
MUMT 618: Week #5

1 String Instrument Acoustics

As we will see in this and subsequent sections, most musical instruments can be analyzed in terms of three
principle vibrational components: a waveguide, an output filtering system, and an energy input mechanism.
The corresponding elements of a general string instrument are its strings, body, and plucking, striking, or
bowing techniques, respectively.

1.1 The String as a Waveguide

• The uniform stretched string forms a one-dimensional waveguide along which mechanical waves can
travel with a constant speed of propagation (ignoring for the moment other dimensions of wave prop-
agation).

• The time evolution of the string’s shape is given by the linear superposition of traveling-wave compo-
nents propagating in opposite directions along the string (Matlab example).

• The resonance frequencies (or normal modes) of the string are determined by its length, the wave speed
of propagation, and the boundary conditions at each of its ends.

• For a string of length L, fixed at each of its ends, a discrete set of standing-wave patterns is possible
with frequencies given by integer multiples of f0 = c/(2L), where c is the speed of wave propagation
on the string. These standing-wave frequencies correspond to the resonances of the system.

• The extent to which the resonance frequencies of the string are present in any particular string vibration
pattern is determined by the way the system is driven or excited.

• The stiffness of the string produces a restoring force that was neglected in our derivation of the wave
equation. When we account for this force, the string modes are “stretched” from perfect harmonic
relationships (with greater stretching for higher modes).

• For thin metal strings, the decay time is determined mostly by air viscosity. For gut or nylon strings,
internal damping is dominant for most modes.

1.2 String Energy Input Mechanisms

1. The Plucked String:

• Plucking a string provides it with an initial energy displacement (potential energy).

• The shape of the string before its release completely defines the harmonic signature of the resulting
motion.

• A string plucked at 1/nth the distance from one end will not have energy at the nth partial and
its integer multiples.

• The strength of excitation of the nth vibrational mode is inversely proportional to the square of
the mode number.
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2. The Struck String:

• A struck string is given an initial velocity distribution (kinetic energy).

• A string struck at 1/nth the distance from one end will not have energy at the nth partial and
its integer multiples.

• The harmonic amplitudes in the vibration spectrum of a struck string fall off less rapidly with
frequency than those of plucked strings.

• Light “hammers” (mass much less than the mass of the string) result in little spectral drop-off
with frequency. Heavier hammers produce a drop-off roughly proportional to the inverse of the
mode number.

3. The Bowed String:

• “Stick-slip” mechanism: During the greater part of each period, the string is “stuck” to the bow
and is carried with it in its motion. Then the string suddenly detaches itself and moves rapidly
backward until it is caught again by the moving bow.

• Beginning and end of the slipping are triggered by the arrival of the propagating bend or “kink”.

• The string’s vertical motion at any one point is given by a sawtooth pattern.

• Round trip time depends only on the string length and the wave velocity.

• Bowing near the string end requires greater force and produces a louder, brighter sound than
bowing farther from the end.

• Amplitude of vibration can be increased either by increasing the bow speed or by bowing closer
to the bridge.

1.3 String Instrument Bodies

1.3.1 The Violin Body

The violin is probably the most studied musical instrument today, with important analyses dating back over
100 years and including contributions from Helmholtz and the Nobel laureate C.V. Raman [Helmholtz, 1954,
Raman, 1918].
An excellent review of the acoustics of the violin is provided by Woodhouse [2014]. Another excellent review
is provided by Gough [2016].

1. Air and Wood Modes:

• For a violin, there are typically three or four important body resonances below 1 kHz. These
include the first air mode, the T1 top plate mode, and the third and fourth “corpus” modes.

• Above 1 kHz, the mode structure is usually difficult to decipher, though a concentration of reso-
nances around 2 to 3 kHz (the “bridge hill”) appears to be important (related to perception).

2. Tuning Top and Back Plates:

• Various techniques exist to measure the modal frequencies of the various components (Chladni
patterns, force hammers, hologram interferometry).

