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Abstract

A model of the tibetan singing bowl has been succesfully implemented in
matlab, using banded waveguide theory and a nonlinear interaction model
for sustained excitation. Noise was added to the model, in order enhance the
sound of dry friction.
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1. Introduction

The Tibetan singing bowl is a percussion instrument with origin in Bud-
dhist religious practices around 500 to 125 BCE. It was used to accompany
meditation- or healing ceremonies, and later became an instrument of great
interest in modern western music.
The following section will go through the key timbral characteristics of the
instrument and thereby explain the objectives for this project.

Timbral characteristics

The Tibetan singing bowl has a rich timbre, constituted by a large number
of inharmonic modes, i.e. non-integer frequency ratios k:

k =
fk
f0

, k 6∈ Z (1)

Traditionally, the bowl is hand-hammered into the desired tuning, yielding
a slightly asymmetric shape. This results in a strong beating in the lower
modes, which is highly audible and a key timbral character of the instru-
ment.
The bowl is played with a wooden mallet, a puja see section 1, by either
striking or rubbing in a sliding motion along the rim of the bowl.
When struck, there is a distinct transient metallic sound, followed by a high
number of inharmonic resonances decaying very slowly.
When rubbed, the energy buildup is slow and only a subset of modes are
excited, depending on the velocity and pressure applied to the puja.
Furthermore there is a distinct sound of dry friction between the puja and
the bowl.
Some work has been done on modelling this ancient instrument, most promi-
nent is [7, 2] where a physically informed 1D banded waveguide approach
is taken in order to obtain a real-time applicable model. This was followed
up in [9], with an attempt to introduce more physical accuracy, mainly by
taking into account both radial and tangential parameters, thus extending
the model in 2D.

This project aims to model the bowl in Matlab with banded waveguides as
proposed in[2], though using measurement results from [9].
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There is an already existing implementation in the C++ library STK (syn-
thesis toolkit) called prayer bowl in the src file BandedWG.cpp [P. Cook, G.
Scavone], which will serve as inspiration and comparison.
The STK implementation lack the direct frictional sound of rubbing, and
this project attempts to address this feature.
The objectives is thus a banded waveguide model that implements following
features:

• Long decay

• Inharmomic modes

• Beating modes

• Sustained excitation

• Enhanced dry friction
sound

2. Digital waveguides

This section summarizes digital waveguide theory including a thorough ex-
planation of banded waveguides, which is used throughout the rest of the
report.
Digital waveguides is widely used as a means to simulate wave-propagation in
an acoustic instrument, for real time applications. One dimensional waveg-
uides has been used for real time modelling of plucked[1] and bowed strings[5],
open and closed acoustic pipes and reverberation. The main idea is to use
bi directional delay lines connected in a loop, to represent traveling waves
along a physical dimension of an instrument, and filters to handle reflections
and losses at extremities. A digital waveguide model can thereby naturally
represent the harmonic standing waves that appear on e.g. strings and pipes,
some time after excitation.
A unit delay of 1

fs
translates into propagating the distance c

fs
mm, where c is

the wave propagation speed. For waves propagating in air this corresponds
to a spatial sampling distance of 7.7 mm. At every time instance n

fs
|n ∈ Z

pointers are incremented to simulate wave propagation, and a filtering oper-
ation is performed. Thus, digital waveguides is computationally inexpensive
while maintaining a high level of physical accuracy.[5].
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This theory have been extended to modelling in both 2 and 3 dimensions, as
well as in a mesh structure, i.e. a ”waveguide mesh” where the geometry of
rooms or complex shaped resonators, is modeled by a grid of unit delay lines
and multiport scattering junctions, [8, 4] an approach very similar to that of
finite element modelling.

2.1. Banded waveguides

Banded waveguides is an extension to the 1 dimensional waveguide, and
specifically a special case of digital waveguide networks. It was originally
proposed in [2], as a means to model friction driven inharmonic resonators,
such as the glass harmonica, bowed bars and the tibetan singing bowl.
The idea is to use parallel bandpass filters for decomposing the response of
an instrument into sub-bands that represent its modes, i.e. significant peaks
in the frequency response. The bandlimited signals are then fed into bi-
directional delay lines of length k fs

fm
, to model wave propagation of each mode

separately. The choice of k will not affect the steady state response, but it will
have an impact on the transient response, as it defines when a mode starts to
”speak”. This approach allows for modelling inharmonic resonances, as the
centre frequency and delay length of each mode is tunable. An illustration
is seen in fig. 1, notice how the channels are summed and coupled with an
interaction block. For modelling the Tibetan bowl, this is the friction model
eq. (4) that depends of incoming traveling wave components.
All losses are lumped together and implemented in the bandpass filters. This
leads to 4 model parameters: modal frequencies, passband gains, beating
ratios and delay lengths, which are retrieved in an analysis step that could
involve spectral measurements and some geometrical considerations. This
project will only focus on the synthesis part, as measurement results are
taken from [9] and the STK implementation.
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Figure 1: Simplified banded waveguide structure as proposed in [2]

3. Analysis

This section gives a quick overview on the analysis results that was used for
deriving the model parameters.

