
Hammond Organ Effects Synthesis
Evan Savage

MUMT 618
Professor: Dr. Gary Scavone

December 11, 2018

1 Introduction

The Hammond Organ, first manufactured in 1935, is a widely-celebrated instrument in many
musical genres. It was first introduced as a substitute to expensive pipe organs, allowing for
a rich output of sound in a cheaper and portable package. The Hammond was dominantly
present in church settings until the 1950s and 60s, when exploratory artists in the realms
of jazz, blues, and rock were able to find a place for the organ’s sound in their various
compositions. Notable performers such as Jimmy Smith and Keith Emerson pushed the
boundaries of the instrument, motivating numerous others to follow suit.

Tonewheels or ferromagnetic metal disks, rotate near electromagnetic pickups to produce
the sound of the organ. Smooth ridges around the rim pass close to and then past
the individual pickups, inducing opposing currents that pass through a coil producing
a fundamental frequency. Varying the pattern and number of edges on each tonewheel
correspond to different frequencies. There are 91 separate tonewheels, tuned at the lowest
to C1 (32.7 Hz) up to F7 (5919.9 Hz). The first octave is composed of richer tones featuring
strong 3rd and 5th harmonics, closer to square wave responses while the rest are sinusoidal.
The Hammond acts as an additive synthesizer, driving multiple tonewheels in parallel as the
player compresses multiple notes and changes the available controls. The tonewheels lie very
close to one another in physical space, which has led many to believe that crosstalk between
the respective pickups contributes to the Hammond’s characteristic sound.

The main feature of the Hammond is a set of 9 drawbars that control the amplitudes of
pseudo-harmonic frequencies relative to all 61 keys on the keyboard. Tuned to the 12-tone
equal temperament scale, each of the nine drawbars corresponded to semi-tonal offsets of
-12, 7, 0, 12, 19, 24, 28, 31, 36 respectively. Each individually adjustable drawbar has nine
positions that account for the gain of the respective harmonics in increments of -3 dB per
step (0, -3, -6, -9, -12, -15, -18, -21, -inf). When a drawbar is pushed all the way in, the
respective harmonic will not be heard (-inf dB adjustment), opposed to its notable presence
when it is fully extended (0 dB adjustment).

For this project, I analyzed the implementation proposed by Dr. Kurt James Werner
and Dr. Jonathan S. Abel in their Applied Sciences paper from 2016, “Modal Processor
Effect Inspired by Hammond Tonewheel Organs.” Adapting their modal reverberator

1

processing chain suggested in previous papers, they synthesized the controls and perceptual
characteristics of the Hammond as an effects processor. Some effects such as vibrato and
tonewheel distortion were presented, though I was unable to successfully implement them.
Using MATLAB, I have implemented the drawbar controls and crosstalk between tonewheel
pickups that contribute to the Hammond’s unique sound.

2 Background

2.1 Modal Processor Overview

The architecture of a modal reverberator models a collective impulse response as the
summation of parallel vibrational mode responses. The original composition was suggested
for room mode responses, though the architecture can be adapted for the Hammond effects
processor. Denoting the impulse response as h(t), is can be expressed as a combination of
mode responses.

h(t) =
M∑
m=1

hm(t) (1)

The system is summed across M total modes, where each individual mode impulse
response, hm(t), is part of a convolution with an input x(t).

ym(t) = hm(t) ∗ x(t) (2)

The final output, y(t), is formed as a parallel combination of each modal convolution.

y(t) =
M∑

m = 1
ym(t) (3)

Through a cascade of heterodyning, smoothing (convolution), and demodulating
operations, audio input x(t) can be processed across any number of mode responses.

Figure 1. Individual mode response operations

Source: ”Modal Processor Effects Inspired by Hammond Tonewheel Organs”

Heterodyning in the context of this implementation refers to an amplitude modulation.
The input signal with fundamental frequency fc, when multiplied with the complex
exponential, e−jωmt, will be offset in frequency by fc±fm, where ωm = 2πfm. The smoothing

2

step involves another multiplication with an amplitude, γm, and exponential seen in γme−αmt.
The amplitude and damping constant, αm, correspond to the damping properties of the
object being synthesized. Finally, each scaled mode response is demodulated to the output
via another multiplication with the complex exponential, ejωmt.

