
MUMT 618 Final Project:
Dynamical Systems for Audio Synthesis

Adam Bognat, 260550169

December 17, 2016

1



1 Introduction
“Virtual analog ” describes a collection of approaches to sound synthesis that attempt to simulate
analog hardware in software. A number of techniques exist, from transform methods rooted in
ideas from the DSP literature, to physically-based methods that attempt to model the system
from a fundamental perspective [SS96a, LHMW97, VH06, DSS10, RPS+07].

For a number of systems of interest to digital audio applications, traditional methods often
produce digitized systems with uncomputable delay-free loops. Naively, one may correct this
problem by inserting an ad hoc unit delay in the signal flow diagram, but this leads to undesirable
artifacts, such as coupling parameters that should be independent, or aliasing and inharmonic
distortion [SS96b, Med16].

This paper explores the approach proposed in [Med16] and [Med15]. The author considers a
dynamical systems approach to modeling analog components. Specifically, he considers networks
in which each component may be described by an explicit first-order ordinary differential equation
(ODE) of the form

ẋ = f(x, t) (1)

where a dot denotes differentiation with respect to time and the vector x represents some physical
state variable, such as voltage across a capacitor. In particular, no assumptions are made on the
derivative function f ; indeed, of special interest is the solution of non-linear ODEs with which
DSP-based approaches struggle.

The related K-method [BDPR00] was introduced to handle delay-free loops in systems of the
form

ẋ = Ax+Bi(v) (2)
v = Cx+Di(v) (3)

where v and i are implicitly related in terms of non-linear functions. However, this method re-
quires iterative solvers to handle the non-linearity which can lead to poor performance in real-time
simulation of complex systems with many controllable parameters.

This paper is organized as follows. In section 2, we give an introduction to numerical methods
for solving ODEs of the form (1) and review some common integration schemes. In section 3, we
give a description of our objected-oriented programming environment, within which we can easily
define systems described by (1) and obtain their solutions for general purpose processing. Section
4 develops a number of examples amenable to this approach, while section 5 discusses some of the
associated difficulties and limitations. Section 6 offers a conclusion and some directions for future
work. The appendix gives a brief summary of the included MATLAB code.

2 Numerical Methods
Most ODEs of the form (1) do not admit a closed-form solution in terms of familiar functions, and
numerical methods must be used to obtain a solution. In choosing an appropriate scheme, one
must consider issues of stability, convergence, and accuracy. While there is a huge literature on
the subject [HH73, Kel92, Pre89], and a proper analysis is incredibly technical, the essence can be
demonstrated with a simple example.

Consider the simple harmonic oscillator ODE, given by

ẍ+ ω2
0x = 0 (4)

This is a second-order linear differential equation that describes a vast number mechanical, acous-
tic, and electrical phenomenon that involve simple vibrations; generically, one can think of x as
describing a single quadratic degree of freedom, oscillating with natural frequency ω0. By intro-
ducing a new variable v = ẋ, the above can be expressed as a first-order linear differential equation
in two variables, viz.

ẋ = ω0v (5)
v̇ = −ω0x (6)

This equation admits the exact solution

x = A cos(ω0t+ φ) (7)
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Figure 1: Phase portraits of the simple harmonic oscillator. (a) Forward Euler diverges very badly
after only a few cycles. (b) Fourth-order Runge-Kutta remains bounded.

where the amplitude A and phase φ may be determined from initial conditions. Suppose, however,
that it did not admit a nice closed-form solution. Given initial conditions x(0) = x0, v(0) = v0, an
approximate solution could be obtained by partitioning time into N intervals tn of small length h,
and computing the value of xn = x(tn) according to the rule

xn+1 = xn + hẋn (8)
vn+1 = vn + hv̇n (9)

This “Forward Euler” scheme is based on the first-order Taylor approximation of a differentiable
function. As such, the local error is O(h2) while the global error is O(h), and so an impractically
small stepsize needs to be chosen to obtain a reasonably accurate solution.

Even if accuracy is not an issue, the Forward Euler scheme is limited in applicability due to its
poor stability properties. Consider a test equation

ẋ = λx (10)

with λ ∈ C. For λ purely imaginary, this system is equivalent to the simple harmonic oscillator.
More generally, it describes a damped harmonic oscillator, with damping given by the real part.
Substituting into (8), we find

xn = xn−1 + hẋn−1 (11)
= (1 + hλ)xn−1 (12)

= (1 + hλ)Nxo (13)

For absolute stability, the asymptotic behaviour should be bounded, so that

||1 + hλ|| < 1 (14)

Writing λ = a+ ıb with a, b ∈ R, and setting h = 1, we require

(a+ 1)2 + b2 < 1 (15)

The region of stability is shown in Figure 2(a). Note that purely oscillatory systems fall outside
this region, and so Forward Euler is inappropriate for the SHO. In practice, artificial damping is
introduced to ensure stability for a limited range of frequencies. Figure 1(a) illustrates the rapid
divergence of the Forward Euler scheme.

