
The Elements of the MSW Model 
 
Introduction 
 An insightful and productive approach to the modeling of traditional acoustical 
instruments is based on the interaction between a passive linear portion with an active 
non-linear portion.  The figure below shows the intersection of the linear portion (the 
straight line) with the non-linear portion (a truncated parabola). 
 
  The first section of this project report delves into the linear element and is 
followed by a brief discussion of the non-linear element; in particular, how one can 

implement vibrato.  The last section contains a listing of deliverables, some comments 
and suggestions for further work. This report includes appendices with MATLAB code 
and results of a literature citation search.  
 

 



Defining the Elements in the Linear Model 
 The linear portion of the McIntyre-Shumacher-Woodhouse [MSW83] model 
consists of 6 interrelated elements in the time-domain and their corresponding 6 elements 
in the frequency-domain. The objectives of this section include: 
1. naming and defining each of these 12 elements, 
2. given one of these elements, showing how the other 11 follow, and 
3. providing MATLAB code that computes the elements by their definition and by their 
analytically obtained expressions in the derivation exercise (the results are compared and 
appear as comments in the last section)  
 
 The complex impedance of the linear element 

! 

Z
L
(")  is defined as 

 

! 

Z
L
(") =

Q(")

F(")
  Eq. (12) MSW83, 

 
where 

! 

Q(") and F(")  are the Fourier transforms of 

! 

q(t) and f (t). 
 

That is, 

! 

F(") = f (t)e
# j"t

dt
#$

$

%     Eq.(13) MSW83.  
 
A similar expression relates 

! 

Q(") and q(t). 
 
For reed instruments such as the clarinet and saxophone, 

! 

q(t)  “represents the fluctuating 
pressure just inside the mouthpiece” and

! 

f (t) “the volume flow rate f, or volume of air 
flowing through the gap between reed and mouthpiece per unit time.” (MSW83 p. 1327) 
 
For bowed string instruments, such as the violin and cello, 

! 

q(t)  “represent(s) the 
transverse string velocities” and 

! 

f (t) is “the frictional force exerted by the bow on the 
string.” (MSW83 p. 1331) 
 
For air-jet instruments, such as the flute and organ pipe, 

! 

q(t)  is “the acoustic 
displacement of air into and out of the hole across which the jet is blowing” and 

! 

f (t) “is 
the volume flow rate in that part of the jet which is blowing into the pipe at time t.” 
(MSW83 p. 1336) 
 
The acoustic impulse response or Green’s function 

! 

g(t) is the “inverse Fourier transform 
of 

! 

Z
L
(") .” (MSW83 p. 1328) 

 
The reflection function 

! 

r(t) is not the same as the acoustic impulse response 

! 

g(t). 
 
The acoustic impulse response is not the same as the impulse response encountered in 
linear systems theory where a one-input x[n] one-output y[n] system is characterized by 
its system transfer function 

! 

H(z) , its frequency response 

! 

H( j") , and an impulse 
response h(t) which is the inverse z-transform of 

! 

H(z) . 
 



The reflection function “may be thought of as the disturbance that would be found at x=0 
after the delta-function pulse is sent out, if the tube were terminated at x=0 by a perfect 
absorber such as a uniform, semi-infinite tube of the same cross section.” (MSW83 p. 
1327) 
The acoustic impulse response is also the disturbance at x=0 but it includes the outgoing 
pulse as well as all the reflections of that pulse as measured at x=0. Furthermore, “

! 

g(t) 
differs significantly from zero over a far longer time interval than 

! 

r(t)” (MSW83 p. 
1329) which has computational ramifications. 
 
When the outgoing pressure 

! 

qo(t) is equal to 

! 

"(t) , the incoming pressure 

! 

qi(t)  is 

! 

r(t) by 
definition. 
Thus,  
 

! 

qi(t) = r(t)"qo(t)     Eq. (4) MSW83.  
 

Where the * denotes convolution. 
 
