A
message will appear if invalid identification information was entered, informing the user
of the need to reenter the information. The Elections Administrator will automatically quit
if invalid information is entered three times. This will be done in order to hinder
automated attempts to break security.

2) The Elections Administrator Function Selection Dialogue Box will appear once valid
identification is entered. There will be a choice of radio buttons and an “OK” button to
accept the choice and a “Quit” button to quit the program. The six buttons will be as
follows:

a) Authorize New Election: This option will be used to authorize the creation of a
new election. The Elections Officer(s) for the election being created must be
present at this stage to enter their identification information. The Elections
Administrator Authorize New Election Dialogue Box will appear when this option
is selected. There will be several text fields that will be filled in by the Elections
Officer. There will also be an “OK” button to accept the information and a
“Cancel” button that will return the user to the Elections Administrator Function
Selection Dialogue Box. The text fields will be as follows:

i) Election Code: this will be the unique code used to identify the new
election.

i1) Number of Elections Officers: the number of elections officers authorized
to run the election in question.

iii) Minimum Elections Officers Needed: the minimum number of elections
officers that are needed to enter identification information to make
changes to the system.

After the “OK” button is pressed, a new dialogue box will appear with the
following text fields:

1) Elections Officer User Name: this will be the unique name used by the
system to identify the elections officer for the new election.

2) Elections Officer Password: this will be the password used by the
elections officer. The password information will be starred out as it is
entered so that an observer will be unable to read it.

3) Re-Enter Elections Officer Password: the elections officer must re-enter
his or her password to verify that it was entered correctly. The password
information will be starred out as it is entered so that an observer will be
unable to read it.

45

b)

c)

d)

The user will be informed what went wrong and asked to re-enter the information
if the two passwords that are entered do not match or if the election code already
exists on the system. This dialogue box will have an “OK” button. The dialogue
box will appear once for each elections officer.
Restore Election: This option will be used to restore elections that were
interrupted by a technical failure, a breach of security or an election suspension.
The Elections Administrator Restore Election Dialogue Box will appear once for
cach of the minimum number of elections officers needed to effect changes and
will ask for the election code and the login information of the elections officers.
An e-mail will automatically be sent out to all voters registered for the election in
question to inform them that service was interrupted and that they need to revote if
they did not receive a verification number.
Suspend Election: This option will be used to suspend an election that has not
begun yet or that is in progress. It will be used only in exceptional circumstances,
such as an irretrievable breech of security. The Elections Administrator End
Election dialogue box will appear once for each of the minimum number of
elections officers needed to effect changes when this option is selected. There will
be three text fields in this dialogue box, as well as an “OK” button to accept the
information and a “Cancel” button that will return the user to the Elections
Administrator Function Selection Dialogue Box. The three text fields will be:

1) Election Code

ii) Elections Officer User Name

iii) Elections Officer Password: The password information will be starred out

as it is entered so that an observer will be unable to read it.

The user will be asked to re-enter the information if any of it is incorrect. If the
information is correct, a warning dialogue box will appear telling the user that he
or she is about to suspend an election. There will be a button saying “OK” to go
ahead and another button marked “Cancel” that will return the user to the
Elections Administrator Function Selection Dialogue Box. If an election is
suspended, an e-mail will automatically be sent out to all voters registered in that
election informing them that the election has been suspended.
Set Election Limitations: This option will be used to put global limitations on all
elections that are created. The system administrator will be able to limit how long
an election can last, how long data can be stored after elections end and the
maximum size of enumeration lists. This will be used to prevent individual
elections from tying up all of the resources of the system to the detriment of any
other elections that are being held. Note that any limitations will only apply to
clections that are registered after the limitations are entered and not to existing
elections.
Change Administrator Password: This option will allow the system administrator
to change his or her password by bringing up the Elections Administrator Change
Administrator Password Dialogue Box. There will be three text fields and an
“OK” button to accept the information and a “Cancel” button that will return the
user to the Elections Administrator Function Selection Dialogue Box. The
password information that is entered will be starred out as it is entered so that an
observer will be unable to read it The three text fields will be:

i) Old Password: this will be the system administrator’s old password.

i1) New Password: this will be the system administrator’s new password.

iii) Re-Enter Elections New Password: the user must re-enter his or her

password to verify that it was entered correctly.

