References

F. Avanzini and M. van Walstijn.
Modelling the mechanical response of the reed-mouthpiece-lip system of a clarinet. Part 1. A one-dimensional distributed model.
Acta Acustica united with Acustica, 90 (3): 537-547, 2004.

J. Backus.
Vibrations of the reed and air column in the clarinet.
Journal of the Acoustical Society of America, 33 (6): 806-809, Mar. 1961.

J. Backus.
Small-vibration theory of the clarinet.
Journal of the Acoustical Society of America, 35 (3): 305-313, Mar. 1963.

J. Backus.
The effect of the player's vocal tract on woodwind instrument tone.
Journal of the Acoustical Society of America, 78 (1): 17-20, July 1985.

A. H. Benade.
Fundamentals of Musical Acoustics.
Oxford University Press, New York, 1976.

A. H. Benade.
Air column, reed, and player's windway interaction in musical instruments.
In I. R. Titze and R. C. Scherer, editors, Vocal Fold Physiology, Biomechanics, Acoustics, and Phonatory Control, chapter 35, pages 425-452. Denver Center for the Performing Arts, 1985.

A. H. Benade and P. L. Hoekje.
Vocal tract effects in wind instrument regeneration.
Journal of the Acoustical Society of America, 71: S91, 1982.

V. Chatziioannou and M. van Walstijn.
Estimation of clarinet reed parameters by inverse modeling.
Acta Acustica united with Acustica, 98: 628-639, 2012.

P. G. Clinch, G. J. Troup, and L. Harris.
The importance of vocal tract resonance in clarinet and saxophone performance: A preliminary account.
Acustica, 50: 280-284, 1982.

P. R. Cook.
Identification of Control Parameters in an Articulatory Vocal Tract Model, With Applications to the Synthesis of Singing.
PhD thesis, Elec. Eng.., Stanford University, Dec. 1990.

W. Coyle, P. Guillemain, J. Kergomard, and J. Dalmont.
Predicting playing frequencies for clarinets: A comparison between numerical simulations and simplified analytical formulas.
Journal of the Acoustical Society of America, 138 (5): 2770-2781, 2015.

A. da Silva, G. Scavone, and M. van Walstijn.
Numerical simulations of fluid-structure interactions in single-reed mouthpieces.
Journal of the Acoustical Society of America, 122 (3): 1798-1810, 2007.

J. Dalmont, C. J. Nederveen, V. Dubos, S. Ollivier, V. Méserette, and E. Sligte.
Experimental determination of the equivalent circuit of an open side hole: Linear and non linear behavior.
Acta Acustica, 88: 567-575, 2002.

V. Dubos, J. Kergomard, A. Khettabi, J. Dalmont, D. Keefe, and C. Nederveen.
Theory of sound propagation in a duct with a branched tube using modal decomposition.
Acta Acustica, 85: 153-169, 1999.

N. H. Fletcher and T. D. Rossing.
The Physics of Musical Instruments.
Springer-Verlag, New York, 1991.

P. Guillemain.
A digital synthesis model of double-reed wind instruments.
Eurasip Journal on Applied Signal Processing, 4 (7): 990-1000, June 2004.

P. Guillemain, J. Kergomard, and T. Voinier.
Real-time synthesis of clarinet-like instruments using digital impedance models.
Journal of the Acoustical Society of America, 118 (1): 483-494, July 2005.

H. Helmholtz.
On the Sensations of Tone as a Physiological Basis for the Theory of Music.
Dover Publications, Inc., New York, 1954.
Translated by Alexander J. Ellis from the 4th German Edition of 1877.

A. Hirschberg, R. W. A. van de Laar, J. P. Marrou-Maurières, A. P. J. Wijnands, H. J. Dane, S. G. Kruijswijk, and A. J. M. Houtsma.
A quasi-stationary model of air flow in the reed channel of single-reed woodwind instruments.
Acustica, 70 (2): 146-154, Feb. 1990.

P. L. Hoekje.
Intercomponent Energy Exchange and Upstream/Downstream Symmetry in Nonlinear Self-Sustained Oscillations of Reed Instruments.
PhD thesis, Case Western Reserve University, 1986.

D. H. Keefe.
Woodwind Tone-hole Acoustics and the Spectrum Transformation Function.
PhD thesis, Case Western Reserve University, 1981.

