
MUMT 618: Week #4

1 Wave Motion in Strings

We will first consider mechanical waves in solids. Wave motion in solids is generally a result of both elasticity
and geometric stiffness. Elasticity refers to the ability of a deformed material to return to its original shape
and size when the deforming load is removed. Geometric stiffness is the result of a applied pre-stress that
causes the solid to depart from its equilibrium state. In the case of a one-dimensional stretched string,
geometric stiffness dominates and we initially ignore elasticity (or bending stiffness).

1.1 The 1D Wave Equation

• The wave equation provides an analytic description of wave motion over time and through a spatial
medium.

• This mathematical equation can subsequently be used to evaluate and model wave motion along the
string and at boundaries.

• In analyzing the one-dimensional (1D) string section illustrated in Fig. 1 below, we make the following
assumptions:

– The mass per unit length of the string is constant and the string is perfectly elastic (there is no
resistance to bending).

– The tension caused by stretching the string before fixing it at its endpoints is so large that
gravitational forces on the string are negligible.

– The string moves only in the transverse direction and these deflections are small in magnitude.
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Figure 1: A short section of a stretched, deformed string.

1

../index.html#Outline
http://hyperphysics.phy-astr.gsu.edu/hbase/waves/waveq.html


• The mass of the short string section (length ∆x) is ϵ∆x, where ϵ is the mass per unit length of the
string.

• Since there is no horizontal motion, the two horizontal components of tension must be constant:
T1 cos θ1 = T2 cos θ2 = T .

• The net vertical force on the section is T2 sin θ2 − T1 sin θ1.

• By Newton’s Second Law: T2 sin θ2 − T1 sin θ1 = ϵ∆x∂2y
∂t2 .

• Making use of the horizontal tension components, we obtain:

T2 sin θ2
T2 cos θ2

− T1 sin θ1
T1 cos θ1

= tan θ2 − tan θ1 =
ϵ∆x

T

∂2y

∂t2
(1)

• The expressions tan θ2 and tan θ1 are the slopes of the string at the points x and x+∆x:

tan θ1 =

(
∂y

∂x

)
x

and tan θ2 =

(
∂y

∂x

)
x+∆x

.

• Making these substitutions in Eq. 1 and dividing by ∆x,

1

∆x

[(
∂y

∂x

)
x+∆x

−
(
∂y

∂x

)
x

]
=

ϵ

T

∂2y

∂t2
.

• Letting ∆x approach zero, we obtain the linear partial differential equation

∂2y

∂t2
=

T

ϵ

∂2y

∂x2
= c2

∂2y

∂x2
,

where c =
√
T/ϵ is the speed of wave motion on the string. This is the one-dimensional wave equation

that describes small amplitude, lossless transverse waves on a stretched string.

1.2 Wave Equation Solutions

• A common approach to solving differential equations is to assume sinusoidal solutions in the form of
complex exponentials.

• A time-harmonic representation of displacement can be expressed as y(x, t) = ỹ(x)ejωt, where ω is
radian frequency and ỹ(x) represents the spatial distribution of the complex amplitude displacement.

• Substituting this expression into the wave equation yields the 1D form of the Helmholtz equation

∂2ỹ/∂x2 + (ω/c)2ỹ(x) = 0, (2)

which is a linear, second-order, ordinary differential equation (a function of x alone).

• A standard trial solution for Eq. (2) is of the form ỹ(x) = Ãeλx, which after substitution yields:

(λ2 + k2)ỹ(x) = 0,

where λ is the wavelength and k = ω/c = 2π/λ is the wavenumber, which represents spatial frequency
in radians per meter.

• There are two non-trivial solutions of λ = ±jk, leading to a complete solution of the form:

y(x, t) = C+ej(ωt−kx) + C−ej(ωt+kx),

where C+ and C− are complex amplitudes.
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• In terms of sinusoidal functions, this can expressed as:

y(x, t) = A sin
ω

c
(ct− x) +B cos

ω

c
(ct− x) + C sin

ω

c
(ct+ x) +D cos

ω

c
(ct+ x)

= A sin(ωt− kx) +B cos(ωt− kx) + C sin(ωt+ kx) +D cos(ωt+ kx). (3)

• This solution can be represented in a more general form, attributed to d’Alembert in 1747, of y(x, t) =
y+(ct− x) + y−(ct+ x).