46

The user will be informed what went wrong and asked to re-enter the information
if the two new passwords that are entered do not match or if the old password is
incorrect.

AlL2) Election Editor

This program will be used by the elections officers to design ballots, set the settings for each
election and enter enumeration lists. It will allow elections officers to change these settings
once voters have been notified of their voting information. A series of windows will appear
after running the Election Editor:

1)

2)

The Election Editor Login Dialogue Box will appear upon running the program and will
ask the elections officer to enter information into three text fields. There will be a button
labeled “OK” to accept the information and another labeled “Quit” to quit the Elections
Editor. The text fields will be as follows:
a) Election Code
b) Election Officer User Name
¢) Election Officer Password: The password information will be starred out as it is
entered so that an observer will be unable to read it.
A message will appear informing the user of the need to reenter the information if invalid
identification information was entered. The Elections Editor will automatically quit if
invalid information is entered three times. This will be done in order to hinder automated
attempts to break security. This login box will appear once for each election officer
registered in that election, up to the minimum needed to effect changes for that election.
The Election Editor Function Selection Dialogue Box will appear once valid identification
is entered. There will be a choice of several radio buttons and an “OK” button to accept
the choice and a “Quit” button to quit the program. The radio buttons will be as follows:
a) Edit Election Settings: This option will be used to set the preferences for an
election once it is created. It will also be used to design the ballot for the election.
An error will be given to the user if he or she attempts to alter these settings once
voters have been notified of their voting information. The user will be asked to
reenter any information if he or she exceeds any of the restrictions placed on
elections by the system administrator. A succession of dialogue boxes will appear
when this option is selected. Each will have a “Back” button and a “Next” button
to move back and forth between the dialogue boxes to change information. The
last dialogue box will have a “Done” button instead of a “Next” button. A list of
the settings that were chosen and a sample of the ballot as it will appear to voters
using the Voting Client will appear when the “Done” button is pressed. A button
labeled “Accept” and another labeled “Cancel” will be present. Both of these
buttons will return the user to the Election Editor Function Selection Dialogue
Box, but the “Cancel” button will erase the information that was entered and the
“Accept” button will store the information on the database. The dialogue boxes
and the order in which they will appear are as follows:
i) Select Election Dates Dialogue Box: This dialogue box will have a series
of text fields as follows:
1) Date to Publish Voter Information: The date and time that voters
will be informed of the information that they need to vote.
2) Date that Voting Begins: The date and time that voters may begin
to vote.
3) Date that Voting Ends: The last date and time that voters may vote.

47

4)

S)

Date to Publish Results: The date and time that the results of the
election will be released.

Date to Remove Voter Information: The date and time that the
enumeration list and all of the information relating to individual
votes is deleted.

Each of these dates will be entered in the form YYYY-MM-DD hh:mm:ss.
The user will be asked to reenter the dates and told why if the dates do not
follow each other chronologically (e.g. the Date that Voting Ends is before
the Date that Voting begins) when the “Next” button is pressed. There will
also be two additional items on this dialogue box:

1)

2)

Time Window: a text box specifying the amount of time leeway
that voters will be given to enter their votes because of differences
in system times on different computers.

Time Zone: This will be a drop-down menu allowing the user to
choose what time zone all of these dates correspond to.

ii) Select Election Options Dialogue Box: This dialogue box will present the
user with a list of options, each with a check box. The default for all of
these boxes will be unchecked. The options are as follows:

1)
2)

3)

4)

S)

6)

7)

8)

Allow voters to change their votes: This option will allow voters to
change their votes if they have already voted.

