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ABSTRACT

In order to save time in study of acoustic problems, people
tend to use 2D geometry as a simplification of a fully 3D
one. However, the simplification from 3D to 2D may bring
in some errors. In this project, finite element method (FEM),
implemented in COMSOL, is used to study the difference be-
tween 2D symmetrical (treated as 3D) and fully 2D models. A
closed and an open cylinder are used for validating the method.
Then both unflanged and flanged open pipe are studied for two
different models. Input impedance, reflection coefficient and
radiation impedance are calculated and compared between the
theoretical results.

1. INTRODUCTION

The more and more powerful computational capabilities make
it possible to directly study acoustic problems in three dimen-
sion (3D) domain. Even though, in order to same computing
time, two dimension (2D) geometries are frequently used as a
simplification for 3D problems, like voice production, instru-
ment sound synthesis. However, this might bring errors in the
final result.

In order to study differences between 2D and 3D models,
two detailed studied geometries, open unflanged or flanged
cylinder could be used. The radiation impedance Zr and com-
plex reflection coefficientR of an open cylinder is an important
parameters to study the acoustic behaviors of the pipe. The
resonance frequencies and capability of radiating sound could
also be determined. Theoretical values for reflection coeffi-
cient and end correction length are available for both open
end unflanged [1] and infinite flanged [2] cylinders . A further
approximated formula for unflanged [3] and infinite flanged
[4] cylinders are also developed latter. In order to study the
varies geometries where the analytical solution does not exist.
Numerical methods like boundary element method (BEM) and
finite difference method (FDM) are used [5, 6].

Here in this project, FEM will be used to study the acoustic
properties of unflanged and infinite flanged cylinders based
on different models using commercial software COMSOL.
The paper is structured as follows. Section 2 will introduce
several basic acoustic concepts and theories. In section 3,
simple cases will be calculated in order to validate the eligi-

bility of COMSOL in this study. Section 4 compares several
acoustic properties simulated by two different models for both
unflanged and flanged open cylinders. Finally, the conclusions
and future works are presented in section 5.

2. GENERALITIES

In these section, several basic acoustic concepts and theories
will be introduced.

2.1. Acoustic impedance

Acoustic impedance, defined as Z = p/U , is usually used
to depict the frequency properties of a certain geometry. p is
the acoustic pressure and U is the volume flow velocity. It
indicates how much sound pressure is generated by a given air
vibration at a certain frequency.

Specific acoustic impedance Zs depends on the property
of the medium given by Zs = ρc.

Characteristic acoustic impedance Zc also depends on
the size of the pipe and given by Zc = ρc/A, where A is the
cross-section area of the pipe.

Input impedance Zin is the impedance at the driven point
of the pipe where the air is excited.

Load impedance ZL is the impedance set at the output
end of the pipe. For an open pipe, ZL = 0. For a closed pipe,
ZL is infinity.

Radiation impedance is related to the reflection coeffi-
cient Rr at the open end of the cylinder given by

Zr = Zc
1 +Rr

1−Rr
(1)

Theoretical input impedance could be calculated based
on the load impedance ZL by the following equation

Zin = Zc
1 + C−/C+

1− C−/C+
(2)

where C−/C+ could be represented by ZL and Zc as

C−/C+ =
ZL/Zc − 1

ZL/Zc + 1
e−2jkL (3)
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2.2. Cut-off frequency

For wave propagating inside cylinder pipe, in addition to the
longitudinal wave motion along the main axis, there are higher
modes. But the higher mode is evanescent for frequencies
less than the first cut-off frequency. So only the first mode,
that means plane wave exists. For the first propagating mode,
cut-off frequency is given by

f =
1.84c

2πa
(4)

where ka = 1.84 is the Helmholtz number, c is the sound
speed and a is the radius of the pipe. However, if the instru-
ment had a radial symmetry, the first cut off frequency would
be given by ka = 3.83 [7];