• Complete systems, however, will have different mode structures than the individual plates.

• Colin Gough has contributed a number of research papers that help explain the transition from
free plate modes to complete violin-like body modes [Gough, 2015b,a, 2000].

3. The Bridge:

• The bridge transforms the motion of the vibrating string into a driving force on the top plate of
the instrument.

• The violin bridge typically has strong resonances around 3000 and 6000 Hz.
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Figure 1: A comparison of admittances for two different violins.

• The bridge must move a small amount in order to transfer energy from the string to the body.
For most musical instruments, however, the rate of energy transfer from the string to the bridge
and soundboard is quite small (energy decay in the string is most affected by air viscosity and
internal string damping).

1.3.2 Other Stringed Instruments

1. Guitars:

• At low frequencies, sound radiation occurs from both plates. At high frequencies, however, most
of the radiated sound comes from the top plate.

2. Electric Guitars:

• The body has less effect on the sound. Electrical circuits replace the body filtering function.

3. Pianos: to be discussed in a subsequent week

2 String Modeling

In this section, we investigate digital waveguide methods for modeling simple string instruments.

2.1 Ideal Rigid and Free Terminations

• At a fixed end, the string’s transverse displacement is zero. Consider the general traveling wave solution
to the wave equation: y(t, x) = y+(ct− x) + y−(ct+ x). If the string is fixed at x = 0, then y(t, 0) = 0
and y+(ct) = −y−(ct), which indicates that displacement traveling waves reflect from a fixed end with
an inversion (or a reflection coefficient of -1).
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• Since the displacement at a rigid termination is always zero, the physical velocity must also be zero for
all time. Therefore, traveling-wave components of velocity will also reflect with a reflection coefficient
of -1 at such a boundary.

• Force and velocity traveling-wave components are related by the wave impedance as f+ = Rv+, f− =
−Rv−. At a rigid terminiation, v+ = −v− (from above). Thus, force wave components can be related
at a rigid termination as:

f+ = Rv+ = R(−v−) = −Rv− = f−.

From this, we see that traveling-wave components of force are related by a reflection coefficient of +1
at a rigid termination.

• At a free end, ∂y/∂x = 0 because no transverse force is possible. At such a boundary, traveling-wave
components of force must reflect with a coefficient of -1. To determine the reflection coefficient for
displacement waves, we first note that force waves are proportional to the string slope. Differentiation
of our general traveling-wave solution by x leads to (see this link):

∂

∂x
y(t, x) = 0 = −1

c

∂

∂t
y+(t− x/c) +

1

c

∂

∂t
y−(t+ x/c),

After integrating this expression with respect to time, we have y+(t) = y−(t) at x = 0, indicating that
displacement traveling waves reflect with a coefficient of +1.

2.2 The Ideal Plucked String

• The simulation of displacement wave motion in a string rigidly terminated at both its ends (and without
losses) is shown in the figure below.
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z−M

−1y(ξ, nT )

Figure 2: Digital waveguide simulation of ideal lossless wave propagation on a string fixed at both ends (with
pluck initialization).

• An ideal plucked string is defined as having an initial displacement and zero initial velocity. In the
model, the delay lines should be initialized with displacement data corresponding to some arbitrary
initial string shape (as illustrated in the figure above by the dashed lines).

• Because the physical displacement of a string is given by the superposition of left- and right-going
traveling waves, the initial amplitude of each delay-line section should be half the amplitude of the
initial, physical string displacement.

• The initial displacement shape must be bandlimited to half the discrete-time sample rate. Because
sharp corners imply an infinite bandwidth, plucking points should be rounded to some extent. In fact,
this is physical given the stiffness of real strings and the finite size of plectra.