3.1. Mode frequencies

In [9] measurements where performed on 4 bowls with diameters and fun-
damental frequencies given in table 1, to obtain 4 sets of frequency ratios.
The matlab script bowlParameters.m implements preset selection based on
matching the desired f0 to one of the 4 measurements.

φ [mm] f0 [Hz]
262 86.7
180 219.6
152 310.2
140 513

Table 1: Bowl measurements from[9]

The actual mode frequencies is then calculated by multiplying the desired f0

with the ratios in the selected preset.
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3.2. Transient excitation

The excitation signal is normally a short noise burst retrieved by inverse
filtering of a recording. In STK, the noise burst is implemented by simply
pre-filling the delay lines with unique square waves of different pulse widths,
and this method is adapted in this project. The procedure is illustrated in
the code-snippet below.

minDelay = delays(end);

for k = 1:Nch

for j = 1:( delays(k)/ minDelay)

x(k,j) = excitation(k)/Nch;

end

end

excitation is a vector of size (1,Nch), representing the amplitude of the
square wave for each channel.
This method effectively implements a phase aligned transient attack, as the
pulse widths is calculated from delay lengths, such that the rising edge for
each channel is synchronized.

3.3. Beating ratios

The beating frequencies are given for the 3 small bowls[9], and they are in the
range [1.001 1.021]. There seamed to be no correlation across mode numbers
and bowl sizes, and therefore the parameter is left as user input that scales
all beating modes equally.

3.4. Delay line length

The delay lengths are calculated from the modal frequencies as D = k fs
fm

.
With k = 4 for the 2 lowest modes, to make them ”speak” later, effectively
simulating a energy transfer from high to low frequencies, as is the case with
cymbals.

4. Synthesis

This section will explain the steps taken in order to synthesize a sound, given
the parameters in previous section. It is divided into two parts: the resonator
and the sustained excitation.
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4.1. Resonator
The resonator is synthesized with banded waveguides as described in [2],
though a few changes were made in order to increase flexibility and to ensure
stability. These changes are explained below.

Beating

A beating results from mixing 2 signals with slightly different frequencies.
This is implemented by 2 detuned waveguides in series with 2 bandpass fil-
ters, illustrated in fig. 4. This differs from the circular banded waveguides
proposed in [2] which used only one bandpass filter, see Figure 2. Separating
the detuned waveguides allowed for changing the amplitude of the beating,
by adjusting the passband gains differently, but also led to an issue of stabil-
ity described in the following.

Figure 2: Circular banded waveguide, representing one beating mode of the bowl.
Delay1 6= Delay2 to achieve beating for asymmetric bowls. Presented in [7].

Band limiting

The bandpass filters were implemented as the 2.order filter in eq. (2), as this
has normalized peak gain for all tunings.

H(z) =
1−Rz.2

1− (2R cos(θ))z−1R2z−2
(2)

The parameters of the transfer function has the following interpretation:

R = 1− B

2
where B is the bandwith of the filter. This was chosen to sufficiently suppress
neighbouring peaks in the comb response, as explained in[2].

cos(θ) =
2R

1 +R2
cos(ψ)
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(a) Unstable (b) Stable

Figure 3: Showing original and gain corrected responses. The dotted line is the summed
response. The 5 lowest modes is beating, thus 2 bandpass filters with slightly different
resonance frequency lies on top of each other.

where ψ is the normalized resonance frequency.

For a beating mode, the filters will be overlapping, and the summed response
can exceed unity gain, leading to instability. By evaluating and summing the
gain at ψk for all neighbouring filters, a gain correction Ãk was obtained. This
corresponds to solving the system of N equations and N unknown:

N∑
n=1

Hn(ψk) · Ãk = 1 k = (1..N) (3)

where N is the number of channels in the banded waveguide network.

Decoupling the modes

For real time applications where the bowl size potentially could be changed
over time, the gain correction is a trivial procedure to carry out. Therefore
another approach is taken, similar to that in STK. This is illustrated by the
dotted lines in fig. 4. By decoupling the channels, the system is stable as
long as all bandpass filters has below unity gain.

Allpass interpolation

The final implementation is illustrated in fig. 5. This also involves allpass
interpolation filters, denoted AP, for implementing fractional delays. This
was originally ignored, as frequency accuracy was found to be unimportant
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Figure 4: Block diagram of one beating mode. Notice 2 significant changes from fig. 2. 1.
Beating modes are separated into 2 channels. Each channel has a direct feedback loop,
i.e. no coupling.

for this particular instrument and its use. Though, for the matter of tuning
the beating ratio accurately, fractional delays had to be introduced.