At the reed, assuming superposition of plane waves, the sum of the outgoing and 
incoming pressures is equal to 

! 

q(t) , the pressure just inside the mouthpiece. 
That is, 

 

! 

q(t) = q0(t) + qi(t)         Eq. (7) MSW83. 
 
From Newton’s Second Law and assuming the superposition of pressures, it may be 
shown that  
 

! 

Zf (t) = qo(t) " qi(t).       Eq. (8) MSW83 
 

! 

Z  is the characteristic impedance of the linear element.   
 
Adding and subtracting Eq. (7) MSW83 and Eq. (8) MSW83 we get 
 

! 

q(t) + Zf (t) = 2qo(t) and q(t) " Zf (t) = 2qi(t).     Eq. (9) MSW83 
 
Substituting Eq. (9) MSW83 into Eq. (4) MSW83 we obtain 
 

! 

qi(t) = r(t)"qo(t)

i.e.,q(t) # Zf (t) = r(t)"[q(t) + Zf (t)]

i.e.,q(t) = r(t)"[q(t) + Zf (t)] + Zf (t)     

i.e.,  q(t) = qh (t) + Zf (t)     Eq. (10) MSW83

where qh (t) = r(t)"[q(t) + Zf (t)]         Eq. (11) MSW83

 

 
 
 
 
 



Transforming Eqs. (10,11) MSW83, solving for 

! 

R(")  and using Eq.(12) MSW83 we 
obtain 
 

! 

Q(") = R(")[Q(") + ZF(")] + ZF(")

i.e.,R(") =
Q(") # ZF(")

Q(") + ZF(")

i.e.,R(") =
Z
L
(") # Z

Z
L
(") + Z

.     Eq. (15) MSW83

 

 
Eq. (10) MSW83 when plotted as

! 

f (t) vs 

! 

q(t) is the equation of a straight line with slope 
1/

! 

Z  and 

! 

q(t) -intercept given by 

! 

qh (t) . The intersection of this straight line with the non-
linear curve provides a unique [

! 

q(t) ,

! 

f (t)] solution. These two values are substituted into 
the right-hand-side of Eq. (11) MSW83 and then the convolution with 

! 

r(t) produces 

! 

qh (t)  which (with

! 

Z ) defines the straight line of Eq. (10) MSW83 and thus the algorithm 
proceeds.  
 
A Worked-out Example 
 
Let 

! 

Z
L
(")  be given by 

! 

ZL (") = ZL (z) =
1# bz

#1

1# az
#1

 for z = e
j"

      (1)  

 
From Eq.(12) MSW83 and (1), 

! 

Q(z) =
1

1" az
"1

      (2)  

and 

F(z) =  
1

1" bz
"1

.      (3)

 

 
From Eq.(13) MSW83, (2) and (3), 
 

! 

q[n] = a
n
u[n]        (4)  

 
and 
 

! 

f [n] = b
n
u[n]     (5). 

 
For 

! 

Z
L
(")  given as (1), the acoustic impulse response is given by 

 

! 

g[n] = a
n
u[n]" ba

n"1
u[n "1]         (6). 

 
 
 



From Eq. (15) MSW83 and (1), we obtain the reflection coefficient 

! 

R(z) . That is, 
 

! 

R(z) = R(") =
ZL (") # Z

ZL (") + Z
=

1# bz
#1

1# az
#1
# Z

1# bz
#1

1# az
#1

+ Z

=
1# bz

#1
# Z(1# az

#1
)

1# bz
#1

+ Z(1# az
#1

)
   for z = e

j"
.           (7)

 

 
Taking the inverse z-transform of (7) yields an expression for the reflection function 

! 

r[n] 
 

! 

r[n] ="1"2

n
u[n]#"3"2

n#1
u[n #1] where

"1 = (1# Z) (1+ Z),  "2 = (b + aZ) (1+ Z),  and "3 ="1(b # aZ) (1# Z).          (8)
 

 
 
From Eq. (9) MSW83, (4) and (5), we obtain expressions for the outgoing pressure 

! 

qo(t) 
and the incoming pressure 

! 

qi(t) . That is, 
 

! 

q[n] + Zf [n] = 2qo[n] 

i.e.,  qo[n] =
1

2
[q[n] + Zf [n]]

i.e.,  qo[n] =
1

2
{a

n
+ Zb

n
}u[n]         (9)

and

q[n]" Zf [n] = 2qi[n] 

i.e.,  qi[n] =
1

2
[q[n]" Zf [n]]

i.e.,  qi[n] =
1

2
{a

n
" Zb

n
}u[n].         (10)

 

 

Taking the z-transform of (9) and (10) yields 
 

! 

