
Final Project

MAX/MSP Looper and automatic drum
player

MUMT 306: Music Audio Computing I

Autumn 2020
Schulich School of Music

McGill University

Last updated : December 10, 2020

Siméon Le Grand 260999667

1

Final Project Report – Siméon Le Grand (260999667)

Contents
1 Objectives 3

2 MAX/MSP Patch 3
2.1 Overview . 3

2.1.1 Trigger the recording . 3
2.1.2 Buffer~/Groove~ loop and drum . 4
2.1.3 Beat detection . 6
2.1.4 Transport bar . 7
2.1.5 Master start/stop . 8

3 Issues 8

4 Shortcomings 9

5 Future development 9

6 Sources 10

Autumn 2020 MUMT 306: Music Audio Computing I 2/10

Final Project Report – Siméon Le Grand (260999667)

1 Objectives
The objectives of this patch are fairly straight forward. The main goal is to be able to record a
loop of any audio signal and add drums on top of that. The drum are to be played automatically
and in sync with the rest of the loop. This implies that there must be a tempo detection algorithm
that allows the drums to sync up with the loop. The recording process of the loop is to be the
same as is typical of looper pedals that guitarists use. Meaning you tap once with your foot on the
pedal, the recording starts, you tap another time and the recording ends. Also, when playing the
loop over a long period of time, there should be no drift between the loop and the drums. Meaning
that the drums and loop should still be in sync even if they have been playing for a long time. This
is to be implemented by using the software MAX/MSP.

2 MAX/MSP Patch

2.1 Overview

The MAX/MSP patch can be broken into multiple components. The first section is the trigger
of the looper. This is where the audio loop is told to start and stop recording. First, a trigger
detection must be used to know when to start and stop recording. Then the audio must be recorded
in the buffer from where it can be played back.

This is the second section of the patch. Buffer~ and groove~ objects are used to store and
playback the recording. This is the case for both the loop and the drum section.

The third section is beat detection. This is to be done by using an algorithm found in the max
objects database. The object that was chosen for this project is op.beatitude~ made by Olivier
Pasquet in 2005. This algorithm takes in an audio stream as an input and outputs a BPM. This
BPM can then be used to set the tempo of the global transport and therefore of the drums.

The fourth section of the patch is the global transport. Global transport is a feature of
MAX/MSP that allows the user to set a master tempo that will be followed by the whole patch.
This allows for synchronization of different audio files. It is more precise than the metro object
which can have some trouble with synchronization due to the start-up of the object.

The fifth section of the patch is the drum section. Drums are read from an audio file. Typically a
.wav file. This section is very similar to the audio loop. It will therefore be analyzed in conjunction
with the loop section.

The final section is the start/stop buttons. These are simply buttons to start and stop the audio
playback. Their bangs are sent via the send and receive objects which trigger a few components to
start and stop the playback.

2.1.1 Trigger the recording

The first part of the looper is the foot switch. This is used to start and stop recording. To start and
stop recording, you must simply send a bang into the record~ object. This is achieved by analyzing
channel 2. This is where a foot switch or trigger of some sort should be connected. This signal is
first amplified by a factor of 75. This is simply to make sure the trigger is well received. While

Autumn 2020 MUMT 306: Music Audio Computing I 3/10

Final Project Report – Siméon Le Grand (260999667)

doing tests it was realized that the foot switch that was used didn’t always saturate. Therefore this
amplification makes sure that the trigger is well received. A meter~ object then convert the MSP
signal into a MAX value. After that a number object is used to limit the value to 1. This is then
fed into a change object that outputs a number only if there is a change on the input. Finally a
select object is used to output a bang only if the input matches 1. This is finally fed into the record
object. This section can be seen as a way of converting a signal into a bang that is triggered when
the channel saturates.

Figure 1: Trigger section of the looper

The next section is the use of the timer object. This is used to determine the total length of
the loop. The bang from the foot switch section is fed into a bangbang object. The outlets of this
are sent to the timer object. This calculates the total time of the loop which is then fed into the
record~ and groove~ objects to tell the recording end point Loop maximum.