D. H. Keefe.
Woodwind air column models.
Journal of the Acoustical Society of America, 88 (1): 35-51, July 1990a.

D. H. Keefe.
On sound production in reed-driven wind instruments.
Technical report, University of Washington, School of Music, Systematic Musicology Program, Seattle, Washington, Report No. 9003, 1990b.

J. L. Kelly, Jr. and C. C. Lochbaum.
Speech synthesis.
In Proceedings of the Fourth International Congress on Acoustics, pages 1-4, Copenhagen, Denmark, Sept. 1962.
Paper G42.

A. Lefebvre and G. P. Scavone.
Characterization of woodwind instrument toneholes with the finite element method.
Journal of the Acoustical Society of America, 131 (4): 3153-3163, 2012.

M. E. McIntyre, R. T. Schumacher, and J. Woodhouse.
On the oscillations of musical instruments.
Journal of the Acoustical Society of America, 74 (5): 1325-1345, nov 1983.

C. J. Nederveen.
Acoustical Aspects of Woodwind Instruments.
Frits Knuf, Amsterdam, The Netherlands, 1969.

C. J. Nederveen, J. Jansen, and R. van Hassel.
Corrections for woodwind tonehole calculations.
Acta Acustica, 84: 957-966, 1998.

A. V. Oppenheim and R. W. Schafer.
Discrete-Time Signal Processing.
Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1989.

J. Saneyoshi, H. Teramura, and S. Yoshikawa.
Feedback oscillations in reed woodwind and brasswind instruments.
Acustica, 62: 194-210, 1987.

G. P. Scavone.
An Acoustic Analysis of Single-Reed Woodwind Instruments with an Emphasis on Design and Performance Issues and Digital Waveguide Modeling Techniques.
PhD thesis, Music Dept., Stanford University, March 1997.

R. T. Schumacher.
Ab Initio calculations of the oscillations of a clarinet.
Acustica, 48 (2): 71-85, 1981.

J. O. Smith.
Efficient simulation of the reed-bore and bow-string mechanisms.
In Proceedings of the 1986 International Computer Music Conference, pages 275-280, The Hague, Netherlands, 1986. Computer Music Association.

S. D. Sommerfeldt and W. J. Strong.
Simulation of a player-clarinet system.
Journal of the Acoustical Society of America, 83 (5): 1908-1918, May 1988.

S. E. Stewart and W. J. Strong.
Functional model of a simplified clarinet.
Journal of the Acoustical Society of America, 68 (1): 109-120, July 1980.

S. C. Thompson.
The effect of the reed resonance on woodwind tone production.
Journal of the Acoustical Society of America, 66 (5): 1299-1307, Nov. 1979.

V. Välimäki.
Discrete-Time Modeling of Acoustic Tubes Using Fractional Delay Filters.
PhD thesis, Helsinki University of Technology, Faculty of Electrical Engineering, Laboratory of Acoustic and Audio Signal Processing, Espoo, Finland, Report no. 37, Dec. 1995.

V. Välimäki, M. Karjalainen, and T. I. Laakso.
Modeling of woodwind bores with finger holes.
In Proceedings of the 1993 International Computer Music Conference, pages 32-39, Tokyo, Japan, 1993. Computer Music Association.

M. van Walstijn.
Discrete-Time Modelling of Brass and Reed Woodwind Instruments with Applications to Musical Sound Synthesis.
PhD thesis, University of Edinburgh, 2002.

M. van Walstijn and F. Avanzini.
Modelling the mechanical response of the reed-mouthpiece-lip system of a clarinet. Part 2. A lumped model approximation.
Acta Acustica united with Acustica, 93: 435-446, 2007.

T. A. Wilson and G. S. Beavers.
Operating modes of the clarinet.
Journal of the Acoustical Society of America, 56 (2): 653-658, Aug. 1974.

T. D. Wilson.
The measured vocal tract impedance for clarinet performance and its role in sound production.
Journal of the Acoustical Society of America, 99 (4): 2455-2456, Apr. 1996.

W. E. Worman.
Self-Sustained Nonlinear Oscillations of Medium Amplitude in Clarinet-Like Systems.
PhD thesis, Case Western Reserve University, 1971.



McGill ©2004-2016 McGill University. All Rights Reserved.
Maintained by Gary P. Scavone.