Qo(z) =
1

2

1

1" az"1
+

Z

1" bz"1

# 

$ 
% 

& 

' 
(       (11)

and

Qi(z) =
1

2

1

1" az"1
"

Z

1" bz"1

# 

$ 
% 

& 

' 
( .      (12)

 

These 12 equations correspond to the time and frequency elements of the MSW83 linear 
model for the given 

! 

Z
L
(z) . 



 
 As a check on the consistency of these results, we start from (11) and (12) and then 
obtain (1): 

! 

From Eq. (15) MSW83,  R(z) =
ZL (z) " Z

ZL (z) + Z
. Solving for ZL (z),

ZL (z) = Z
1+ R(z)

1" R(z)

# 

$ 
% 

& 

' 
( = Z

1+Qi(z) Qo(z)

1"Qi(z) Qo(z)

# 

$ 
% 

& 

' 
( 

i.e.,ZL (z) = Z
Qo +Qi

Qo "Qi

# 

$ 
% 

& 

' 
( = Z

1

2

1

1" az"1
+

Z

1" bz"1

) 

* 
+ 

, 

- 
.  +

1

2

1

1" az"1
"

Z

1" bz"1

) 

* 
+ 

, 

- 
.  

1

2

1

1" az"1
+

Z

1" bz"1

) 

* 
+ 

, 

- 
.  -

1

2

1

1" az"1
"

Z

1" bz"1

) 

* 
+ 

, 

- 
.  

 

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

i.e.,ZL (z) =
1" bz"1

1" az"1
 which was where we started.      (qed)

 

 
Comparing the Defining Expressions with the Analytic Derivations of the Example 
Equations (1-8) were implemented in the MATAB code which appears in the Appendix. 
These results were designated as the “theoretical results.” Thus, there is a 

! 

g(t)computed 
from the inverse transform of 

! 

Z
L
(")  and there is a 

! 

gth (t) computed from 

! 

g[n] = a
n
u[n]" ba

n"1
u[n "1]         (6).  

 
There is coding still to be done for equations 8-12; however, there is excellent agreement 
between theoretical and transformed results for this example. 
 
 
 
 



The Elements of the MSW Non-Linear Model 
The F(q) functions in the MSW83 paper are second-order and third-order. That is, 
 

! 

F(q) = k(p " q)(q " qc )        Eq. (20) MSW83

F(q) = K(p " q)(q " qc )(q + p " 2qc )        Eq. (24) MSW83
 

The motivation for using Eq. (24) MSW83 was that the “unrealistic behavior of the 
model can be traced to the unrealistic symmetry of the parabola” of Eq. (20) MSW83. 
(MSW83, p. 1331). Rather than use the cubic model as suggested, this work utilized a 
non-linear 

! 

F(q) suggested in the paper by N. H. Fletcher [NHF 99]. In this paper, a 
derivation based on Bernoulli’s equations, yields a cubic equation where the flow-
rate

! 

f (t) is linked to the pressure in the mouth

! 

p , the elastic compliance of the reed

! 

" , and 
the static aperture between reed and mouthpiece

! 

x
o
. That is, 

 

! 

F(q) =
2(p " q)

#

$ 

% 
& 

' 

( 
) 

1
2

[xo "*(p " q)]W             Eq. (6.3) NHF99  

 
(

! 

W is the width of the aperture and

! 

" is the density of air.) 
 

The derivation starts from Bernoulli’s equation 

! 

p " q =
1

2
#v 2  where 

! 

v  is the speed of air 

through the mouthpiece in [m/sec]. 
Solving for 

! 

v  and expressing the volume flow rate as the product of 

! 

v  and the cross-
sectional area of the aperture, yields Eq. (6.3) NHF99. 
 