2.1.2 Buffer~/Groove~ loop and drum

The following section of the patch is the use of the buffer~ and groove~ objects in conjunction. The
setup is the same for both the loop and drum parts. Therefore they will be analyzed together. The
basic principle is that a buffer of 30000ms is declared with the buffer~ object. The buffer is then
controlled via the groove~ object. To link the two they must simply have the same first argument,
in this case "loop" or "drum". In the case of the loop section, the original buffer length is 30000ms.
The is then cropped to the length that is determined by the timer object. This cropping must be

Autumn 2020 MUMT 306: Music Audio Computing I 4/10

Final Project Report – Siméon Le Grand (260999667)

done so that the groove~ object can properly determine the tempo and length. Audio files can be
opened by the buffer~ object. Before the file is read by the buffer, a new size of 30000ms is assigned
to the buffer. This assures that the buffer will be long enough to accommodate the file. Otherwise,
if the new file is longer than the previous one, the extra length will not be saved.

Figure 2: Use of buffer~ and groove~ with all their different components

A big part of the project happens in the groove~ object. The groove~ object allows for playback
at different rates. Most notably, it allows the audio file to be played back in sync with the master
tempo of the Global Transport. The way this is done is by specifying the length of the played
back file in ticks. Ticks are defined as being 480 ticks per beat. Therefore the number of beats of
the loop needs to be specified. The groove~ object then deduces the tempo of the loop. With the
followglobaltempo attribute selected, it will play back the audio in sync with the global transport.
The output of the groove~ object is then sent to a gain~ object and then to a digital to analog
converter object.

A waveform viewer is a useful tool that allows for a quick visual analysis of what is happening
in the associated buffer. This is achieved with the waveform~ object. There are only three parts
to this objects. First, it is told to which buffer~ it is associated. This is achieved by the "set loop"

Autumn 2020 MUMT 306: Music Audio Computing I 5/10

Final Project Report – Siméon Le Grand (260999667)

message. Secondly, the total display length is set. Finally, a scrubber bar is passed through the
waveform~ object. This allows for a quick view of where the playback is. This scrubber bar is
achieved with the help of the second output of the groove~ object. This is a signal that goes from
0 to 1 and represents where the playback is. The algorithm to create a bar that goes through the
waveform~ object was taken from the MAX/MSP forum. A link can be found in the patch.

2.1.3 Beat detection

The beat detection section is used to set the global transport tempo. This way, it is not up to
the user to determine the loops tempo. This beat detection is done by using op.beatitude~ object
that was designed by Olivier Pasquet. This was found in the max objects database. To use this
object, simply feed it the MSP signal from which that is to be analyzed. Turn on the object, set
the memory length and finally give the object a minimum and maximum tempo. If this setting is
too wide, the result of the analysis won’t be right.

Figure 3: Beat detection

This object does suffer from reliability issues. As mentioned, if the min/max tempo setting is
too wide, the object will return a bad tempo. Even if these settings encompass the tempo correctly,
the tempo might still be off by a few BPM’s. In the case of this patch, it is not a big problem
since it will only change the playback rate and not the audio analysis.Furthermore, even if the

Autumn 2020 MUMT 306: Music Audio Computing I 6/10

Final Project Report – Siméon Le Grand (260999667)

object is turned off, it can sometimes still change the tempo. One big issue is that the object will
dynamically change the tempo. This means that it might determine multiple tempos for a single
loop. This can be an issue if the loop that is played isn’t perfectly on beat. For example, if it
was recorded live, there might be some slight variations in tempo played by the musician. This
will cause the object to change its output value. This has to be remedied by the user who has to
analyze the BPM and determine the one that is right.

2.1.4 Transport bar

The transport bar is simply used as a global metronome. The tempo that is determined in the beat
detection section is fed into the tempo setting of the transport object. The groove~ objects sync
to the global transport. That is how they manage to stay in sync.

Figure 4: Transport object use to set the tempo of Global Transport

The use of the transport bar also allows for the user to change the tempo of the playback by

Autumn 2020 MUMT 306: Music Audio Computing I 7/10

Final Project Report – Siméon Le Grand (260999667)

changing the value of the tempo setting. Finally, to start the buffers at the same point, they are
always started at the beginning by sending a "0" message in the right inlet of the transport bar.
Thus setting the position in ticks to 0.

2.1.5 Master start/stop

The last section of the patch is the master start/stop buttons. The start button is used to start
the global transport. It also sets the playback speed of the groove object to 1. This means that
the file is read at normal speed when it isn’t synced to the global transport.

Figure 5: Master Start/Stop

The stop button is used to set to same parameters as the start button. It sets the playback
speed of the loops to 0. Essentially pausing them. The also stop the global transport. It also
does one more action than the start button. It resets the position of transport to the beginning.
This way, when the start button is pressed, it will start the loops from the same point, being the
beginning.

3 Issues
There are a few things that proved to be challenging when designing this patch. The first challenge
was the analysis of an MSP stream to be used as a trigger. MSP signals aren’t designed to be used
as triggers and therefore a sort of work around had to be used to properly change the state of the
recording object.

