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THE SOUND OF A MOLECULE 

MUMT 307 FINAL PROJECT  

by Jaden Chong 

Introduction and Objectives: 

Throughout my studies in my biochemistry degree at McGill, I found one important area of 

chemistry particularly interesting. Nuclear Magnetic Resonance (NMR) Spectroscopy is a widely 

used technique to identify the shape and atomic composition of molecules, and I wanted to 

somehow bridge the gap between chemical and audio science for this project. To briefly 

introduce the technique, NMR analysis consists of subjecting the sample to a massive magnetic 

field of up to 24 Teslas (4800 times stronger than a fridge magnet), which aligns the quantum 

spins of the atoms. Then, the sample is given a radio-frequency electromagnetic pulse, and the 

tiny perturbations in the magnetic field are recorded. Analysis of the recorded data provides 

evidence for the shape and atomic composition of the molecule. A simpler way to think about 

this is with a relevant analogy; think of the molecules as “strings”. When they are placed into the 

magnetic field, the “strings” are being tensed. The radio-frequency electromagnetic pulse is 

analogous to “plucking the string”; the vibrations are then recorded. NMR analysis of a molecule 

is like analysis of the sound from a plucked or struck instrument.  

When we learned about Fourier transforms in MUMT 307, I was reminded of the fact that the 

analysis of NMR data also involves Fourier transforms. The different magnitudes and frequency 

components of NMR data are what allows the analysis of the molecule, just as the magnitudes 

and frequency components of sound data allow analysis of sounds. From this, I wanted to try to 

take NMR data and play it as a sound. To implement this, I wanted to use MATLAB.  

Overall, my objectives for this project were as follows: 

1. Acquire NMR data for various molecules. 

2. Import the NMR data into MATLAB and play it as a sound. 

3. Implement a MATLAB script that attempts to automatically recreate the generated 

molecule sound. 
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The Development Process 

Firstly, I had to acquire raw NMR data. Usually what is analyzed in chemistry is the result of the 

Fourier transform, but I what I needed to play as a sound was the raw data of the NMR 

spectrometer, called the “free induction decay”, or FID. I emailed the spectroscopy department 

of McGill, and they kindly referred me to an NMR simulation software called MestReNova 

(MNova). They also gave me one of ten existing McGill licenses to use this powerful software.  

In MNova, you can draw any molecular structure you want, and using a massive database of 

known magnetic field responses of thousands of molecules, it will predict the NMR results of 

your drawn molecule to excellent accuracy.  

The next step was to find a way to import it into MATLAB. The simplest method was to just 

save the FID as cartesian coordinates in an ASCII file, in a “.csv” format. For the purposes of 

this project, I only drew 5 molecules to test: Glutamate (MSG without the sodium), ethanol, THC, 

testosterone, and sugar. After saving them as .csv files, I could easily read them into MATLAB 

matrices using the function “readtable”, which keeps the row and column organization of .csv 

files.   

To play this data as a sound, I only needed the 2nd column – the one with the amplitudes – since 

they all corresponded to evenly-spaced values on the x-axis. Then, to play this sound, I could 

simply use MATLAB’s “soundsc” function to play the amplitude values.  

As a further challenge to myself, I decided to expand on the existing code so that it would 

automatically analyze the frequency spectrum of the molecule’s sound, and then automatically 

re-synthesize the sound using additive synthesis. 

The first step was to take the Fourier transform of the imported data, which I did using the “fft” 

function. Fourier transforms give a mirror-image result where only the first half is relevant, so I 

first had to discard the second half, which I did by setting all elements in the second half to zero. 

I didn’t like that the Fourier transform matrix as it was in this state only had values in the first 

half, because that meant that during the collection of frequencies and amplitudes, the maximum 

frequency component would be limited to half of the actual frequency range. So, I decided to 

spread the values out evenly while maintaining the matrix size. The example below helps to 

visualize my intentions. 

After cropping the Fourier transform, the data was something like this: 

[1 2 3 4 5 0 0 0 0 0] 

But I wanted it to look like this: 

[1 0 2 0 3 0 4 0 5 0] 

 

so that there could be a wider range of frequency components, instead of having to set the upper 

limit of the frequency to twice what you want the actual limit to be. 
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I achieved this by using the “interp1” function, after some trial and error.  