The 

! 

qc  root (the value of the air-pressure inside the mouthpiece at which the aperture 
closes and the volume flow-rate is zero) in Eq. (24) of MSW83 is analogous to the root of 
the

! 

xo "#(p " q) term in Eq. (6.3) NHF99. In particular,  
 

! 

q = p "
xo

#
                (13)  

 
This suggests that a varying inside-the-mouth air pressure will vary the left-hand zero-
crossing of the non-linear curve. This point also depends on the static aperture opening 

! 

x
o
 which may be controlled by the musician’s embouchure. The right-hand zero crossing 

of the non-linear curve depends only on 

! 

q. 
 
Vibrato is simulated in both MSWsynthREV0 and NHFsynthREV0 using the idea of 
varying the parameters on the right-hand-side of (13) as suggested by Gilbert, Simon and 
Terroir [GST05].  
 



The dynamic variation in the solution of the linear and non-linear equations is depicted in 
the dynamic.m, a MATLAB script file intended to be used as a tool to study the and 
make refinements on the synthesis models. This code appears in Appendix F. 
 
 
Solutions of the Linear and Non-Linear Model  
As stated earlier the simultaneous solution of the linear model and the non-linear model is 
summarized as: 
 
“Eq. (10) MSW83 when plotted as

! 

f (t) vs 

! 

q(t) is the equation of a straight line with slope 
1/

! 

Z  and 

! 

q(t) -intercept given by 

! 

qh (t) . The intersection of this straight line with the non-
linear curve provides a unique [

! 

q(t) ,

! 

f (t)] solution. These two values are substituted into 
the right-hand-side of Eq. (11) MSW83 and then the convolution with 

! 

r(t) produces 

! 

qh (t)  which (with

! 

Z ) defines the straight line of Eq. (10) MSW83 and thus the algorithm 
proceeds.” 
 
In this work, we use a closed-form solution of Eq. (20 MSW83 and the straight-line of 
Eq. (10) MSW83 using the well-known quadratic formula.  The MATLAB code from 
MSWsynthREV0.m (which appears in Appendix E) is as follows 
 
  Eta = (1-k*(p-qh)*Z+k*Z*(qh-qc)); 
         Theta = k*(p-qh)*(qh-qc); 
         Zeta = k*Z^2; 
         f = (-Eta+sqrt(Eta^2+4*Zeta*Theta))/(2*Zeta); 
 
 
The closed-form solution of a cubic is not so well known but readily obtainable. This 
solution appears in the NHFsynthREV0.m code with follows in Appendix D. The cubic 
solution portion is repeated here. 
 
   A = (a*p*beta^2 - 2*a*xo*beta + 2*a*p*beta^2 - 1)/(-
a*beta^2); 
            B = (2*a*p*xo*beta - 2*a*p^2*beta^2 - a*xo^2 + 
2*a*p*xo*beta - a*beta^2*p^2 + 2*qh)/(-   
 a*beta^2); 
            C = (a*p*xo^2 - 2*a*p^2*xo*beta + a*p^3*beta^2 - 
qh^2)/(-a*beta^2); 
 
            P = B - A^2/3.; 
            Q = C + (2*A^3-9*A*B)/27.; 
            U = (-Q/2. - sqrt(Q^2/4 + P^3/27.))^(1/3); 
 
            q = real((U - P/3./U - A/3.)); 
 
 



Generating The MSW83 Figure 5 Plots 
 

 
These plots agree favorably with those presented in MSW83 and were obtained using a 
constant inside-the-mouth air pressure of 3, k = 0.2, the 5% and 20% Gaussian reflection 
functions and the parabolic nonlinear function. 
 



The following table summarizes some of the model elements that appear in the literature. 
 
 

! 

F(q)  

! 

r(t)  

! 

  A       
clarinet 

! 

k(p " q)(q " qc )  

! 

(20) MSW83 

! 

aexp["b(t "T)
2
]u(t) 

! 