Allow weighted votes: This option will allow elections to be held
in which different voters have differently weighted votes.
Username specified: This option will allow usernames to be
specified in the enumeration list rather than randomly generated, as
is the default. This is to accommodate situations such as surveys
where voting does not need to be done anonymously or where it is
desirable to use existing information such as a valid student
number as identification information.

Password specified: This option will allow usernames to be
specified in the enumeration list rather than randomly generated, as
is the default. This is to accommodate situations where it is
desirable to use passwords that already exist on other systems.

Do not require password: This option allows for elections where
voters do not need passwords, such as surveys.

Do not distribute ID information by e-mail: This will disable the
default of sending election codes, user names and passwords out
over e-mail to voters.

Allow refusal of ballots: This option allows voters to refuse their
ballots before reading them.

Allow spoiled ballots: This option gives voters the option of
spoiling their ballots.

There will also be several text fields to fill in:

1)
2)

3)

Number of questions on ballot

E-mail address of elections contact: The e-mail address that will be
distributed to voters so that they will have someone to contact with
any questions that they might have. This will usually be the
elections officer’s e-mail address.

Comments: A place to enter any comments that will appear at the
top of all ballots.

iii)Design Ballot Dialogue Box: This dialogue box will have four text fields:

1)

Comments: Any comments preceding a question.

48

2) Question: A question that voters will be asked to vote on.

3) Number of Choices: The number of choices that correspond to this
question.

4) Choices: The options that correspond to the question. Each new
option must be followed by pressing the enter key.

The user will be asked to reenter the information if the number in the
Number of Choices field does not correspond to the number of choices that
were entered. This dialogue box will appear once for each question, up to
the number of questions specified in the Select Election Options Dialogue
Box.

iv) Select Election Statistics Dialogue Box: This dialogue box will allow the
user to make choices about how the results of the election are posted. Each
question will be displayed with the following options as checkboxes for it:

1) Report the Text of the Winning Choice

2) Report the Votes for each Choice

3) Report the Percentage Share for each Choice

The elections officer can thus choose to report all, some or none of these
for each question on the general release web page that is produced. It
should be noted that a web page containing all of this information will also
be produced. There will also be several text boxes in this dialogue box:

1) E-mail address to send results files: leaving this blank means that
the data gets e-mailed to all elections officers

2) Results site: Where voters should look to find the results of the
election

v) Edit Enumeration List Dialogue Box: This dialogue box will allow the
Elections Officer to enter the information for all registered voters. There
will be several buttons on this dialogue box:

1) Load Enumeration List: This will allow the user to load a properly
formatted enumeration list from disk. The user will be provided
with a dialogue box to browse the disk. The information contained
on the file will be appended onto any existing voters. The user will
be asked to choose a new file if an improperly formatted file is
given.

2) Clear Voter Data: This will erase any voter data that has already
been entered

3) The “Next” and “Back” buttons.

vi) Preview Ballot Dialogue Box: This box will display the ballot exactly as it
will appear to voters using the Voting Client

vii) Preview E-mail Dialogue Box: This dialogue box will show the format of

the e-mail that will be sent to voters to inform them of their information, if
this option is selected for the election in question.

b) Change Elections Officer Password: This option will allow the elections officers
to change their passwords by bringing up the Elections Editor Change Elections
Officer Password Dialogue Box. There will be three text fields and an “OK”
button to accept the information and a “Cancel” button that will return the user to
the Election Editor Function Selection Dialogue Box. The password information
will be starred out as it is entered so that an observer will be unable to read it. The
three text fields will be:

iv) Old Password

v) New Password

49

vi) Re-Enter Elections New Password: the user must re-enter his or her
password to verify that it was entered correctly.
The user will be informed what went wrong and asked to re-enter the information
if the two new passwords that are entered do not match or if the old password is
incorrect.