• y+(ct−x) represents a wave traveling in the positive x direction with a velocity c. Similarly, y−(ct+x)
represents a wave traveling in the negative x direction with the same velocity. Each component is
generally referred to as a traveling wave.

• The functions y+ and y− are arbitrary and of fixed shape (given our assumed lossless medium) ... see
waves on string simulation.

• This implies that waves can propagate in two opposite directions in a one-dimensional medium.

Figure 2: Traveling waves on a string.

• When two or more waves pass through the same region of space at the same time, the actual displace-
ment is the vector (or algebraic) sum of the individual displacements (referred to as linear superposi-
tion).

1.3 Standing Waves

• Imagine a string of length L that is rigidly fixed at x = 0 and x = L. This implies boundary conditions
of y(0, t) = 0 and y(L, t) = 0.

• Making use of y(0, t) = 0 and Eq. (3), we find that A = −C and B = −D, so

y(x, t) = A[sin(ωt− kx)− sin(ωt+ kx)] +B[cos(ωt− kx)− cos(ωt+ kx)]. (4)

• Using sinusoidal sum and difference formulae, sin(x±y) = sin(x) cos(y)±cos(x) sin(y) and cos(x±y) =
cos(x) cos(y)∓ sin(x) sin(y), we obtain

y(x, t) = 2A sin(kx) cos(ωt)− 2B sin(kx) sin((ωt)

= 2[A cos(ωt)−B sin(ωt)] sin(kx).

• The boundary condition y(L, t) = 0 requires that sin(kL) = 0 or ωL/c = nπ, so that ω is restricted to
values ωn = nπc/L or fn = nc/2L.

• Thus, the rigidly fixed string has normal modes of vibration given by

yn(x, t) = (An sin(ωnt) +Bn cos(ωnt)) sin(ωnx/c), (5)

which are harmonic because each fn is a integer multiple n times f1 = c/2L. These correspond to the
well known standing wave patterns on a stretched string.
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2 Impedance

In this section, we are interested in understanding the concept of impedance, which relates the frequency-
dependent nature of “force” and “motion” in a system. In subsequent sections of this course, we will evaluate
the impedance of various parts of musical instruments to gain some understanding of how they vibrate.
An impedance provides a frequency response representation of a system in terms of input and output physical
signals, in a way similar to the frequency response of filters. Likewise, the inverse frequency transform of an
impedance provides an impulse response characterization.
Note that the input and output signals used to compute impedance can be taken at the same or different
points of a system. If the input and output locations are at the input to a system, the resulting frequency-
domain ratio is referred to as an input or driving point impedance. If the input and output locations are
different, the frequency-domain ratio is referred to as a transfer impedance.

• In AC electrical systems, impedance is defined as voltage divided by current.

• Electrical resistors have constant, frequency-independent impedances.

• Electrical capacitors and inductors, however, have current-to-voltage characteristics that change with
respect to the frequency of an applied source.

• For mechanical systems, impedance is defined as the ratio of force to velocity.

• The inverse of impedance is called admittance. One can use the term immittance to refer to either an
impedance or an admittance.

• In lossless systems, an immittance is purely imaginary and called a reactance.

• Immittances are steady state characterizations that imply zero initial conditions for elements with
“memory” (masses and springs, capacitors and inductances).

• In acoustics, impedance is given by pressure divided by either particle or volume velocity.

• More generally, we can derive (or measure) frequency-domain transfer function representations of
vibrating systems in terms of impedances or admittances. As well, we can derive or calculate corre-
sponding time-domain impulse responses from these characterizations.

2.1 Wave Impedance

• Consider a sinusoidal traveling-wave component of displacement moving in the positive x direction
along an infinite string:

ỹ+(x, t) = Aej(ωt−kx),

where A is a complex constant that describe the amplitude and phase of the traveling-wave component
and k = ω/c = 2π/λ.

• At an arbitrary point and time along the string (Fig. 3), the vertical force exerted on the portion to
the right by the left-side portion of the string is given by

f̃+(t, x) = −T sin(θ) ≈ −T tan(θ) = −T
∂ỹ+

∂x
= TjkAej(ωt−kx),

where T is the string tension and |∂ỹ+/∂x| ≪ 1. This force is clearly balanced by an equal but opposite
force exerted from the right-side portion of the string.