In order to view the overall structure of the modal processor, it can be viewed as a series
of matrix multiplications:

Figure 2. Modal reverberator architecture

Source: ”Modal Processor Effects Inspired by Hammond Tonewheel Organs”

The heterodyning and modulating (demodulating) sinusoids described above are stacked
into columns of height M as ϕ(t) and ψ(t) respectively. The smoothing step is handled by two
separate matrices, Γ and g(t). Γ is a diagonal [M×M] matrix with amplitudes corresponding
to each individual mode gain, while g(t) is another column of height M consisting of the
complex damping operations. As shown in equation (3), the final output y(t) is formed as a
summation of each mode response ym(t) and represented by the final matrix in Figure 2.

2.2 Hammond Effects Processor Overview

The Hammond organ operates as an additive synthesizer, driving a subset of its 91 tonewheels
in parallel depending on which of its 61 keys are compressed and how the drawbars are
positioned. Thus, each key and tonewheel can be represented in another series of matrix
multiplications (Figure 3) similarly oriented to Figure 2.

The heterodyning step is essentially equivalent, where the single input signal x(t) is now
modulated across the frequencies corresponding to the 61 keys on the Hammond.

n(t) = ϕ(t)x(t) (4)

The column of key frequencies is smoothed prior to the gain matrix by a set of element-wise
convolutions with gpre(t). The convolutions can also be represented as normal time domain
filters to maintain the single input, x(t), to single output, y(t), chain of matrix operations.

n′(t) = gpre(t) ∗ n(t) (5)

The drawbar controls are found in Γ(r(t)), representing the heart of the Hammond’s
functionality. Each color coded drawbar in r(t) (Figure 3) is mapped to its corresponding
diagonal of gain values in Γ(r(t)). Changing the position of each respective drawbar will

3

Figure 3. Hammond effects synthesis architecture

Source: ”Modal Processor Effects Inspired by Hammond Tonewheel Organs”

in turn modify the amplitudes for the relative pseudo-harmonic offsets of the fundamental
frequency in x(t). Performing a matrix multiply with n(t) results in the set of amplitudes
passed to the tonewheels.

a(t) = Γ(r(t))n′(t) (6)

The matrix mutiplication interpolates the frequencies of the 61 keys to the frequencies of
the 91 tonewheels. Another element-wise smoothing operation takes place to set a relative
unity gain for each tonewheel that will be driven. Again, time domain filters can be used
here in place of the convolution.

a′(t) = gpost(t) ∗ a(t) (7)

Each mode output, y(t) is computed via the tonewheel (demodulation) step, which is an
element-wise multiplication with the respective tonewheel frequencies.

y(t) = a′(t)� ψ(t) (8)

Finally, the modal responses are summed together to form the single output signal y(t),
representative of the additive synthesis of the Hammond organ.

y(t) = 1>y(t) (9)

3 Hammond Effects Implementation

Each of the equations listed in 2.2 were implemented in MATLAB via a series of element-wise
and matrix multiplications, and successive digital filtering during the smoothing steps. Due
to difficulties in the suggested processing from Werner and Abel, I was not able to implement
some of the features found in their paper, such as the vibrato and memoryless pickup
nonlinearities. Thankfully, I was able to successfully synthesize the modal frequencies with

4

basis tonewheel distortion, drawbar controls, and tonewheel crosstalk in the context of the
processing architecture.

Through various adaptations, I was able to successfully process sinusoidal inputs leading
to ”hammondized” outputs. My code is able to be scaled to any number of desired modal
responses, M , though it can quickly become very computationally demanding since each
matrix operation happens across two-dimensional arrays that are mostly of size [M × t],
where t is representative of successive samples from time 0 up until a specified duration in
seconds, sampled at the audio rate, fs = 44.1 kHz.