AL3) Elections Generator

This program will not have a GUL

Al.4) Voting Client

This program will be used by voters to register and, if allowed in a particular election, change
their votes. A series of windows will appear after running the Election Generator:

1)

2)

3)

4)

5)

Voting Client Login Dialogue Box: The voter will be asked to enter some information in
text fields upon running the program. There will be a button labeled “OK” to accept the
information and another labeled “Quit” to quit the Voting Client. The text fields will be as
follows:

a) Server Address

b) Election Code

d) User Name

e) Password: The password information will be starred out as it is entered so that an

observer will be unable to read it.

A message will appear informing the user of the need to reenter the information if invalid
identification information was entered or if the client was unable to connect to the server.
The Elections Editor will automatically quit if invalid information is entered three times.
This will be done in order to hinder automated attempts to break security. The voter will
receive a message denying him or her access if the server has a vote already registered
from that voter and voters are not allowed to change their votes in this particular election.
Refuse Ballot Dialogue Box: Once the voter has successfully logged in, he or she will be
presented with a dialogue box asking if he or she wishes to refuse the ballot as a form of
protest. There will be one button marked “Yes” and another marked “No.” This dialogue
box will only appear if refusing the ballot has been allowed in the particular election
Voting Dialogue Box: The client will then display the ballot to the client with a set of
radio buttons for each choice. The option of spoiling a question will be given for each
question if this has been permitted in the settings for the particular election. There will be
no default selection for any of the choices. There will be a button at the bottom of the
ballot labeled “Submit” that will submit the ballot to the server and another labeled “Quit”
which quits the program.
Vote In Transit Display Box: After pressing the “Submit” button, the voter will be
presented with a display box telling him or her that the vote has been submitted. The voter
will be asked to wait for confirmation that the vote has been submitted. The client will
time out if confirmation has not been received in three minutes (this is more than enough
time if everything is going well, given reasonable network traffic). If this is the case, a
dialogue box will appear informing the voter that his or her vote was not registered, and
asking him or her to try again.
Vote Accepted Dialogue Box: Once the server has accepted and recorded the vote, a
message will be displayed to the client saying that the vote was successfully recorded
along with a verification number provided by the server. There will be two buttons, one

50

labeled “Vote Again”, which will bring up the Voting Client Login Dialogue Box and
another labeled “Quit” which will quit the program.

51

APPENDIX II—DATABASE TABLES

This appendix outlines the tables used by the relational database. Each title corresponds to a
table name and the items under each title are the names of the columns of the table. The rows
stored in each table will be the information for all elections using the database. It might be
advisable to set a future version of this software to use different databases for each election if
the elections are on a very large scale.

Officers: contains the identification information for all elections officers.

1)

2)
3)
4)

Voters:

1)

2)
3)
4)
5)

6)
7)

ElectionCode: the code identifying the elections that the election officer is associated
with

OfficerName: the username of the elections officer

OfficerPassword: the password of the elections officer

ElIOfEMail: the e-mail address of the elections officer

contains the identification information for all voters

EmaillD: a code used to link to the Emails table in case it is desirable to be able to
send messages to individual voters. This will normally be set to 0 for all rows, in order
to make it impossible to associate votes to voters.

VoterName: the username of the voter (randomly generated or specified)
VoterPassword: the password of the voter (randomly generated or specified)
ElectionCode: the code identifying the elections that the voter is associated with
VerificationNum: a code generated by Elections Server Objects that can be used to
verify that a voter voted. Can potentially be used by voters to verify how they voted.
ResultID: a code used to link to the VoteAnswers table.

Weighting: how many votes the voter’s vote counts for. The default is one. In
elections where voters are not permitted to change their votes after having voted, this
value will be set to 0 as soon as a voter has voted and his or her vote is recorded.

EMails: contains the information necessary to send e-mails to voters

1))

2)
3)

EmaillD: a code used to link to the Voters table in case it is desirable to be able to
send messages to individual voters. This will normally be set to 0 for all rows, in order
to make it impossible to associate votes to voters.