• It is possible to use digital waveguide models to simulate other wave variables as well, such as velocity
or acceleration waves. Note that an ideal pluck shape corresponds to positive and negative acceleration
impulses.
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• The simulation of velocity wave motion in a string rigidly terminated at both its ends (and without
losses) is shown in the figure below (for the pluck displacement shown above).
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Figure 3: Digital waveguide velocity-wave simulation of ideal lossless wave propagation on a string fixed at
both ends (with pluck initialization).

• For the moment, we ignore the fact that the string vibrations are influenced and filtered by the body
resonances before being transmitted into the air.

2.3 The Ideal Struck String

• An ideal struck string involves zero initial displacement and a nonzero initial velocity distribution.

• The simulation of velocity wave motion in a struck string rigidly terminated at both its ends (and
without losses) is shown in the figure below.
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Figure 4: Digital waveguide velocity-wave simulation of ideal lossless wave propagation on a string fixed at
both ends (with strike initialization).

• For the struck string, simulation of velocity waves is more natural. Alternately, the initial velocity
distribution could be integrated with respect to x from x = 0, divided by c, and negated in the upper
rail to obtain the equivalent initial displacement (since v± = ±f±/R = ∓cy′±, where R is the wave
impedance of the string).

• The simulation of displacement wave motion in a struck string rigidly terminated at both its ends (and
without losses) is shown in the figure below (for the strike initialization shown above).

2.4 Damping & Stiffness

• Real wave propagation along strings involves losses and dispersion.
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Figure 5: Digital waveguide displacement-wave simulation of ideal lossless wave propagation on a string fixed
at both ends (with strike initialization).

• Propagation losses are generally frequency-dependent. In general, damping will increase with frequency.

• Losses in strings have been investigated by Valette [1995], with the main mechanisms involving the
viscous effect of the surrounding air, viscoelasticity and thermoelasticity of the string material, and
internal friction representing both macroscopic rubbing (in multi-stranded and overwound strings) and
inter-molecular effects (in monofilament strings).

• Frequency-dependent losses could be determined on a per sample basis and implemented between each
sample of delay in a digital waveguide model. However, such a scheme would be inefficient and the
design of appropriate digital filters could be difficult.

• Instead, we take advantage of the linear and time-invariant nature of the waveguide structure to
commute and implemented the losses at just a few locations within the model.

• In order to maintain stability (passivity),
∣∣∣Ĝ(ejωT )

∣∣∣ ≤ 1.

• A string fixed at both ends can be implemented with two delay lines, a discrete-time filter Ĝ(z)
representing losses and inversion at the bridge, and an inversion representing reflection from the nut,
as shown below. Additional simplifications are possible.

−1

z−M

z−M

Ĝ(z)y(ξ, nT )

Figure 6: Digital waveguide simulation of dispersive wave propagation on a string fixed at both ends.

• String stiffness produces dispersion, or a variation of wave propagation speed with frequency. The
use of an allpass filter in the string loop is effective in accurately simulating such dispersion (to be
discussed in a subsequent week).

2.5 Simulating Pluck/Strike Position

• From string acoustics, we know that a string plucked at 1/nth the distance from one end will not have
energy at the nth partial and its integer multiples.
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• If we initialize the delay lines of a waveguide model with a particular plucked string shape, the pluck
position “filtering” is automatically included (it’s defined by the initial energy profile that is defined
by the initial shape).

• In practice, however, it is common that the delay lines are either initialized with noise or driven with
an external input signal (in which case they are initialized with zeros).

• Pluck position filtering can be simulated with a feedforward comb filter, which creates notches in the
frequency magnitude response at equal frequency intervals.

x[n] z−M
bM

b0

y[n]

Figure 7: A feedforward comb filter block diagram.
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Figure 8: Magnitude response of a feedforward comb filter with M = 5, b0 = 1, and g = bM = 0.1, 0.5, and
0.9.

• For bM > 0, there are M peaks in the frequency response, centered about the frequencies ωk =
2πk/M, k = 0, 1, . . . ,M − 1. Between these peaks, there are M notches at intervals of fs/M Hz.