3.1 Modal Frequencies

When modulating over the organ’s range, each mode acts as a bandpass filter, narrow
enough to significantly reduce the frequencies of x(t) that might lie between the 12-tone
equal tempered frequencies that the organ keys are tuned to. Werner and Abel suggest
expanding the amount of modes per semitone, represented as S=14, exponentially across the
frequency range of the organ.

The lowest tonewheel frequency is 32.7 Hz, and the highest is 5919.9 Hz. Bounded within
that range for the sake of authenticity, I set the first modal frequency f1=40 Hz, also at the
authors’ suggestion. Seven octaves above f1 is a frequency of 5120 Hz. Tuned to the 12-tone
equal tempered scale, with 14 modes per semitone (S) across seven octaves, this leads to
1176 exponentially-spaced modes bounded within the frequency range of the organ. This
range is roughly equivalent to the sinusoids available on 84 of the 91 tonewheels. The tuning
of each mode can be found by

fw = f12w/(12S) (10)
where w ∈ [1...1177] and again, S = 14. Thus, every matrix utilized in the processing is of
height 1177, leading to a computationally demanding implementation for any input duration
that is considerably long.

Each of the heterodyning and modulating sinusoids

ϕ(t) = <(e−jωwt) = cos(ωwt) (11)

ψ(t) = <(ejωwt) = cos(ωwt) (12)
are composed with ωw = 2πfw. I decided to only use the real part of the sinusoids since the
implementation was entirely executed in the time domain, and avoiding complex numbers
greatly reduced the time of computation.

The lowest 12 tonewheels produce waveforms that are more square than sinusoidal. The
corresponding modes encompass the first 144 indices of ψ(t) while the rest are sinusoidal.

ψ(t) =


4
π

cos(ωwt) + 4
3π cos(3ωwt) + 4

5π cos(5ωwt) w ∈ [1 . . . 168]

cos(ωwt) w ∈ [169 . . . 1177]
(13)

Demodulation on the first set of modes in (13) leads to a small amount of distortion for
the lower frequency pseudo-harmonic offsets present in the output.

5

Using the originally-suggested complex sinusoids led to a very distorted, incorrect output.
Only modulating with the real sinusoids led to a much cleaner, harmonically-accurate result.

3.2 Drawbar Routing Matrix

The drawbar routing matrix is a sparsely filled square matrix featuring nine diagonals
pertaining to the pseudo-harmonic offset values shown below. The offsets are said to be
pseudo-harmonic since the first two are not positive integer multiples of the fundamental.

o = [o1 . . . o9] = [−12, 7, 0, 12, 19, 24, 28, 31, 36] (14)

In the same order, the nine drawbars individually control the level of the semitonal offsets.
Each drawbar has nine positions, rd where d ∈ [1 . . . 9], corresponding to multiples of -3 dB
increments until the fully compressed position where there is no relative harmonic output.

Table 1. Amplitude adjustment based on drawbar position

rd 8 7 6 5 4 3 2 1 0
amplitude (dB) 0 -3 -6 -9 -12 -15 -18 -21 −∞

Based on the position of rd, I converted the decibel values to their respective amplitude
gains, R.

Rrd = 103(rd−8)/20 (15)

Then, each entry in Γ(r(t)) can be expressed as

γw,k (t) =
9∑

d = 1
Rrdδ(w − k − odS) (16)

where w denotes the same tonewheel modal index as before, and k is a modal offset of w,
k ∈ w + So. Hence the routing matrix is of dimensions [1177 × 1177], as offsets in k above
the modal range are truncated. δ(x) represents the Kronecker delta function

δ(x) =

1 , x = 0
0 , x 6= 0

(17)

No two drawbar gains sum with one another due to the inclusion of δ(x), which causes
the matrix to be so sparsely populated. I wrote a very simple external ”kron.m” file for δ(x)
which was used in coordination with my main script.