ElectionCode: the code identifying the elections that the voter is associated with
Email: the e-mail address of the voter

ElectionsAdmin: contains the information needed by the Elections Generator to administrate
elections

1))
2)

3)

4)

5)

ElectionCode: the code identifying the elections that the information is associated
with.

DateOfInfoRemoval: the date and time the voter information will be erased from the
database

DateToSendEmails: the date and time on which e-mails will be sent to voters
informing them of the election and their identification information. Set to NULL if no
e-mails are to be sent.

VoteBeginDate: the date and time on which votes will begin to be accepted for an
election

VoteEndDate: the date and time on which votes will no longer be accepted for an
election

52

6)
7)

8)
9)

TimeWindow: the amount of time leeway that will be allowed to compensate for
diffences in systems clocks

TimeZone: the time zone corresponding to all dates and times given out by the
elections software

EmailOfElectionContact: the e-mail address of the person who voters can contact
Suspend: a value specifying whether or not the Elections Generator should suspend an
election, should restore an election or should take no such action

Publishings: contains the information needed by the Elections Generator to release results

1)
2)

3)
4)

ElectionCode: the code identifying the elections that the information is associated
with.

PublishEMail: where to e-mail the results. The default will be NULL, which means
that the results will be sent to all of the elections officers.

PublishDate: the date and time on which the results statistics will be released.
ResultSite: the web site that voters will be told to look for statistics.

VoteAnswers: the votes registered by voters

1)
2)
3)
4)

ResultID: a code used to link to the Voters table

Weighting: how many votes the voter’s vote counts for.

QuestionID: a code used to identify the particular question being voted on
Answer: the vote of the voter. SP will be used for spoiled and RE for refused.

Statistics: the statistics that need to be released when the results are published

1)
2)

3)

4)

ElectionCode: the code identifying the elections that the statistics are associated with.
DisplayWinner: whether or not to display the winning choice of the questions. 1 for
yes and 0 for no.

DisplayNumbers: whether or not to display the number of votes for each choice. 1 for
yes and 0 for no.

DisplayPercentages: whether or not to display the percentages of votes for each
choice. 1 for yes and 0 for no.

ServerStats: statistics relating to network traffic. This may or may not be implemented.

1)
2)

ElectionCode: the code identifying the elections that the statistics are associated with.
NumberOfHits: the total number of hits registered so far by the Elections Server
Object for the election in question.

53

APPENDIX III—BALLOT FORMATS

This appendix outlines the XML formats that will make up the messages exchanged between
the Voting Client and the Election Server Objects.

AIIL.1) Login Rejected Ballot
This ballot will be sent from the Election Server to the Voting Client if a login attempt fails:

<ballot>
<login_fail>
You were unable to login to the Elections Server. You did successfully contact the
elections server, but the login attempt failed because
<fail reason>
<l-- possible reasons could be: invalid election code, incorrect
password or username, server too busy, voter has already voted,
server down, election suspended -->
</fail reason>
Please try reentering the correct information, or contact
<contact> electionguy@usgovernment.com </contact>
</login_fail>
</ballot>

AlIL2) Empty Voting Ballot

This ballot will be sent from the Election Server to the Voting Client if a login attempt
succeeds:

<ballot>
<header>
<contact> electionguy@usgovernment.com </contact>
<refusal> yes </refusal>
<spoil> yes </yes>
<l-- A comment to appear at top of ballot -->
<topcomment>
This ballot is secure and all information transmitted
confidential. The US government knows what it is doing
and you have nothing to fear.
</topcomment>
</header>
<question>
<l-- an optional comment can be added to each question -->
<opt_text>

This question will determine your next president
of the United States.

</opt_text>

Who do you wish to vote for to be President?