The next challenge was to record the amplitudes and frequencies of all the major frequency 

components. This was broken down into two tasks: to pick all the local peaks, and then to filter 

out all the minor peaks to only leave the major ones.  

For the first task, I took advantage of MATLAB’s “findpeaks” function, which returns all the 

local peaks into two matrices, one containing the x-values and the other with the y-values of each 

peak. One major downfall I realized after my first few tries was that since the peak picking only 

takes a few frequency components, I would lose the scaling and relative positions of the peaks 

relative to the frequency minimum and maximum; the lowest and highest frequency components 

would become the new limiting factor for the range of frequencies. Thus, to maintain the relative 

positions of all frequency components past the peak-picking, I had to guarantee that the 

maximum and minimum frequencies also passed the peak-picking. So, I set the second and 

penultimate amplitudes to 1, so that they would be considered as local maxima for the peak-

picking function. Of course, this would result in the range being shrunk by 2 elements, as the 

first and last elements would not pass the peak-picking, but with the sound containing 32768 

elements, this translates to a re-scaling of a factor of 2/32768, or 0.006%, which I found 

acceptable.  

For the second task, I used MATLAB’s “find” function to comb through all the amplitudes in the 

picked peaks and removed all the amplitudes smaller than 10% of the maximum, to make the 

code more economical. After this peak-filtering process, I could then set the boundary 

amplitudes to zero again (The second and penultimate original indices become the first and last 

elements in the peak-picked matrix since they are the first and last peaks).  

To scale the x-axis to the correct frequency range, I first normalized the matrix values so that 

everything was between 0 and 1, then multiplied every element by the user-specified upper 

frequency boundary.  

After this, I set up a for loop that built the re-synthesized sound, one sinusoid per loop. The 

iterator would cycle through the values of the picked peaks to specify the amplitude and 

frequency of each sinusoid.  

The synthesized sound was now complete, but now I had to try to recreate the amplitude 

envelope. To do this, I applied the chunking technique taught in the first few weeks of MUMT 

307, where the original input matrix was reshaped into an N rows * M columns matrix where N 

is the number of samples per chunk and M is the total number of chunks. This way, every 

column represents one chunk. After taking the maximum value of each chunk, I could then use 

those points to interpolate an envelope function with the same matrix size as the resynthesized 

sound.  
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To keep the code elegant, I had to ensure that this chunking technique would work for any chunk 

size. Basically, the code ensures that if the number of samples in the input file is not evenly 

divisible by the number of chunks, it will append 0’s to the end of the input matrix until it is 

evenly divisible by the chunk size. To do this, the number of samples in the input is divided by 

the desired number of chunks to find chunk size. Chunk size is rounded upwards to reach an 

integer value, and then the input matrix has zeroes appended until it is of size (chunk size * 

number of chunks). This allows any integer chunk size smaller than the input file size to be used 

that is greater than 1 (otherwise reshape and interp1 functions will not work).   

The final output is then the additively-resynthesized sound multiplied by the envelope function. 

The link below is a video I made with the 5 example molecules. Both the original NMR sound 

and the MATLAB-resynthesized sounds are played, along with the amplitude envelopes and 

frequency spectra.  

 

Improvable Aspects: 

In retrospect, I probably could have just scaled the x-axis to the correct frequencies before the 

peak-picking, which would have saved me all the trouble of having to preserve the scaling of the 

x-axis through the peak-picking. Also, I had expected the quality of the approximated amplitude 

envelope to increase with decreasing chunk size, but in fact for chunk sizes smaller than 5, the 

audio becomes noticeably distorted. Strangely, the accuracy of the envelope does not seem to 

increase with decreasing chunk sizes. This may have to do with the appending of zeroes, but I 

am not sure. Theoretically, having a chunk size of 1 would just mean the envelope function is 

equal to the original function itself, and I would simply be multiplying the original input with the 

resynthesized tone. I tried this, and somewhat unsurprisingly it did not sound good.  

Conclusion 

Overall, this was an extremely fun project. I gained a very good understanding of MATLAB 

processing and the details of analyzing, manipulating, and synthesizing sound data, and managed 

to hear what molecules sounded like in the process. There is always room for improvement, but 

this was a good start.  