6

3.3 Smoothing Filters

The first smoothing filter, gpre(t), is included to prepare the incoming signal for the drawbar
routing matrix multiplication. Werner and Abel suggest representing it with a column of
ones, which acts as a moving average or low pass filter across each of the modes.

In earlier iterations, I was convolving each mode with gpre(t), which had to occur 1177
times and successive matrices had to be zero padded to account for the change in length of
the output matrix due to the convolution. Thankfully, in an email exchange with Werner,
he suggested to instead design digital filters in place of the convolution operations found in
equations (5) and (7). The Z-transform of gpre(t) was simple to implement as an FIR filter,
with the b and a coefficients set to ”(1/1177)ones(1, 1177)” and ”1” respectively.

The only information regarding gpost(t) was that it should ”create impulse responses with
a linear ramp onset and a 200 ms decay — i.e., of the form te−αt” and that it should be
applied twice. The z-transform of a time-multiplied exponential is

H(z) = Te−αtz−1

1 − 2eαT z−1 + e−2αT z−2 (18)

where T (1/fs) represents the discrete time sample. I used the ”impz” function in MATLAB
to continually augment the coefficients until an impulse filtered twice through the exponential
resulted in the response in Figure 4.

Figure 4. gpost(t) impulse response modeled in the form te−αt twice-filtered

The impulse response’s leading edge is close to linear ahead of the peak, and a 200 ms
decay can also be seen. By implementing the convolution operations instead as digital filters,
I was able to carry out all of the matrix operations without having to do any zero padding
or concatenation, resulting in much shorter computation times.

3.4 Tonewheel Crosstalk

After smoothing the pseudo-harmonic amplitude outputs, a(t), into a′(t) (equation 7),
another matrix multiply can be added to simulate crosstalk between adjacent tonewheel

7

pickups. Each of the mode filters act more as bandpass than a brick wall, so a minimal
amount of crosstalk is already taking place.

a′′w(t) = Ca′w − S(t) + a′w(t) + Ca′w+S(t) (19)

C is an input parameter that adjusts the level of semitones on either side of the individual
harmonic outputs. The matrices are offset by ±S since there are 14 modes per semitone. I
simply shifted copies of a′w vertically and padded with zeros to implement this effect. a′′w(t)
then replaced a′w(t) in equation (8).

4 Results and Discussion

In this section, I will present the results of my implementation in MATLAB. In all of
the examples shown, a sinusoidal waveform was used as input. For various drawbar and
crosstalk settings, the frequency response of each output clearly shows the corresponding
pseudo-harmonic gains relative to the input waveform. I will show the frequency response of
these effects separately and in tandem with one another.

4.1 Drawbar Control Examples

Based on a 1.5 second 440 Hz sine wave input, Figure 5 shows the frequency response of
two different registrations, [008000000] and [888888888], outputting the fundamental and all
pseudo harmonics respectively. The crosstalk level, C, is set to zero for both. For reference,
the semitone offsets assigned to each drawbar are found in (14).

Figure 5. 1.5 second sine wave input at 440 Hz

(a) Registration: [008000000] (b) Registration: [888888888]

The fundamental is clearly visible in 5a, at 440 Hz. In 5b, nine total magnitudes
representative of each pseudo-harmonic can be seen. There is slight variability in the

8

magnitude of each, which I was unable to fully mitigate. I have verified that each of the
offsets in 5b are in the correct position based on the input frequency.

Figure 6 is based on a 1.5 second 880 Hz sine wave with two new registrations, [021345678]
and [473258300].

Figure 6. 1.5 second sine wave input at 880 Hz

(a) Registration: [021345678] (b) Registration: [473258300]

6a has no presence from the octave below, and the rest of the harmonics increase almost
linearly. The second offset gain value corresponds to +7 semitones above the fundamental,
which is in the third gain position. Only six distinct harmonics appear on the frequency
response since the highest two are above the 5120 Hz cap to the implementation’s range
((880)231/12 = 5274 Hz, (880)236/12 = 7040 Hz).