(18) MSW83 -1  
clarinet 

! 

K(p " q)(q " qc )(q + p " 2qc ) 

! 

(24) MSW83 

! 

aexp["b(t "T)
2
]u(t) 

! 

(18) MSW83 -1 
clarinet 

! 

2(p " q)

#

$ 

% 
& 

' 

( 
) 

1
2

[xo "*(p " q)]W  

! 

(6.3) NHF99 N/A N/A N/A 

 

! 

 
    

      

! 

A = r(t)dt
0

"

#       Eq. (6) MSW83 

 
 
 
Comments  
The deliverables  include: 

• A script file “tool” called “dynamic” that currently runs on NHFsynthREV0 
results to show how the solution point and the nonlinear curve vary with time. 

• Sound files output from MSWsynthREV0 and NHFsynthREV0 which include 
GST05 vibrato. 

• A worked analytical example which links the parameters of the linear model. 
 
Further work  is alluded to and tagged by a  *. 
 
The choice of 

! 

Z
L
(z)  in the example is constrained so that the Fourier transform exists 

because the time-frequency relationships of the elements of the linear model are 
expressed as forward and inverse Fourier transform pairs. This constraint forces the roots 
of both the numerator and denominator polynomials of 

! 

Z
L
(z)  to be within the unit circle 

due to the zeros of 

! 

Z
L
(z)  being the poles of 

! 

F(z) . In signal processing vernacular, we 
would state that 

! 

Z
L
(z)  be minimum phase; i.e., both poles and zeros located within the 

unit circle. 
*The implications of this observation may be significant in the choice of model 
parameters in a synthesis scenario. 
 
In the worked-out example, (1), (2) and (3) were given by 
 

! 

ZL (") = ZL (z) =
1# bz

#1

1# az
#1

 for z = e
j"

      (1)  

 



! 

Q(z) =
1

1" az
"1

      (2)  

and 

F(z) =  
1

1" bz
"1

.      (3)

 

 
For the given (1), equations (2) and (3) could just have well been written as 
 

! 

Q(z) =1" bz
"1

      (14)  

and 

F(z) =  1" az
"1

     (15)

 

 
In which case, 

! 

q[n] = "[n]# b"[n #1] and 

! 

f [n] = "[n]# a"[n #1]. 
 
This would lead to different expressions for the (9) and (10): 

! 

qo[n] =
1

2
[q[n] + Zf [n]]

i.e.,  qo[n] =
1

2
{"[n](1+ Z) #"[n #1](b + aZ)         (16)

and

 qi[n] =
1

2
[q[n]# Zf [n]]

i.e.,  qi[n] =
1

2
{"[n](1# Z) #"[n #1](b # aZ).         (17)

 

 

Then, taking the z-transform, would yield different expressions for (11) and (12): 
 

! 

Qo(z) =
1

2
1+ Z " (b + aZ)z

"1( )      (18)

and

Qi(z) =
1

2
1" Z " (b " aZ)z

"1( ).      (19)

 

*It remains to be shown that as before, a check on the consistency of these results would 
occur, when we start from (18) and (19) and then obtain (1). 
 
An additional condition on the reflection function 

! 

r(t) is that 

 

! 

r(t')dt'= "1.
0

#

$               Eq. (6) MSW83   

 



This is a statement of “the fact that according to linear acoustic theory there can be no 
permanent, steady difference in pressure between the interior of the tube and the air 
outside.” (MSW83 p. 1328) The reflection function was computed in three different ways 
in the simulation. In all three cases, the sum of the reflection function samples equaled 
0.6 An extension of this work would be to analytically compute the infinite sum of (8), to 
evaluate the expression comparing to 0.6, and then adjusting the parameters, a, b, and Z 
so that the *sum equals negative one. No attempt was made in the example to represent 
an actual physical system. Rather, the exercise was intended to be mathematically 
tractable while presenting the various concepts in the model and demonstrating how one 
could calculate any particular element in the model from knowledge of the complex 
impedance 

! 

Z
L
(")  and the characteristic impedance 

! 