54

<choice> a) Jim Bob </choice>

<choice> b) Joe Smith </choice>

<choice> ¢) Betty Sue </choice>

<choice> b) Joe Smith </choice>
</question>

<pgbr/> <-- put next question on another page(screen) -->

<question>
<l-- etc. for each question on the ballot -->
</question>
</ballot>

AIIL3) Filled in Voting Ballot

This ballot will be sent from the Voting Client to the Elections Server after a successfully
received voting ballot has been filled in by a voter:

<ballot>
<header>
<contact> electionguy@usgovernment.com </contact>
<refused> no </refused>
<electcode> elec359 </electcode>
<useridd> rjones </userid>
<psswd> 43k133n9 </psswd>

<!-- A comment to appear at top of ballot -->
<disclamer>
This ballot is secure and all information transmitted
confidential. The US government knows what it is doing
and you have nothing to fear.
</disclamer>
</header>

<question>
<!-- an optional comment can be added to each question -->
<opt_text>
This question will determine your next president
of the United States.
</opt_text>

Who do you wish to vote for to be President?
<!-- "chosen” indicates which choice is selected and a spoiled ballot is
indicated by no chosen tag at all -->
<choice> a) Jim Bob </choice>
<chosen> b) Joe Smith </chosen>
<choice> ¢) Betty Sue </choice>
<choice> b) Joe Smith </choice>
</question>

<pgbr/> <-- put next question on another page(screen) -->

55

<question>
<l-- etc. for each question on the ballot -->
</question>

</ballot>

AlIL4) Vote Could not be Registered Ballot

The following ballot will be sent from the Elections Server to the Voting Client when a filled
in ballot cannot be successfully recorded:

<ballot>
<vote_fail>
Your vote could not be registered. Please try again or contact
<contact> electionguy@usgovernment.com </contact>
The problem is
<fail reason>
<l-- possible reasons could be: server too busy, voter has already
voted, server down, election suspended -->
</fail reason>
</vote_fail>
</ballot>

AIILS5) Vote Successfully Registered Ballot

The following ballot will be sent from the Elections Server to the Voting Client when a vote
has been successfully recorded on the database:

<ballot>
<vote_succ>
Your vote was recorded successfully. Your reference number is
<ref num> 48759321 </ref num>
Thank you for using the Pericles Election Software
</vote succ>
</ballot>

56

APPENDIX IV—E-MAIL FORMATS

This appendix shows what the various e-mails sent out by the system will look like.
AlIV.1) Voter Registered E-mail

This e-mail will be sent out automatically to inform voters that they are registered to vote in an
election and will tell them their login information. This option may be disabled by elections
officials. The format will be as follows:

To: <voter e-mail address>
From: <contact e-mail address>
Subject: electronic election registration

You have been registered to vote in an electronic election using the Pericles Voting
Client. Please contact <contact e-mail address> if you have any question about the
election, if you have difficulty voting or if you need access to a Pericles Voting Client.

Enter the following information after running the Pericles Voting Client:
Server Address: <IP address of the Server Object>
Election Code: <election code of the election>
User Name: <user name of the voter>
Password: <password of the voter>

It is essential that you do not share any of this information with anyone else, as they
will then be able to vote for you! Your vote will not be officially counted unless the
Pericles Voting Client gives you a verification number after voting. Be sure that you
do not leave your computer between the time that you log in to vote with the Voting
Client ant the time that you receive a verification number, as someone could use your
computer to vote in your place while you are gone. Note that some elections do not
require a user name or password. If you have not been given a user name and
password in this election, then simply leave these boxes blank when you use the
Voting Client.

You may only vote between the following dates, which are in the <time zone of
server> time zone: <election start date> and <election end date>. You <may / may
not> change your vote after sending it. Your vote counts as <weighting of vote>
vote(s).
The results will be posted on <posting of results date> at <URL of results>.
Thank you for using the Pericles Elections Software.
AIV.2) Election Halted E-mail
This e-mail will be sent if an election is halted by an elections officer or if the Elections
Generator notices that an Elections Server Object is no longer operating as it should. The

format will be as follows:

To: <voter e-mail address>

57

From: <contact e-mail address>
Subject: electronic election registration

The voting for election <election code of the election> has been halted and no more
votes may be registered at this time. Please contact your local election officials for
more information. Another e-mail will be sent if and when the election starts again.
We apologize for any inconvenience.