The following problem that was encountered was beat or tempo detection. This issue was solved
by using an object that was preexisting. This simplified the problem a lot. A lot of research had to
be done in order to find an object that worked properly and could be executed in MAX 8. There
are a lot of objects out there that seem to solve this problem but unfortunately aren’t up to date
for MAX 8. Generally, they are 32 bit versions and therefore don’t work on a 64 bit computer.
The object that was found works under the right conditions but can be tricky to use and it does
have some reliability issues as previously explained.

Finally, the biggest issue was that of synchronizing the audio loop and drums. The first iteration
of the loop used MIDI drums. This proved very unreliable to synchronize with the audio loop. A
bang would be sent to both MIDI and audio loop to start but the MIDI drums would start after
the audio loop. Multiple ways were tried to sync the two but nothing worked. A second iteration

Autumn 2020 MUMT 306: Music Audio Computing I 8/10

Final Project Report – Siméon Le Grand (260999667)

used individual samples of kick, hi-hat and snare but this iteration suffered from the same issues as
did the MIDI iteration. Finally, the solution that was implemented was to use a prerecorded audio
file of the drums. This way the buffer~ object could be used to synchronize to global transport.
Furthermore, this also allows for the tempo to be changed at will.

4 Shortcomings
This patch has a few shortcomings. The biggest of them is the fact that the drums need to be
prerecorded into an audio file so that they can be fed into the buffer~ object. When first starting
this patch, the goal was be be able to play the drums either from individual samples or in MIDI
format. For example, the user could chose the drum pattern that was to be played. There is a way
to remedy this. It will be discussed in the following section.

The other shortcomings are due to the nature of live recording a loop by a musician. First of all,
the pedal that is used isn’t necessarily 100% accurate. For example, the pedal I used is a sustain
pedal for electric piano. The instant the recording is triggered in the patch might be slightly late
compared to the instant my foot touched the pedal. Therefore missing part of the attack of the
first beat and messing up the tempo that will be deduced. The second issue is with the nature of
a live musician. What is played won’t be exactly on beat unless the musician is truly great. These
slight errors in tempo will be noticeable on playback especially when compared to the drum at slow
tempos. A way to contravene this issue will be discussed in the following section.

5 Future development
As mentioned above, a future development that would be greatly appreciated is the ability for the
user to write his own drum tracks/patterns. The could be done by creating a patch that allows the
user the create his own patterns. These patterns could then be recorded into an audio file which
could then be read from the buffer~ object. Therefore using the patch as it is now and simply
adding a functionality.

Another obvious development is to make the patch multi channel. This way the musician can
add multiple parts on top of each other, create a much more complex and interesting loop. This
can be achieved by using multi channel buffer~ and groove~ objects.

Finally, a way to make the patch more robust for the musician is to implement a metronome
count-in that also plays while recording. This will give the musician a reference to keep the beat.
This way the tempo will be more consistent during the whole loop. Leading to fewer tempo errors.
It can also be envisioned that the trigger that starts the recording wouldn’t be from a pedal the
user presses but rather this would be done automatically since the patch already knows the tempo.
The user would also have to specify a length of the recording so that the patch knows when to stop
the recording.

Autumn 2020 MUMT 306: Music Audio Computing I 9/10

Final Project Report – Siméon Le Grand (260999667)

6 Sources
Two parts of the patch were sourced from the internet. The first is the beat detection object. This
was designed by Olivier Pasquet in 2005.

http://maxobjects.com/?v=objects&id_objet=3798&requested=op.beatitude~&operateur=
AND&id_plateforme=2&id_format=0

The second part of the patch that was sourced from the internet is the scrubbing bar for the
waveform object. This was found on the MAX/MSP forums. The author is Tim Lloyd on June
22nd 2009.

https://cycling74.com/forums/waveform-bar

Autumn 2020 MUMT 306: Music Audio Computing I 10/10

http://maxobjects.com/?v=objects&id_objet=3798&requested=op.beatitude~&operateur=AND&id_plateforme=2&id_format=0
http://maxobjects.com/?v=objects&id_objet=3798&requested=op.beatitude~&operateur=AND&id_plateforme=2&id_format=0
https://cycling74.com/forums/waveform-bar

	Objectives
	MAX/MSP Patch
	Overview
	Trigger the recording
	Buffer~/Groove~ loop and drum
	Beat detection
	Transport bar
	Master start/stop

	Issues
	Shortcomings
	Future development
	Sources