2.6 Commuted Waveguide Synthesis

Plucked string instruments are well modeled as linear systems and this allows great flexibility in the way
they are implemented. Commuted synthesis takes advantage of this fact and provides a highly efficient way
of producing high quality plucked-string sounds.

• The model components discussed thus far only account for vibrations of the string. In order to con-
vincingly simulate a complete string instrument system, we must also account for the bridge and body
response, as well as radiation patterns into the surrounding environment.

• Assuming we could develop representative filters for the various components of a string instrument,
the output response of the complete system would be diagrammed and computed as shown below:

7



Excitation Waveguide Body Air
Output

“Classic Model”

• For plucked or ideally struck strings, each component of the system is linear and time-invariant. There-
fore, the system components can be rearranged without affecting the overall output.

• The body response of a string instrument is complex and generally requires a high-order digital filter to
accurately simulate. However, by taking advantage of system commutativity, it is possible to record a
body “impulse response” and use it as the string excitation. This technique is referred to as commuted
waveguide synthesis. As shown, it is also possible to commute the radiation directivity response.

Body/Air Waveguide

“Commuted Synthesis Model”

Output

• When using commuted synthesis, body size can be roughly simulated with the body response playback
rate, which shifts the body resonances higher or lower in frequency. This technique is demonstrated in
the STK Mandolin class, which implements commuted synthesis of a two string mandolin instrument.

• For commuted synthesis, it is possible to pre-filter the input signal with a given pluck position filter.
To maintain synthesis parameter flexibility, this is typically done during the synthesis computation.

2.7 Coupled Strings

• Figure 9 depicts the case of two strings that terminate at a common, non-rigid bridge of impedance
Zb(ω).

V +
1 (ω)

V −
1 (ω)

V +
2 (ω)

V −
2 (ω)

Zb(ω)Fb(ω)
+

−
Vb(ω) = V1(ω) = V2(ω)

Figure 9: Two strings terminated at a common bridge impedance.

• The constraints at the junction are:

fb = f1 + f2 (string forces balanced by bridge force)

vb = v1 = v2 (common velocity at bridge).

• The bridge impedance relates the force and velocity at the bridge as Fb(ω) = Zb(ω)Vb(ω).

• Expanding the traveling wave components in the frequency domain,
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Zb(ω)Vb(ω) = Fb(ω) = F1(ω) + F2(ω)

=
[
F+
1 (ω) + F−

1 (ω)
]
+

[
F+
2 (ω) + F−

2 (ω)
]

= R1

{
V +
1 (ω)−

[
Vb(ω)− V +

1 (ω)
]}

+R2

{
V +
2 (ω)−

[
Vb(ω)− V +

2 (ω)
]}

or
Vb(ω) = Hb(ω)

[
R1V

+
1 (ω) +R2V

+
2 (ω)

]
where Ri is the impedance of string i and

Hb(ω)
∆
=

2

Zb(ω) +R1 +R2
.

• In the time-domain, we scale each incoming string velocity, sum them together, and filter according to
the transfer function Hb(ω) = 2/ [Zb(ω) +R1 +R2] to obtain the velocity of the bridge.

• The subsequent outgoing velocities are then found by

v−1 (t) = vb(t)− v+1 (t)

v−2 (t) = vb(t)− v+2 (t).

• This analysis can be generalized to the case of N coupled strings without much difficulty.

2.8 Coupled Dimensions of Vibration

• In real string instruments, wave motion is possible in at least four dimensions corresponding to hori-
zontal and vertical transverse motion, longitudinal motion, and especially for bowed strings, torsional
waves.

• If the string terminations were perfectly rigid, the horizontal and vertical transverse polarizations would
be largely independent and we could model them with two identical, uncoupled, filtered delay loops,
as shown in Fig. 10.

f+
h [n]

f−
h [n]

f+
v [n]

f−
v [n]

Hl(z)

Hl(z)

z−N

z−N

Figure 10: A digital waveguide simulation of a rigidly terminated string vibrating in two uncoupled planes
of vibration.

