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Isospectral Drum Investigation 
 
Wave equations and physical-modeling algorithms are typically found together. When 

referring to a Riemannian manifold being excited with a rigid boundary, or edge of a drum, a 

wave propagates from the point of origin and bounces from boundary to boundary until all the 

concentrated wave energy in the system diffuses and dissipates.  

For any point on the surface of a Riemannian manifold, we can relate its location to the 

manifold in terms of an x coordinate and y coordinate. Points inside and on the boundary are 

separated, because the rigid boundary has no movement and it has a constant rate of diffusion 

which acts on the surface of the drum. We evaluate the movements of the points inside the 

boundary while the membrane moves and stretches over time as the wave travels towards the 

boundary and back using the finite difference method. If we take a snapshot of this concentration 

of energy at two points, the diffusion theory can be represented as follows: 

 

                                             Mark Kac, 1966 

The available frequencies that make up the sound of our system are the eigenvalues of the 

Laplacian. Furthermore, the concentration of energy can also be expressed in the form of 

eigenvalues and normalized eigenfunctions as the sum of the eigenfunction at the point of 

interest as in the following: 

                                 

Mark Kac, 1966 



   
 

   
 

In 1966, Mark Kac asked if it was possible to have two drum shapes that shared the same 

set of eigenvalues and, if they did, would they sound the same or would we hear a difference 

between them. Years later in Gordon et al. (1992), the authors discovered Riemannian manifolds, 

or drum shape pairs, that shared the same Dirichlet spectra and Neumann spectra. This 

effectively means that the first isospectral drums in two dimensions were found. Using multiple 

functions within Matlab, we can evaluate those shapes and observe if they share the same 

eigenvalues. We can also plot their modes of vibration and compare them to one another.  

 

  

 
 
 
 
 
 
 
 

Figures 1 and 2 – First pair of drum shapes with overlapping modes 2 (blue solid lines) and 4 (red 
dashed lines) 

 
 

 

 
 
 
 
 
 
 
 

Figures 3 and 4 – Same as figures 1 and 2, but the drum shapes are flipped and rotated with 
overlapping modes 2 (blue solid lines) and 4 (red dashed lines). 
 



   
 

   
 

 

 
 
 
 
 
 
 
 

Figures 5 and 6 – Isospectral figures in the Gordon et al. (1992) paper with overlaying modes 2 
(blue solid lines) and 4 (red dashed lines) 

 
 
Let us inspect the lines that start and end at the boundary because those lines delineate 

places where the membrane would not move for a specific mode of vibration. If we strike the 

drum at any point on those lines, we are cancelling that particular mode of vibration by exciting 

that section of the shape which would normally remain stationary for that mode. If two or more 

modes are cancelled by striking such intersections in one shape and an equivalent intersection at 

the same modes does not exist in the other shape, there should be an audibly noticeable 

difference, even more so in the lowest modes of vibration. We can observe, when overlaying two 

vibrating modes, that some of these lines overlap in figure 1 but not in their isospectral 

counterpart in figure 2, and that the same occurs in figure 3 but not in figure 4. As a result, we 

can determine that areas exist on the surface of these drums that have no equivalent sounding 

counterpart in its isospectral pair and, as we stack modes on top of each other, we uncover more 

of these as well. Ultimately, it should be possible to differentiate the sound between two 

isospectral drums because of the difficulty in finding equivalent points to strike on both surfaces.  
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