A more appropriate integration scheme for integrating (1) is the so-called fourth-order Runge-
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Figure 2: The regions of stability corresponding to (a) Forward Euler and (b) RK4. The test
equation (11) with λ = x + ıy is absolutely stable in the regions defined by the interiors of the
closed curves.

Kutta (RK4) method, defined by [Pre89]

xn+1 = xn +
h

6
(k1 + 2k2 + 2k3 + k4) (16)

k1 = f(xn, tn) (17)
k2 = f(xn + h/2k1, tn + h/2) (18)
k3 = f(xn + h/2k2, tn + h/2) (19)
k4 = f(xn + hk3, tn + h) (20)

The global error scales as O(h4), and the region of stability is shown in Figure 2(b). In particular, it
includes a portion of the imaginary axis, so that RK4 is appropriate for purely oscillatory systems.
The region is still bounded, however, so that very high frequency (“stiff”) systems will still suffer
from convergence problems.

The results in this paper were generating using RK4, but our programming interface is designed
to be used with any “explicit” integration scheme. Both RK4 and FE are explicit schemes, in that
the new state of the system depends only on the derivative evaluated at the old state. One can
also consider implicit schemes, such as

xn+1 = xn + hf(xn+1) (21)

This “Backward Euler” scheme can be shown to be unconditionally stable, but generally requires
iterative methods to solve for xn+1 and is thus computationally expensive.

3 Oscillator Systems
We would like to separate the description of a system in terms of ODEs from both the integrator
and the processing of the output. For explicit schemes, all the integrator needs to know is the
current state, the step size, and the derivative evaluated at the current time. Consequently, it is
the job of the system to evaluate its derivative and pass it to the integrator. Finally, the output
may be processed in different ways; real-time audio processing requires writing to a buffer, while
offline processing can write to disk.

With these considerations in mind, we define the abstract classes OscillatorSystem and
Integrator to implement the numerical integration of our system within an object-oriented frame-
work.
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An OscillatorSystem represents a dynamical system whose state is governed by an explicit
ODE. The name is inspired by the computer graphics literature, wherein objects that can be
described by a collection of masses connected by springs comprise a ParticleSystem [Wit01].
The ParticleSystem has knowledge of its state and the forces acting on it, and has methods for
computing its derivative and updating its state. Likewise, a concrete system meant to represent
a component of an analog network derives from OscillatorSystem and overwrites its calcDeriv
and updateState methods appropriately.

Integration schemes are represented with the Integrator base class. The class is initialized
with the step size and a specific integration scheme is implemented by overriding the step method.
There are no specific classes to handle output processing; the included demos are not real-time
and write the output to an array for visualization and auralization.

To update its state, an OscillatorSystem calls Integrator’s step method; step calls
OscillatorSystem’s calcDeriv method, computes the new state, and passes it back by calling
OscillatorSystem’s updateState method. This is demonstrated in the following pseudocode:

class ForwardEuler extends Integrator
step(sys,t)

old = sys.state;
delta = old + h * sys.calcDeriv(t);
sys.updateState(old,delta)

class QuadratureOscillator extends OscillatorSystem
omega
deriv = calcDeriv(t)

deriv[1] = omega * state[2]
deriv[2] = -omega * state[1]

updateState(old, delta)
state = old + delta

FE = new ForwardEuler(h)
SHO = new QuadratureOscillator(omega, state0)

while simulation is running
FE.step(SHO)
//process output

4 Examples

4.1 Reciprocal Sync
We have already discussed the basic oscillator circuit. A more interesting system is two oscillators
in reciprocal sync. Traditionally, “hard sync” describes when the phase of a “slave” oscillator is
reset whenever the amplitude of a “master” oscillator crosses a certain threshold. In reciprocal
sync, the amplitude of the slave can also reset the phase of the master. Naive implementations of
either result in unpleasant aliasing [Bra01, Med16].

Let x1, v1, x2, v2 denote the states of two oscillators with frequencies ω1, ω2, respectively, and
let θ1, θ2 be the amplitude threshold values. Then reciprocal sync may be approximated by the
equations

ẋ1 =

{
ω1v1, if x2 < θ1.

g(x1,0 − x1), otherwise.
(22)

v̇1 =

{
−ω1x1, if x2 < θ1.

g(v1,0 − v1), otherwise.
(23)

with similar equations for x2, v2. Resetting the phase discontinuously would result in a large value
of the derivative and lead to stability problems. Instead, we exponentially drive the system back
to its initial conditions. The “gain” parameter g controls the speed of the decay, and should be on
the order of the oscillator frequency for musical applications.
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Figure 3: Waveforms from reciprocal sync at different resolutions. The parameters used were
ω1 = 950 Hz, ω2 = 900 Hz, θ1 = θ2 = 0.9, and g = 100.

Figure 3 shows an example of the waveforms resulting from reciprocal sync. The global expo-
nential envelop is an artifact of the initial conditions not being exactly restored.