2.3. Thermoviscous losses

In practical problems, there will be losses along the wall due
to the viscous drag and thermal losses. A special boundary
condition will be used for thermoviscous boundary layer losses.
As used by Harazi in previous research, wall admittance is
introduced:

Ys =
1

2
(1− j) ω

ρc2
[lvorsin

2θi + (γ − 1)lent] (5)

where

lvor =
1

|kvor|
=

√
2µ

ωρ
,

lent =
1

|kent|
=

√
2κ

ωρCp
=

lvor√
Pr

,

Pr =
µCp

κ
,

where θi is the angle of incidence with the bore, kvor and kent
are the wave number of the vorticity and entropy modes, µ is
the dynamic viscosity, Cp is the specific heat capacity, κ is the
thermal conductivity, and Pr is the Prandtl number.

2.4. Reflection coefficient

For a plane wave inside a cylinder, it could be considered
as the sum of the wave propagating in positive and negative
directions. For a certain point along the axis x, the pressure is
given by:

P (x) = p+(ω)e−jkx + p−(ω)ejkx (6)

where k =
ω

c
is the wave number.

And for a certain point x, part of wave will transmit for-
ward while part of wave will be reflected back and the ratio
between them is called reflection coefficient R, given by

R = p−/p+ (7)

However, at the end of an open tube, the wave is no longer
plane. So the reflection coefficient Rr at the open end is
defined based on the coefficient R∆ at a distance ∆ inside
from the open end.

Rr = RLe
2jk∆ (8)

2.5. End correction

The length of the pipe determines the fundamental frequency
of the final sound. However, due to the inertia of the air, the
effective acoustical length of the pipe is slightly larger than
the length of the pipe. The length correction at the end is
a complex and frequency-dependent quantity. Most of the
consideration will only consider the real part of the length
given by

l = Re(k−1arctan[Zr/(jZc)]) (9)

where Zr is the radiation impedance and Zc is the characteris-
tic impedance. And effective acoustical length is L+ l, where
L is the length of the pipe.

2.6. Simulation parameters

For the simulation, parameters are set at the temperature t0 =
25.5937◦C, other parameters are derived correspondingly [7].
Sound velocity: c = 346.63m/s,
Density: ρ = 1.1821kg/m3,
Viscosity: µ = 1.8348× 10−5kg/m · s,
Thermal conductivity: κ = 0.0063Cal/ms◦C,
Prandtl number: Pr = 0.7037,
Ratio of specific heats: γ = 1.4020.

3. VALIDATION OF FEM

3.1. Finite element method

For studying the input impedance or the reflection coefficient,
an interest in frequency properties, of a pipe, Helmholtz equa-
tion, a time-independent form of wave equation, is usually
used as the governing equation.

∇2p+ k2p = 0 (10)

where k = ω/c is the wavenumber and c is the speed of the
sound.

Here, the finite element method is used to solve Helmholtz
equation as implemented inside COMSOL.

3.2. Closed cylinder

In order to test the reliability of the simulation result based
on COMSOL, the input impedance of a closed cylinder is
calculated [8]. In this experiment, a cylinder with radius a =
0.1m, tube length L = 1m is built. In COMSOL, suppose
the plane wave propagating inside, a 3D cylinder could be
represented and simulated in a 2D symmetrical model. Only
half of the cross-section is calculated which saves plenty of
time.

As shown in Figure 1a, four boundary conditions need to
be given. The air is excited at boundary 1. Boundary 4 is
the axial symmetry boundary. Boundary 2 and 3 are set as
hard wall boundary are set to boundary first and then a wall
impedance 1/Y is given to them based on Eq. 2.3;

The meshing is automatically done in COMSOL and 2606
elements is generated in total as shown in Figure 1c.
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Figure 1: (a) Schematic view, (b) 3D view and (c) the meshing
of the 2D symmetrical cylinder
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Figure 2: The comparison between theoretical and simulation
results for a closed pipe

The result compared with theoretical input impedance is
shown in Figure 2. The result is quite similar and the relative
error is less than 3%.