AIV.2) Election Restarted E-mail

This e-mail will be sent if an election is started again after having been interrupted. The format
will be as follows:

To: <voter e-mail address>

From: <contact e-mail address>

Subject: electronic election registration

The voting for election <election code of the election> has been restored. If you have
received a verification number for your vote, then your vote has been properly

recorded. If not, please try voting again

We apologize for any inconvenience.

58

APPENDIX V—Enumeration List Format

The enumeration list is a file containing authorized voters that must be entered by the elections
officer prior to any election. It is a comma delimited list. Each line corresponds to a voter.
There are four fields, which must appear in the following order:

e-mail address, vote weighting, pre-defined username, pre-defined password

All of these fields are optional, and some or all may be left blank. However, the three commas
must always be present.

59

APPENDIX VI—Log File Formats

It is important to have log files in order to recover from failures of the system without loss of
data. The log files that will be kept for the Pericles Elections Software will be used to recover
from failures or crashes of the Election Server that occur before data is recorded in the
database. These log files will not account for failures of the database itself, as to do so would
compromise the security and privacy of the data. It is assumed that the database itself provides
a method to recover data after a database crash.

Only the systems administrator will have access to the log files and only he or she will have
the ability to delete it when it is deemed fit. The log files will be simple text files that are semi-
colon delimmitted. There will be two types of log files:

AVL1) Elections Editor Log File

This file, named elections.log, will provide a record of all changes that are made by elections
officers. This is important because it provides a method of tracing changes that are made and
who made them in case there are breaches of elections editor security.

This log file will have the following format:
ChangeTime; IPAddress; Election Code; OfficerName; Behaviour; State

a) ChangeTime = the date and time that the change was made (YYYY-MM-DD
hh:mm:ss)
b) IPAddress = the IPAddress of the machine that was used to make the change
c) OfficerName = the user name of the elections officer that is making the change. If
there are multiple elections officers that need to log in to make changes, this will
be the first one.
d) Behavior = the action taken by the elections officer. The options are:
1) login =login to the system
2) suspend = suspend an election
3) restore = restore an election
4) create = define the settings for a new election
5) edit = edit the settings for an existing election
e) State = how far the elections officer got
1) sent = data was sent to the database or the Elections Server
2) recorded = data was successfully recorded on the database or
the Elections
3) success = successful login (for logins only)
4) fail = unsuccessful long (for logins only

The following is a sample section of an elections.log log file:

2001-05-20 20:58:12; 130.23.17.5; 534; Pelopenesian; login; fail
2001-05-20 20:58:56; 130.23.17.5; 534; Peloponnesian; login; success
2001-05-20 20:59:32; 130.23.17.5; 534; Athens; login; success
2001-05-20 20:59:49; 130.23.17.5; 534; Sparta; login; success
2001-05-20 21:21:12; 130.23.17.5; 534; Peloponnesian; create; sent
2001-05-20 21:21:12; 130.23.17.5; 534; Peloponnesian; create; recorded

60

AVL.1) Voting Log File

This file, named voting.log, will provide a record of all votes that are made. It will include the
e-mail addresses of voters, in case they need to be contacted to revote, but it will not include
the details of their vote. This is to prevent someone from telling how an individual voted based
on the log file. The IP Address of the voter will also be recorded in order to help locate voters
that are trying to breach the security of the system or make denial of service attacks.

This log file will have the following format:

ChangeTime; IPAddress; ElectionCode; Email; Behavior; State

a) ChangeTime
hh:mm:ss)

the date and time that the vote was made (YYYY-MM-DD

b) IPAddress = the IPAddress of the machine that was used to vote
¢) Email = the e-mail address of the voter.
d) Behavior = the action taken by the voter. The options are:

L
ii.
iil.