• The vertical velocity of the wave component ỹ+(t, x) is

ṽ+(t, x) =
∂ỹ+

∂t
= jωAej(ωt−kx).
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Figure 3: A short section of a stretched, vibrating string.

• The impedance of the wave component at this arbitrary point is the ratio of force to velocity, which is

f̃+(t, x)

ṽ+(t, x)
= T/c,

where c is the speed of wave propagation. In deriving the wave equation for string motion, we deter-
mined c =

√
T/ϵ and thus T/c is also equal to ϵc, where ϵ is the linear mass density of the string.

• This fundamental scalar quantity is referred to as the characteristic impedance or wave impedance of
the string and is denoted

R
∆
=

√
Tϵ =

T

c
= ϵc.

It indicates that the force and velocity components of a traveling wave moving along a string are related
by a constant, frequency-independent “resistance”.

• After similar consideration of a traveling-wave component moving to the left, a more general, frequency-
independent expression for the relationship between vertical force and velocity on the string is:

f(t, x) = R

[
∂

∂t
y+(t− x/c)− ∂

∂t
y−(t+ x/c)

]
= R

[
v+(t− x/c)− v−(t+ x/c)

]
.

• Traveling-wave components of force are thus related to traveling-wave components of velocity by

f+ = Rv+

f− = −Rv−

2.2 The Driving Point Impedance of a Fixed String

• In systems with feedback, impedance (or admittance) provides information about resonances or anti-
resonances.

• Consider a string of length L and tension T rigidly fixed at position x = L.

• Let us assume the string is being driven at position x = 0 by a transverse sinusoidal force in the form
of a complex exponential: f̃(t) = Fejωt.

5

https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_en.html


• The motion of a string of finite length will be composed of both right- and left-going wave components.
The resulting sinusoidal response of the string can then be represented as:

ỹ(x, t) = C+ej(ωt−kx) + C−ej(ωt+kx), (6)

where C+ and C− are complex constants that describe the amplitude and phase of each traveling-wave
component with respect to the driving force and k = ω/c = 2π/λ.

• At the fixed end (x = L), the boundary condition y(L, t) = 0 implies

0 = [C+e−jkL + C−ejkL]ejωt.

• At x = 0, the driving force must be compensated by a string force of F̃ ≃ −T (∂ỹ/∂x), resulting in the
expression

Fejωt = T (jkC+ − jkC−)ejωt.

• These two equations can be used to solve for C+ and C−, which when substituted back into Eq. 6
gives

ỹ(x, t) =
F

kT

sin k(L− x)

cos kL
ejωt.

• From this, the string velocity can be determined as:

ṽ(x, t) =
∂ỹ

∂t
=

jωF

kT

sin k(L− x)

cos kL
ejωt.

• The driving-point, or input, impedance Zin(ω) is defined as the ratio of force to velocity at the driving
point (x = 0):

Zin(ω) =
f̃(t)

ṽ(0, t)
=

−jkT

ω
cot kL = −jR cot kL,

where R is the characteristic impedance of the string. This function is plotted below.
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Figure 4: Normalized driving-point impedance of a string.

• The impedance is zero for values of kL = π/2, 3π/2, . . ., and ±j∞ when kL = 0, π, . . . Note that this
analysis does not account for any losses in the string or end support.
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• If the driving point (x = 0) is fixed, the velocity of the string at that point must equal zero. This
would correspond to an infinite impedance. Thus, the resonance frequencies of a string rigidly fixed at
both its ends correspond to the frequencies at which Zin = ∞, or when kL = 0, π, . . ., from which we
find the resonance frequencies fn = nc/(2L) for n = 0, 1, 2, . . . (which are the same as those found for
the standing waves).

• On the other hand, if the point (x = 0) is perfectly free, the force of the string at that point must equal
zero. This would correspond to an impedance of zero. Thus, the resonance frequencies of a string free
on one end and rigidly fixed at the other correspond to the frequencies at which Zin = 0, or when
kL = π/2, 3π/2, . . ., from which we find the resonance frequencies fn = (n+1)c/(4L) for n = 0, 1, 2, . . .
(which occur at odd integer multiples of the fundamental f0 = c/(4L)).