In Figure 3, the losses and lossless results is compared. Be-
cause of the thermoviscous loss at the wall, there is a obvious
loss at each peak of the input impedance.

3.3. Open Cylinder

The input impedance of an open pipe is calculated for the
same geometry. Sound soft boundary condition is added to
the boundary 3 where the pressure at boundary is set to 0 to
simulate an open end effect.

The simulated result is shown in Figure 4 which matches
the theoretical one very well and the discrepancy is less than
1%.

4. COMPARISON BETWEEN TWO DIFFERENT
MODELS FOR AN OPEN CYLINDER

In this section, the input impedance, radiation impedance and
reflection coefficient of two different pipes based on two dif-
ferent models will be studied. The geometries of 2D axisym-
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Figure 3: The comparison between losses and lossless simu-
lation results for a closed pipe
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Figure 4: The comparison between theoretical and simulation
results for an open pipe

metrical and fully 2D model are shown in Figure 5. Unflanged
and flanged geometries are built. The boundary of the radia-
tion area is set as plane wave radiation boundary in COMSOL
simulating pressure wave radiating into infinite space. Sound
hard wall boundary is set to the boundary of the pipe and the
flanged edges.

The radius a and the length L of the pipe is 4 cm and
0.5 m respectively. As discussed above, the wave front of an
open pipe is no longer plane, so the acoustic impedance Z∆

is measured at the observation point located ∆ = 8a from
the open end inside the tube as shown in Figure 5. And the
reflection coefficient R is deduced from Eq. 8 and R∆ given
by

R∆ =
Z∆ − Zc

Z∆ + Zc
(11)

The radiation impedance Zr could also be calculated based
on Eq. 1. However, based on Dalmont [5], the radiation
impedance can also be deduced from Z∆ given by

Zr = jZctan [arctan(Z∆/jZc)− k∆] (12)

From the Figure 6, the comparison results of input impedance
between two different models, the fully 2D cylinder causes a
strong damping effect and a small shift along the frequency
axis.

From the Figure 7, the comparison of reflection coefficient
of two different model, the reflection coefficient of axisym-
metrical model overall match theoretical result though there
is larger disturbance for the flanged pipes. However, the re-
flection coefficient of fully 2D cylinder is overall less then the
theoretical one which may cause a larger transmission forward
outside the pipes. The approximation formula for modulus of
the reflection coefficient for unflanged pipe [3] and flanged
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Figure 5: Schematic view of the FEM models for radiation of an symmetrical pipe (a) Unflanged pipe and ( b) a flanged pipe. In
both figures, the left ones are the 2D axisymmetrical and right ones are two dimensional.
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Figure 6: Comparison between input impedances of (a) an unflanged cylinder and (b) a flanged cylinder

pipes [4] are given by the following two equations respectively

|Ro| =
1 + 0.2ka− 0.084(ka)2

1 + 0.2ka+ (0.5− 0.084)(ka)2
for ka < 3.5

(13)

|R∞| =
1 + 0.323ka− 0.077(ka)2

1 + 0.323ka+ (1− 0.077)(ka)2
for ka < 3.5

(14)
The radiation impedance is also shown in Figure 8.
The approximate formula for equivalent length proposed

by Norris and Sheng [4] is used as a reference. The form is
given by the following equations for unflanged and infinite
flanged cylinders respectively:

lo = 0.6133a
1 + 0.044(ka)2

1 + 0.19(ka)2
for ka < 3.5 (15)

l∞ = 0.8216a

[
1 +

(0.77ka)2

1 + 0.77ka

]
for ka < 3.5 (16)

The comparison for end correction is shown in Figure 9.