6b features a set of varying harmonic gains. The drawbar controls work as expected,
allowing for individual control over each harmonic, with relative magnitudes representative
of each expected frequency.

4.2 Crosstalk Examples

The crosstalk level, C ∈ [0, 1], is an easily adjustable parameter that controls the presence
of ±1 semitonal offsets of each harmonic in the Hammond effect output. Figure 7 shows two
separate crosstalk value settings, C = 0.1, and C = 0.5. The registration for both plots is
[668848588] on a 1.5 second 440 Hz sin wave input.

The crosstalk gain is relative to each harmonic’s individual drawbar setting. In 7b, notice
how the levels off the semitone offsets are at about half the magnitude of their respective
harmonic. Neither frequency responses are audibly pleasurable, so I usually set C ≤ .04.

9

Figure 7. 1.5 second sine wave input at 440 Hz with [668848588] registration

(a) C = 0.1 (b) C = 0.5

4.3 Perceptual Output

Listening to various drawbar registrations and crosstalk levels, the Hammond Effects
synthesis was partially successful. Registrations only featuring the fundamental or single
offsets, such as [008000000] or [000008000], led to an output with distinct tremolos of similar
length. As the sole offset frequencies increased, the lengths of the tremolos shortened.

The tremolos were caused by the double filtering in gpost(t), which also acts as an
anti-aliasing filter. When I remove the filter, no tremolo is perceived, but a high to low
frequency sweep is more present. It was difficult to fully reduce any aliasing, as I was not
expecting it for any of the sinusoidal inputs tested. The modulation steps in equations (5)
and (7) offset by at most 5120 Hz, which does not cause a shift close to the Nyquist frequency
for the example inputs of 440 and 880 Hz. I also checked the output with and without a
high-order Butterworth filter, though the sweep is still perceivable.

The tremolo effect is frequency dependent. At 220 Hz, separate attacks are perceived on a
2 second interval with fundamental registration [008000000]. As the frequency increases, the
time between amplitude notches decreases, and the initial transient adjusts earlier in time.
Successive tremolo envelopes begin to overlap as well, leading to a less present effect. Once
there is enough overlap, the tremolo speeds up again with much more distinct notches.

Thankfully, the tremolo is a welcome effect, since earlier versions of the Hammond were
routed into a Leslie speaker, which caused a tremolo on the organ’s output. Figure 8 and
Figure 9 both show two waveforms with varied registrations.

10

Figure 8. 2 second sine wave input at 220 Hz

(a) Registration: [008000000] (b) Registration: [846280000]

Figure 9. 2 second sine wave input at 1100 Hz

(a) Registration: [008000000] (b) Registration: [846280000]

5 Conclusion

Based on Werner and Abel’s paper, I was able to successfully implement a subset of the effects
processing they had suggested for the Hammond organ. The modal reverberator architecture
was augmented to perform a series of filtering and matrix multiplication operations in
MATLAB for sinusoidal inputs of varying length and frequency. With 1177 modes to compute
across, the task provided to be very computationally demanding for the realistic frequency
range of the organ. These modes can be easily scaled accordingly, though increasing may
induce more unwanted artifacts.

Generally speaking, each step in the architecture was successfully executed. My
model heterodynes (modulates) and demodulates, filters across every mode, adjusts pseudo
harmonic magnitudes, introduces additional crosstalk, and adds a tremolo into the processed
sound.

The drawbar matrix allows for each harmonic to be individually altered, which serves as
the core functionality of the Hammond. Nine drawbars with nine positions each leads to a
widely adjustable output spectrum. Crosstalk is induced easily through the augmentation of
a single parameter, which can be tweaked to mimic the organ’s timbre. Surprisingly, filtering
operations contributed to a frequency-dependent tremolo effect that added a pleasant layer
to the perceptual output. My implementation only shined for sinusoidal inputs, though they
are the most reminiscent of the Hammond’s characteristic sound.