Z . 
 
*At various places in the MSW83 paper there are references to more extensive work. An 
extension of this paper would be to read, evaluate and implement some of the results in 
those papers. 
 
Since the MSW83 paper (26 years) there have been numerous extensions of their work 
(notably the physical modeling with Digital Waveguides (DWG) of the Stanford 
University group – the research results of Julius Orion Smith and  Gary Scavone [GPS97] 
in *particular). A natural extension of this work would be to use DWG models of tone-
holes, non-cylindrical bores, dispersion, etc. and then to obtain the reflection function 
when the outgoing wave is an impulse, and then using this waveform for the r(t) in the 
MSW83 code.  Specifically, it would be nice to generate the complex impedance as we 
did in the homework using the time-domain approach with scattering junctions for a 
comparable physical system (same length and bore) and then use the resulting reflection 
function in place of the Gaussian in the MSW code. This would involve digging into the 
reflpoly(z) function that generates the reflection coefficient magnitude and length 
correction for an un-flanged cylindrical bore as given by Levine and Schwinger [LS48]. 
 
A casual survey of available papers on the MSW83 yielded 136 citations. A listing (with 
some abstracts) appears in Appendix C.  
 
*An extension of this work would be to compare the cubic MSW83 with the cubic 
NHF99 both algebraically and in terms of how well they simulate the reed instrument. 
 
*Some effort was made to produce a nice-sounding vibrato by varying the depth of the 
vibrato over time. An extension of this would be to vary the vibrato rate over time; 
starting slowly to approach some nominal tasteful vibrato. 
 
*Some effort was also made to produce controllable attack and release transients. This 
remains an area of interest and probably will benefit from the use of the “dynamic.m” 
script tool or something like it. 
 
With the view of processing the digitized output of a microphone placed in the far-field 
of a playing acoustic instrument, it is useful to model where the output is present in the 
model. One thought is that the reflection function filter (as implemented as an M-order 



*FIR) is divided in two such that the output taken at the first half represents the pressure 
available at the open end of the clarinet. To access this point in the FIR filter, it seems 
that the FIR of M-order should be reconfigured as the cascade of two M/2-order FIR.  
The following MATLAB code suggests how this could be accomplished. 
 
%filterSplit.m 
% 
% splits an M-order FIR into two cascadable M/2-order FIR 
filters 
% 
% the idea to access the filter at the middle for output 
purposes 
% 
% 9 DEC 2009 
b_test = [1 2 3 4 5 6 7 6 5 4 3 2 1]; 
r_test = roots(b_test); 
  
M = length(b_test) - 1; 
b1 = poly(r_test(1:M/2)); 
b2 = poly(r_test(M/2+1:M)); 
  
impulse = [1 zeros(1,2*M)]; 
  
h = filter(b_test,1,impulse); 
h_test = filter(b1,1,filter(b2,1,impulse)); 
 
*The Table which summarized non-linear and linear model equations could be extended 
as the literature continues to be read. 
 
*Hysterisis could accommodate two paths through the non-linear curve based on the 
physics of the history. Something like a Schmidtt trigger which in the onset transient 
portion could account for the initial slapping of the reed against the mouthpiece as it 
closes for the first time where the musician has used an impulsive burst of air pressure to 
start the oscillation. For some non-linear curves, the hysterisis extension is clearer than 
with other (for example, the tanh x function resembles the Schmidtt trigger curve). 
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Appendix A.  linearModel.m : MATLAB code for the example of the linear model. 
 
Appendix B. MSWfigFIVErev2.m : MATLAB code for generating figure 5 of the 
MSW83 paper 
 
Appendix C.  Citations (136) of the MSW83 paper in the literature. 
 
Appendix D.  NHFsynthREV0.m : Synthesis using the NHF non-linear synthesis 
model 
 
Appendix E. MSWsynthREV0.m : MATLAB code for synthesizing using the 
MSW parabola for the non-linear element 
 
Appendix F.  dynamic.m : plotting program of the solution point as the model is 
dynamically synthesizing an output 