3 Digital Waveguide Theory

3.1 Sampled Traveling Waves

• The lossless one-dimensional wave equation was previously derived for a stretched string as:

∂2y

∂t2
= c2

∂2y

∂x2
,

where c =
√
T/ϵ is the speed of wave motion on the string, T is the string tension, and ϵ is the mass

density of the string.

• The traveling-wave solution of the wave equation was published by d’Alembert in 1747. It has the
general form

y(t, x) = y+(t− x/c) + y−(t+ x/c),

for arbitrary functions y+(·) and y−(·). A function of (t−x/c) can be interpreted as a fixed waveshape
traveling to the right (positive x direction) and a function (t + x/c) can be interpreted as a fixed
waveshape traveling to the left (negative x direction), both with speed c.

• To develop a discrete-time model or simulation of traveling wave motion, it is necessary to sample the
traveling-wave amplitudes in both time and space.

• The temporal sampling interval is Ts seconds, which corresponds to a sample rate fs
∆
= 1/Ts samples

per second.

• The spatial sampling interval is given most naturally by X
∆
= cTs meters, or the distance traveled by

sound in one temporal sampling interval. In this way, each traveling-wave component moves left or
right one spatial sample for each time sample.

• Using the change of variables

x → xm = mX

t → tn = nTs,

the traveling-wave solution becomes

y (tn, xm) = y+(tn − xm/c) + y−(tn + xm/c)

= y+(nTs −mX/c) + y−(nTs +mX/c)

= y+[(n−m)Ts] + y−[(n+m)Ts].

• This representation can be further simplified by suppressing Ts, with a resulting expression for physical
displacement at time n and location m given as the sum of the two traveling-wave components

y (tn, xm) = y+(n−m) + y−(n+m). (7)
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3.2 Digital Waveguide Models

• The term y+[(n −m)Ts] = y+(n −m) can be interpreted as the output of an m-sample delay line of
input y+(n). Similarly, the term y−[(n + m)Ts] = y−(n + m) can be interpreted as the input to an
m-sample delay line with output y−(n).

• Physical wave variables are given by the superposition of traveling waves. In a one-dimensional system,
we can use two systems of unit delay elements to model left- and right-going traveling waves and sum
delay-line values at corresponding “spatial” locations to obtain physical outputs, as depicted below.

. . .

. . .

. . .

. . . z−1 z−1 z−1

z−1 z−1 z−1

y+(n) y+(n− 1) y+(n− 2) y+(n− 3)

y−(n) y−(n+ 1) y−(n+ 2) y−(n+ 3)

y(nTs, 0) y(nTs, 3cTs)

Figure 5: Discrete-time simulation of ideal, lossless wave propagation with observation points at x = 0 and
x = 3X = 3cTs.

• Any ideal, lossless, one-dimensional waveguide can be simulated in this way. The model is exact at the
sampling instants to within the numerical precision of the processing system.

• To avoid aliasing, the traveling waveshapes must be initially bandlimited to less than half the sampling
frequency.

• In many modeling contexts, the calculation of physical output values can be limited to just one or two
discrete spatial locations. Individual unit delay elements are more typically combined and represented
by digital delay lines, as shown below.

. . .

. . .

. . .

. . .

z−M

z−M

y+(n) y+(n−M)

y−(n) y−(n+M)

y(nTs, 0) y(nTs, ξ)

Figure 6: Digital waveguide simulation of ideal, lossless wave propagation using delay lines.

• The delay lines can be initialized with displacement data corresponding to any bandlimited, arbitrary
waveshape.

3.3 Lossy Wave Propagation

• Real wave propagation is never lossless. Sound waves in air lose energy via molecular frictional forces.
Mechanical vibrations in strings are dissipated through yielding terminations, the viscosity of the
surrounding air, and via internal frictional forces. In general, these losses vary with frequency.
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• Losses are often well approximated by the addition of a small number of terms to the wave equation.

• In the simplest case, we can add a frequency-independent force term that is proportional to the trans-
verse string velocity. Using the wave equation derived for the string,

T
∂2y

∂x2
= ϵ

∂2y

∂t2
+ µ

∂y

∂t
,

where µ is the resistive proportionality constant. Assuming the friction coefficient is relatively small,
the following general class of solutions to this equation can be found:

y(t, x) = e−(µ/2ϵ)x/cy+(t− x/c) + e(µ/2ϵ)x/cy−(t+ x/c).