11

References

[1] Abel, J.S.; Coffin, S.; Spratt, K.S. A modal architecture for artificial reverberation with
application to room acoustics modeling. In Proceedings of the 137th Convention of the
Audio Engineering Society (AES), Los Angeles, CA, USA, 9–12 October 2014.

[2] Abel, J.S.; Werner, K.J. Distortion and pitch processing using a modal reverb
architecture. In Proceeding of the 18th International Conference on Digital Audio Effects
(DAFx-15), Trondheim, Norway, 30 November–3 December 2015.

[3] Pekonen, Jussi & Pihlajamäki, Tapani Välimäki, Vesa. (2011). Computationally efficient
Hammond organ synthesis. Proceedings of the 14th International Conference on Digital
Audio Effects, DAFx 2011.

[4] Werner, K.J.; Abel, J.S. Modal Processor Effects Inspired by Hammond Tonewheel
Organs. Appl. Sci. 2016, 6, 185.

[5] Werner, K.J.; Abel, J.S. “Modal Processor Effects Inspired by
Hammond Tonewheel Organs”—Audio Examples. Available online:
https://ccrma.stanford.edu/ kwerner/appliedsciences/hammondizer.html (accessed
on 9 October 2018).

12

Appendices
A Hammondizer Code

% Evan Savage − Hammondizer s c r i p t
% By ad ju s t i ng the c r o s s t a l k l e v e l and drawbar con t ro l s , one can s imulate
% the e f f e c t s o f the hammond organ . Use fu l parametes to s e t are :
%
% f c − s i n u s o i d a l input f requency
% durat ion − time o f output f i l e (s e t t i n g i t > 2 i s un fo r tunate ly very
% computationaly demanding
% C − amount o f c r o s s t a l k from one semitone away (> . 1 makes f o r a very
% u n s e t t l i n g sound)
% draw pos − the r e s p e c t i v e l e v e l o f each drawbar , the harmonic o f f s e t s o f
% each can be seen in the ’ o T ’ array

c l e a r ;
c l f ;

f s = 44100 ; % sampling ra t e
Ts = 1/ f s ; % d i s c r e t e time sample
durat ion = 2 ; % durat ion (s) o f input
t = 0 : Ts : durat ion−Ts ; % array o f d i s c r e t e time sample i n d i c e s

f c = 440 ; % frequency o f s i n e wave input

x = cos (2∗ pi ∗ f c ∗ t) ; % s i n e wave input

S = 14 ; % modes per semitone
C = . 0 1 ; % c r o s s t a l k l e v e l
alpha = 0 . 0 0 0 3 ; % g pos t c o e f f i c i e n t
modes = 1177 ; % 7 octaves ∗ 12 semitones ∗ 14 modes/ semitone

% gpre feed forward c o e f f i c i e n t s (f eeback i s j u s t 1)

gpre = (1/ modes)∗ ones (1 , modes) ;

% g pos t f i l t e r c o e f f i c i e n t s

b0 = 0 ;
b1 = alpha∗exp(−alpha) ;

13

a0 = 1 ;
a1 = −2∗exp(−alpha) ;
a2 = exp(−2∗alpha) ;

% Set i n d i v i d u a l drawbar p o s i t i o n s to increments o f −3 (dB) b e s i d e s 0

% pos [0 1 2 3 4 5 6 7 8]
% −−
% gain [− i n f −21 −18 −15 −12 −9 −6 −3 0]

draw pos = [0 2 1 3 4 5 6 7 8] ;

% Convert drawbar increments (dB) to ampl itudes

draw val = ze ro s (1 , 9) ;
ind = 1 ;

f o r pos = draw pos
i f pos == 0

draw val (ind) = 0 ;
e l s e

draw val (ind) = 1 0 . ˆ (((draw pos (ind)−8)∗3)/20) ;
end

ind = ind + 1 ;
end

% Semitonal o f f s e t s f o r each drawbar

o T = [− 1 2 ; 7 ; 0 ; 1 2 ; 1 9 ; 2 4 ; 2 8 ; 3 1 ; 3 6] ;

% Routing matrix
% − ” kron .m” i n c l u d e s the Kronecker de l t a func t i on : kron (x)
% − Spar se ly f i l l e d with at most 9 d iagona l s f o r each drawbar

rout ing mat = ze ro s (modes , modes) ;

f o r w = 1 : modes
f o r k = 1 : modes

f o r d = 1 :9
rout ing mat (w, k) = rout ing mat (w, k) . . .