5. CONCLUSION AND FUTURE WORKS

In this paper, the FEM implemented by COMSOL is used
to study the differences between 2D symmetrical model and
fully 2D model. The method was firstly validated by calcu-
lating the input impedance of simple open and closed pipes
and the results match the theoretical solution very well. Then
it was applied to the unflanged and flanged open pipe where
both analytical solution and approximation formula have been
studied. For the result, the simulation results based on 2D
symmetrical model are more accurate though there is large
disturbance on the reflection coefficient of flanged pipe which
may be generated by the non-appropriate set boundary condi-
tion. The input impedance simulated by the fully 2D model
has obvious losses and frequency shift downward compared to
the 2D symmetrical one. The reflection coefficient of fully 2D
model is overall smaller than the theoretical solution and the
comparison between end correction shows the fully 2D result
has a slightly longer effective acoustical length which agrees
with the result shown in the input impedance. Based on this,
we can conclude that using 2D model for the simulation is not
accurate and could significantly influence the radiation at the
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Figure 7: Comparison between reflection coefficients of (a) an unflanged cylinder and (b) a flanged cylinder
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Figure 8: Comparison between radiation impedance of (a) an unflanged cylinder and (b) a flanged cylinder

open end and may result in a lower frequency sound.

However, because of the limitation of time in this project
and considering it the first time the author using COMSOL and
FEM simulation. It is still not 100 percent sure about the result
and need further checking and validation. What is more, the
disturbance in Figure 7b need to be fixed and more different
geometries like different pipe-flange radii ration a/b could be
studied. And it will be great if a model could be raised so that
2D simulation could still be used in future research.
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A. PROBLEMS MET IN THIS PROJECT

• As it is the first time using COMSOL and FEM to study
acoustic problems, learning the software cost lots of
time. The demo in COMSOL called ”open pipe” even
have errors and the result is inconsistent with the result
shown in the documentation.

• The validation model used in Lefebvre’s thesis is also
built but still could not get the right results yet.

• Two different equations are used to get the radiation
impedance Zr, first is to calculate the reflection coeffi-
cient at the observation point and get the R at the open
end based on Eq. 8, second is to calculated directly use
Eq. 12 given in Dalmont’s paper. The first equation
could lead to the right result but the second one failed.
The equation in Silva’s paper [6] is also tried which
agreed with the one get by Eq. 8.

• The accuracy of the simulation result is not very satisfied
for the unflanged and flanged cylinders, there might be
some inappropriate boundary conditions set which need
further study.

B. NOMENCLATURE

A= cross section or the cylinder, m2

a= cylinder radius, m

C+, C−= complex constants that describe the amplitude and
phase of each traveling-wave component C= specific heat ca-
pacity, Cal/(kg◦C
c= speed of sound, m/s
f= frequency, Hz
j= complex unity

√
−1

k= wave number, m−1

ka= Helmholtz number, dimensionless
L= length of the pipe, m
l= end correction, m
Pr= Prandtl number, dimensionless
p= pressure, Pa
R= reflection coefficient, dimensionless
t= temperature in Celsius, ◦C
U= volume velocity, m3/s
Y = Admittance
Z= impedance, Pa · s/m3

ρ= density, kg/m3

κ= thermal conductivity, Cal/ms◦C
µ= viscosity, kg/(m · s)
γ= ratio of specific heats, dimensionless
θ= angle, ◦

∆= length inside to the pipe from the open end, m


	1  Introduction
	2  Generalities
	2.1  Acoustic impedance
	2.2  Cut-off frequency
	2.3  Thermoviscous losses
	2.4  Reflection coefficient
	2.5  End correction
	2.6  Simulation parameters

	3  Validation of FEM
	3.1  Finite element method
	3.2  Closed cylinder
	3.3  Open Cylinder

	4  Comparison between two different models for an open cylinder
	5  Conclusion and future works
	6  Acknowledgment
	A  Problems met in this project
	B  Nomenclature