4.2 Feedback FM
Freqency Modulation (FM) synthesis is a synthesis technique whereby the frequency of one oscil-
lator is modulated by another at audio rates [Cho77]. Incredibly complex sounds can be produced
by a network of oscillators modulating each other in this way. If xi, vi denote the state of the ith
oscillator in the network, we have

ẋi = (ωi + λi)vi (24)
v̇i = −(ωi + λi)xi (25)

where
λi =

∑
j

αijxj (26)

and the sum runs over all oscillators. The αij ’s give the “modulation index” of oscillator i acting on
oscillator j. They can be thought of as components of a matrix α that describes the connectivity
of the oscillator network. Of interest is the case of a system comprising a single oscillator feeding
back on itself, with

λ1 = αx1 (27)

Figure 4 shows spectrograms of the resulting signal for different values of α. Note the narrow range
of useful values of the modulation index; α ≤ 103 results in no audible modulation, while the signal
frequency is too low to be perceived for α ≥ 3× 103.

4.3 Moog Ladder Filter
Finally, we consider a dynamical systems model of the Moog Ladder Filter. The circuit consists of
a non-linear four-stage analog network with a feedback path to provide resonance. The feedback
results in a delay-free loop when digitized using traditional transformation methods, and an ad
hoc unit delay couples the resonance parameter to the cutoff frequency [SS96b]. If Vi represents
the voltage across the ith stage of the transistor ladder, we have

V̇i = ωc(tanh(Vi−1)− tanh(Vi)), i = 1, 2, 3 (28)

V̇0 = ωc(tanh(Vin − rV3)− tanh(V0)) (29)

where the gain ωc is the cutoff frequency and r is the resonance parameter. Vin is the input voltage
at the base of the ladder and can represent a control signal coming from another part of the circuit.
This is the first example where the derivative is explicitly time dependent. This can be implemented
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Figure 4: Spectrograms of feedback FM waveform with fundamental frequency ω0 = 440 Hz.
The appearance of sidebands with increasing modulation index is accompanied by a decrease in
fundamental frequency.

in our system in a number of ways. One option is to hardcode the time dependence into the class
as a static method; for simplicity, this is the approach taken in the demo. More generally, we may
create a separate class for the time-dependent aspect (thinking of it as an external control signal)
and include pointers to these classes within OscillatorSystem.

Figure shows the impulse response of the filter for different values of r. The filter is clearly
self-resonating for r ≥ 4.

5 Discussion
Our system is straightforward to implement and readily extensible. However, the results are
disappointing from the perspective of musical applications. A major difficulty is mapping “physical”
system parameters to useful creative parameters. For example, the feedback FM system yields
audible modulation for α in a very narrow range centered on α = 103; moreover, α couples to the
base frequency of the oscillator, so that a richer spectrum comes at the cost of lower frequency.
This behaviour is not typical of FM synthesizers implemented using DSP chips, and it is not
immediately obvious how to fix it.

Implementing reciprocal sync by dynamically driving the phase to zero leads to problems of
its own. If the g parameter is too small, the waveform will not reset rapidly enough, defeating
the purpose of the sync. On the other hand, a very large g leads to stability problems, resulting
in divergent solutions. Moreover, most combinations of parameter values give decaying solutions
which may be useful for synthesis of percussive sounds but not the steady, harmonically rich signals
that sync is meant to produce. A more accurate modeling of the analog circuitry with which sync
is implemented may resolve these issues, but then it is not obvious that a dynamical systems
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Figure 5: Impulse response of system governed by (25), (26). For low values of the resonance the
filter response decays but self-resonates for values of r greater than 4.

approach is preferable to others.

6 Conclusion
A dynamical systems approach to analog circuit modeling allows emulation of systems with delay-
free loops without introducing ad hoc delays and their digital artifacts. To this end, we have
presented an object-oriented programming interface for simulating analog circuitry that can be
described by a set of explicit ODEs. The interface separates the description of the system from
the integration scheme and output processing, and is easily extended to allow for different explicit
integration schemes, more complicated dynamical systems, and real-time output.

At present, the musically relevant possibilities of this approach are limited. Difficulties include
accurate modeling of the desired system and translation of physical parameters to parameters
suitable for creative purposes. A graphical interface for real-time exploration would help overcome
these difficulties.

A MATLAB Code
The accompanying MATLAB code includes the abstract classes OscillatorSystem, Integrator,
all the derived subclasses corresponding to examples presented in the paper, and demo scripts
illustrating their use, as well as code for plotting the states, their spectra, the dynamical phase
space, and listening to the output waveforms.

To implement a new dynamical system, extend OscillatorSystem and override the calcDeriv
and updateState appropriately.
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To implement a different integration scheme, extend Integrator and override the stepmethod.
The interface assumes an explicit integration scheme, and a new abstract class for implicit inte-
gration should be implemented if an implicit scheme is desired.

The step size should correspond to the sample rate appropriate for reconstructing your audible
output signal without aliasing. The default is 44100 Hz.
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