1v.

v

login = attempt by the voter to login

emptyballot = an emptyballot was sent to the voter
completedballot = a completed ballot was returned to the
Elecitons Server

votestored = the vote was stored on the database

verificationsent = a verification number was sent to the voter

e) State = how far the elections officer got

L
ii.

success = the action was successful
failure = the action failed

The following is a sample section of a voting.log log file:

2001-06-15 23:58:22; 130.23.17.5; 534; Socrates; login; success
2001-06-15 23:58:45; 130.23.17.5; 534; Socrates; emptyballot; success
2001-06-15 23:59:11; 130.27.57.5; 412; Plato; login; success

2001-06-15 23:59:16; 130.27.57.5; 412; Plato; sendballot; success
2001-06-16 00:05:09; 130.23.17.5; 534; Socrates; completedballot; success
2001-06-16 00:05:12; 130.23.17.5; 534; Socrates; votestored; success
2001-06-16 00:06:12; 130.27.57.5; 412; Plato; completedballot; success
2001-06-16 00:06:17; 130.23.17.5; 534; Socrates; verificationsent; success
2001-06-16 00:06:22; 130.27.57.5; 412; Plato; votestored; success
2001-06-16 00:06:24; 130.27.57.5; 412; Plato; verificationsent; success

61

APPENDIX VII—Results File Formats

There will be two results file produced for each election—one a complete list of elections
statistics and the other a list of statistics showing only the results selected for reporting by the
elections officer(s). Both files will be in the HTML format and will be automatically e-mailed
to the specified address (the default is all elections officers). The following is an outline of a
complete results file. A limited results file could be missing the lines indicating the text of the
winning choice, the total number of votes for each choice and/or the percentage of votes for
each choice.

<HTML>

<HEAD>
<META NAME="Author" CONTENT="Pericles Elections Server">
<TITLE>results</TITLE>

</HEAD>

<BODY>

<H1>Complete Results for Election &It;ELECTION CODE></H1>

This election ran from &It;START DATE> to &It;END DATE> on the Pericles
Election Server. These results were released on &It;STATS RELEASE DATE>.
<P>&I1t;NUMBER OF BALLOTS REFUSED> ballots were refused.

<HR WIDTH="100%">

<H3>The results for Question 1:</H3>

<BLOCKQUOTE>Question: &It;TEXT OF QUESTION>

Winner: &It; TEXT OF WINNING CHOICE>

Spoiled votes: &It; NUMBER OF SPOILED VOTES> (<% OF SPOILED VOTES>)
<P>CHOICE A: &It;TEXT OF CHOICE A>

<BLOCKQUOTE>&It;NUMBER OF VOTES FOR A> votes were cast for this choice.

This represents &It;PERCENTAGE OF VOTE>% of the votes.

 </BLOCKQUOTE>

CHOICE B: <TEXT OF CHOICE A></BLOCKQUOTE>

<HR WIDTH="100%">
<H3> The results for Question 2:</H3>

</BODY>
</HTML>

62

APPENDIX VIII—Configuration File Format

The following is an example of the format of the configuration file used by the Elections
Server. It is the responsibility of the Systems Administrator to fill it out when installing the
Pericles system. Instructions on how to do this will be provided in the install readme file.

<config>
<dbname> Election Data </dbname>
<dbhost> media21.cis.uoguelph.ca </dbhost>
<dblogin> My Database <\dblogin>
<dbpass> storestuff <\dbpass>
<dbport> 99 </ddbport>
<salogin> admin </salogin>
<sapassword> r8w735 </sapassword>

<saemail> admin@pericles.com </saemail>

<votelogloc> pericles/log_files </votelogloc>
<eleclogloc> pericles/log_files </eleclogloc>

<resultloc> pericles/results_files </resultloc>

</config>

63