When this solution is sampled, we get

y(tn, xm) = gmy+(n−m) + g−my−(n+m),

where g = e−µTs/2ϵ.

. . .

. . .

. . .

. . .

z−1 z−1 z−1

z−1 z−1 z−1

y+(n) g g g

y−(n) g g g

y(nTs, 0) y(nTs, 2cTs)

Figure 7: Discrete-time simulation of ideal, lossy wave propagation.

• Because the system is linear and time-invariant, the loss terms can be commuted and implemented at
discrete points for efficiency.

• In the more realistic situation where losses are frequency dependent (and typically of “lowpass” char-
acteristic), the g factors are replaced with frequency responses of the form G(ω). These responses can
likewise be commuted and implemented at discrete spatial locations within the system.

3.4 Wave Scattering

• When a traveling-wave component experiences a change in wave impedance, it will be partly reflected
from and partly transmitted through the impedance discontinuity in such a way that energy is con-
served. This is referred to as wave scattering.

f+
0

f−
0

f+
1

f−
1

R0 R1

Figure 8: A string density discontinuity and associated traveling-wave scattering.

• Figure 8 depicts a string density discontinuity and associated traveling force wave components on each
side of the junction.
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• At the junction, we must have continuity of the medium, or there must be a common transverse string
velocity at that point. Similarly, the forces on each side of the junction must be balanced.

• These constraints can be written

f0 + f1 = 0 (forces on a massless point must balance)

v0 = v1 (string does not break)

• Let v denote the common transverse velocity of the string at the junction. Then the traveling-wave
components of velocity can be written vi = v+i + v−i or v−i = v − v+i .

• We can then write

0 = f0 + f1 =
(
f+
0 + f−

0

)
+

(
f+
1 + f−

1

)
= R0

(
v+0 − v−0

)
+R1

(
v+1 − v−1

)
= R0

(
2v+0 − v

)
+R1

(
2v+1 − v

)
,

which can be solved for v as

v = 2
R0v

+
0 +R1v

+
1

R0 +R1
.

• Solving these expressions in terms of the outgoing traveling-wave components,

v−0 = v − v+0 = −R1 −R0

R1 +R0
v+0 +

2R1

R1 +R0
v+1

v−1 = v − v+1 =
2R0

R1 +R0
v+0 +

R1 −R0

R1 +R0
v+1 .

• It is standard to define the reflection coefficient

ρ
∆
=

R1 −R0

R1 +R0
,

which then allows us to write

v−0 = −ρv+0 + (1 + ρ)v+1
v−1 = (1− ρ)v+0 + ρv+1 .

• Figure 9 provides a block diagram implementation of the equations above. This is equivalent to a
Kelly-Lochbaum junction representation [Kelly and Lochbaum, 1962].

v−0

v+0

v+1

v−1

−ρ

1 + ρ

ρ

1− ρ

Figure 9: A traveling-wave scattering junction block diagram.

• The scattering equations can also be written

v−0 = v+1 + ρ(v+1 − v+0 )

v−1 = v+0 + ρ(v+1 − v+0 ),

which requires only one multiplication and three additions (as diagrammed in Fig. 10).
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v−0

v+0

v+1

v−1
−

ρ

Figure 10: A one-multiply traveling-wave scattering junction block diagram.

3.5 Boundary Conditions

• Thus far, we have only considered wave propagation along or within a one-dimensional medium of
seemingly infinite length. In an anechoic or non-reflecting waveguide, waves traveling in only one
directon may exist and can thus be simulated with just a single delay line.

• In most situations, however, the media in which waves travel are of finite length and reflections occur
at the boundaries that give rise to waves traveling in two directions per dimension.

• The simplest case is an ideal termination that is completely rigid.

• If we consider a string to be fixed at a position L, the boundary condition at that point is y(t, L) = 0
for all time. From the traveling-wave solution to the wave equation, we then have y+(t − L/c) =
−y−(t + L/c), which indicates that displacement traveling waves reflect from a fixed end with an
inversion (or a reflection coefficient of -1).

• The simulation of ideal displacement wave motion in a string rigidly terminated at both its ends (and
without losses) is shown in the figure below.

−1

z−M

z−M

−1y(ξ, nTs)

Figure 11: Digital waveguide simulation of wave propagation on a string fixed at both ends.
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