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All-Combinatorial Hexachord Tester

MIRROR INVERSION, which will be our chief concern in this study, is a phenomenon not
confined music.  It  is  a  structural  form  in  nature itself;  therefore its  appearance in  music
should not surprise no one.1

We,  human,  thinker,  creator,  composer  have  always  been  drawn  towards  new ways  to
organize  or  conceptualize  the  various  components  of  a  given  system.  Western  music
tradition makes no exception. At the turn of the 20 th century, interest for a refreshing way of
organizing harmony and melody arose: twelve-tone technique, or dodecaphony. Leaving out
and even  avoiding  any  reference to  the  codes  of  functional  diatonic  music,  this  radical
approach steered abruptly our view of music. The very first individuals that delved into this
realm of new possibilities are Charles Ives, Josef-Mattias Hauer and of course the famous
Arnold Schoenberg. Although those composers left wonderful and intricate music behind,
they did not explicitly discussed nor documented some specific theorical concepts. One of
them  is  around  the  issue  of  constructing  a  distinct  type  of  twelve-tone  row  that  is
characterized by its all-combinatoriality.

All-Combinatoriality: the capacity of a collection to create aggregates with forms of itself and
its complement under both transposition and inversion. (Babbitt, 1987).

This very topic is the one I tackled in my project. More precisely, my objective was to create
a C++ program that could test an hexachord entered by the user and output if true/false the
given hexachord adheres to the all-combinational properties covered and if so with which
point(s) of inversion. 

The core reference for this project was “The Hexachord and its Relation to the 12-Tone Row”
by George Rochberg (1955, Theodore Presser Company). In this book, Rochberg dissects 
the subject of all-combinationality when building twelve-tone rows. He proceeds empirically 
by firstly demonstrating assorted rows taken from various works by Schoenberg, then 
gradually identifying patterns or laws that he finally consolidate in a set of 3 clear rules. 
Those rules are the following:

RULE 1. Any one horizontal interval plus the mirror interval (or point of inversion) cannot equal
12 (or a multiple of 12).

RULE 2. Any two horizontal intervals plus mirror interval cannot equal 12 (or a multiple of 12).

RULE 3. Any double one interval plus the mirror interval must not equal 12 (or a multiple of 
12).

1 Taken from the Foreword of Rochberg’s book.



Notes about hexachordtester.cpp:

To run the program, the user must first compile the file then run the program entitled 
“hexachordtester” with the desired hexachord included in the same command, as follow:

./hexachordtester 0,1,2,3,4,5

If the user inputs more or less than 6 pitch class, the program will notify him/her. 

The C++ file should be self-explanatory. Fundamentally, the formulas representing the three 
rules are fairly basic. I left comments either pointing a meaningful component/element or 
explaining how the structure was envisioned. What follows is extra information regarding 
certain architectural decisions and then suggest improvements for a future update. 

About order of the rules: in the code, the rules are processed (tested) in the order of rule 1,
rule 3 and rule 2. This was a suggestion from Sevag, who is a professional system-reliability
engineer. I am mentioning his title because only someone who has considerable experience
in large-scale  projects  will  have the thought  of  ordering the different  operations by their
computational cost from cheap to high. In fact, we can easily conceive that:

RULE 1 is the cheapest of all, only executing an addition between the points of inversion and
the 6 notes of the hexachord

RULE 3  is  following  by  executing  a  simple  multiplication  (x2)  of  every  6  notes  of  the
hexachord followed by an addition with the points of inversion.

RULE 2 is the most expensive, by having to test both the vector of the hexachord with itself
but also with the “mirrored hexachord” (again with itself), added to the points of inversion.

As it is in the current file, the very moment the hexachord does not respect a rule, a “false”
message is  instantaneously registered in  relation to the given point  of  inversion and the
following  rule(s)  are  bypassed,  thus  sparing  the  computer  from superfluous  operations.
However,  in  the  case  of  small  fixed  size  vectors  and  powerful  modern  computer,  this
optimization is not tangible. Also, this method has the slight downside that the user cannot
know and  retrace  which rule  was  not  adhered  to.  For  better  clarity,  I  could  adjust  the
program to output the result of each rule for every point of inversion instead of a generic “fail/
succeed” message. 

About RULE 3: towards the end of his book, Rochberg converts RULE 3 in a sort of premise.
In fact, one can quickly comprehend that any even-numbered point of inversion added to
any duplicated note will soon or later = 12 (or a multiple 12). Inversely, one can perceive that
any odd-numbered point of inversion added to any duplicate note will  never = 12 (or any
multiple of 12), as x*2 + yodd ≠ 12 (or any zeven). This explains why I hard-codded the points of
inversion 1, 3, 5, 7, 9 and 11 in the vector holding the points of inversion. Thus, RULE 3 is
presently never executed and is redundant. If desired, one could remove the fixed value and
let the program test the program for every points of inversion between 1 and 11, including
even numbers, which will make veritable use of RULE 3. 