• For terminations that are yielding to some extent, there will be coupling between various planes of
vibration. We can simulate linear coupling with digital filters that connect the two planes of vibration
together (as shown in Fig. 11 below).

• If the coupling is symmetric, Hvh(z) = Hhv(z).
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Hhh(z)

Hhv(z)

Hvv(z)

Hvh(z)

Hl(z)

Hl(z)

z−N

z−N

Figure 11: A digital waveguide string simulation with coupled horizontal and vertical planes of vibration.

3 Measurement Approaches

Measurements of music instrument vibrational characteristics can be used in various ways, including:

1. To gain a better understanding of the mechanical or acoustic behaviour of the system;

2. To derive or extract parameters to be used in analytic or synthesis models;

3. To compare different instruments or parts of instruments; and

4. To verify the accuracy of models.

In this section, we briefly survey some of the more common measurement approaches used with music
instruments.

3.1 Types of Measurements

• Input impedance or admittance

• Radiation transfer functions (ex. bridge to air)

• Experimental modal analysis (EMA)

• Fluid flow / velocity (hot-wire systems)

• Internal or radiated pressures (including in player’s mouth)

• Holographic interferometry (ex., electronic speckle-pattern interferometry)

3.2 Structural Input Admittance or Mobility

• Excitation and response applied at the bridge, in up to 3 dimensions.

• Ideally, the excitation is applied with a light hammer that will not mass load the structure and that
has an embedded force transducer to report the actual force applied.
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Figure 12: An example image generated by an electronic speckle-pattern interferometry measurement.

• Excitation of very light objects with a shaker is likely to lead to mass loading.

• The resulting vibrations of the structure are ideally measured with a non-contact system, such as a
laser-doppler vibrometer. However, it is also possible to use very light-weight accelerometers (0.2 or
0.3 grams).

• Provides information about resonance peak frequencies and magnitudes, as seen by the strings.

• It is important to consider the way an instrument is mounted, either to avoid undesirable vibrations
from the mount itself or in an effort to mimic the conditions of the instrument when played (or the
conditions of a model that it will be compared to).

• Several measurements are typically averaged to suppress noise but it is necessary to monitor the
coherence of multiple measurements and have the ability to discard measurements that are inconsistent.

• For string instrument bodies, there is no known “best” peak frequency and magnitude values, though
“signature” modes tend to be present in certain frequency ranges.

• It is not possible to say with certainty what the mode shapes are for any particular admittance peak.
For that, it is necessary to use EMA, holographic interferometry or chladni pattern techniques.

3.3 Acoustic Impedance

• Typically measured with special-purpose probes using two or more microphones.

• However, a few commercial sensors are available for musical acoustic applications (BIAS, CapteurZ),
though they tend to be expensive.

• Most probes require a calibration step, involving one or more measurements.

• Changes in air temperature should be avoided, as they require recalibration.

• It is important to avoid air leaks, which are sometimes hard to suppress. Blue gum or vaseline is useful
for this purpose.

• For an acoustic resonator, we would like our resonator to have as many harmonically aligned peaks as
possible, with the fundamental being the strongest.
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Figure 13: A comparison of admittances for two different violins.

3.4 Data Processing for Filter Design

• If measured data is to be used within a synthesis environment that includes a feedback loop (such as
to characterize the body response of a violin), it is imperative that the resulting digital filter structure
be designed in such a way as to guarantee passivity.

• Measured responses tend to have some noise, so the filter design should allow smoothing or the ability
to exclude certain parts of the response.
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Figure 14: The measured input impedance for the lowest note on an alto saxophone.
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Figure 15: A measured violin admittance and a discrete-time fit using a parallel bank of second-order filters.
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