+ draw val (d)∗ kron (w−k−o T (d)∗S) ;
end

14

end
end

% Range o f mode f r e q u e n c i e s e x p o n e n t i a l l y spaced ac r o s s the organ ’ s range

f w = ze ro s (modes , 1) ;

f o r z=1:modes
f w (z) = 40∗2ˆ(z /(12∗S)) ;

end

% Convert to r a d i a l f r e q u e n c i e s

omega w = 2∗ pi ∗ f w ;

% Heterodyning s i n u s o i d s

phi = cos (omega w ∗ t) ;

% Demodulating waveforms , lowest octave are square

p s i = ze ro s (modes , l ength (t)) ;

f o r w = 1 : modes
i f w < S∗12

p s i (w , :) = 4/ p i ∗ cos (omega w (w)∗ t) . . .
+ 4/(3∗ pi)∗ cos (3∗omega w (w)∗ t) . . .
+ 4/(5∗ pi)∗ cos (omega w (w)∗ t) ;

e l s e
p s i (w , :) = cos (omega w (w)∗ t) ;

end
end

% F i l t e r the modulated input with a moving average (lowpass) f i l t e r

p = f i l t e r (gpre , 1 , phi .∗ x , [] , 2) ;

% Mult ip ly with rout ing matrix to apply pseudo harmonic ga ins

amp = rout ing mat ∗ p ;

% F i l t e r twice through with g pos t

15

amp p = f i l t e r ([b0 b1] , [a0 a1 a2] , amp, [] , 2) ;
amp p = f i l t e r ([b0 b1] , [a0 a1 a2] , amp p , [] , 2) ;

% Cros s ta lk matrix , o f f s e t amp p by +/− 1 semitone with c r o s s t a l k l e v e l , C

amp pp = C∗ [amp p(S+1:end , :) ; z e r o s (S , l ength (t))] . . .
+ amp p + C∗ [z e r o s (S , l ength (t)) ; amp p (1 : end−S , :)] ;

% Demodulate to output matrix

y = p s i .∗ amp pp ;
N = length (y) ;

% sum a l l rows o f y f o r output vec to r and normal ize

out = sum(r e a l (y)) ;
out = r e a l (out)/max(abs (r e a l (out))) ;

% Plot o f output waveform

f i g u r e (1)
p l o t (t , r e a l (out)) ;
a x i s ([0 , durat ion , −1.2 , 1 . 2]) ;
x l a b e l (’ Time (s) ’) ;
y l a b e l (’ Amplitude ’) ;
g r i d

% Frequency response o f output waveform

f i g u r e (2)
f x = [0 :N−1] ∗ f s / N;

F = abs (f f t (out))/ N;

p l o t (f x , F) ;
xl im ([0 5 5 0 0]) ;
x l a b e l (’ Frequency (Hz) ’) ;
y l a b e l (’ Normalized Magnitude ’) ;

16

B Kronecker Delta Function Code

f unc t i on out = kron (x)
i f x == 0

out = 1 ;
e l s e

out = 0 ;
end

end

17

	Introduction
	Background
	Modal Processor Overview
	Hammond Effects Processor Overview

	Hammond Effects Implementation
	Modal Frequencies
	Drawbar Routing Matrix
	Smoothing Filters
	Tonewheel Crosstalk

	Results and Discussion
	Drawbar Control Examples
	Crosstalk Examples
	Perceptual Output

	Conclusion
	Appendices
	Hammondizer Code
	Kronecker Delta Function Code