Figure 5: Blok diagram for the full implementation. BP = 2 pole bandpass filter. AP = 1
pole allpass interlation filter. Noise = Gaussian white noise, and LP = 2 pole butterworth
lowpass filter with user controlled fc. The actual number of channels is between 10 and
15 depending on f0, but this is left out for clarity

4.2. Excitation

The interaction between the puja and the bowl is modelled as a velocity de-
pendent friction. The friction curve proposed in [2] was replaced by eq. (4),
due to lack of clarity in the parameters it involved. Though, in the final im-
plementation a bow table was used instead, this section describes the reasons
behind this choice.

9



Nonlinear friction

The sustained excitation is nonlinear process, as a constant bow velocity re-
sults in sinusoidal output. When using a friction model for the interaction,
oscillations arise due to a force threshold fmax being periodically overcome
by forces in the string, resulting in a stick-slip motion.
First attempt in order to achieve stick-slip motion, was to implement the ve-
locity dependent friction curve, eq. (4), and couple it with the system through
the force relation in eq. (6)

µ(v∆) = µd + (µs − µd)e
−C|v∆|sgn(v∆) (4)

Fa = Fr (5)

µ(v∆)v∆ = Z(v+
∆ − v∆) (6)

Where Z is the wave impedance, v∆ = vb− (v+ + v−) is the sum of velocities
at excitation position, and v+

∆ = vb− v+ is the differential velocity at excita-
tion position. As vb and v+ is known, respectively bow velocity and summed
delay line outputs, the unknown is the outgoing velocity v− = v∆ − v∆+ ,
corresponding to the new input traveling into the bandpass filters.
Figure 6 shows a graphical solution to the problem, where the linear seg-
ments I, II and III represents the reactive force at different time instances,
and the nonlinear curve is the friction force. Their intersections are solutions
to eq. (6). The infinitely steep part of the friction curve represents sticking.
This model showed to be very sensitive to the (unknown) values of µd, µs, Z
and C, and oscillating stick-slip motion was hard to obtain. But as solu-
tions eq. (6) usually follow that same pattern, a bow table that simulate the
behavior was used instead. This enforced the stik-slip motion, and reduced
computation. It is implemented in STK as:

ρ(v+
∆, pb) = min((|v+

∆ · (5− 4 · pb)|+ 0.75)−4, 1) [3] (7)

Where pb is bow pressure and ρ is a scattering junction coefficient that con-
trols whether new input is added to the system, thus can be seen as an
admittance for the puja on the bowl. The flat region ρ = 1 represents stick-
ing and increasing pb, increases this region. This is illustrated in fig. 6
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With this approach to solving the coupling, the calculation of new input con-
tribution v− simplifies to a sum over Nch, a table lookup and a multiplication,
as illustrated in the code-snippet below.

xk = sum(xkj); % Sum waves into interaction

vd = bowVelocity(k) - xk; % Differential velocity

rho = bowTable(vd ,bowPressure(k)); % Admittance

(a) (b)

Figure 6: (a) shows the Friedlander-Keller diagram for graphical solution in the force-
velocity plane. [6]. (b) shows the bow table that approximates solutions to (a) when
hysteresis is neglected. It relates admittance ρ to differential velocity, for varying bow
pressure pb. Notice how the region of sticking ρ = 1 increases with pb

Excitation position

The excitation position was implemented with ”fixed” output pointers oPtrs,
(incremented by the same value in each iteration), and lagging excitation
pointers ePtrs which is modulatable. A pointer offset is calculated from an
excitation position, [0; 1] representing the entire circumference of the rim,
scaled with the delay lengths, and added to oPtrs to obtain ePtrs

ePtrs = round(oPtrs+excPosition(k)* delays );

Adding noise

After successfully implementing the bowtable described above, sustained ex-
citation with slow energy buildup was achieved, but the dry friction sound
from puja-bowl interaction still wasn’t satisfying.
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It was possible to enhance this friction sound by adding low-passed noise to
model. The noise is coupled with the stick-slip motion of the puja by scaling
with 1− ρ, such that noise is added during slipping. This was motivated by
the physical behavior of friction, but remains a creative choice. Finally the
noise is scaled by the bow pressure to ensure that no noise is added for pb = 0.

Results are shown in fig. 8.

5. Results

This section illustrates the most important results. Explanations is found in
the captions, and a discussion is given in the last section. Tests were made
with sinusoidal excitation position, but only unrealistically high frequencies
yielded audible results, and the implementation suffered from several arti-
facts. See section 7 for a discussion on this feature.

(a) (b)

Figure 7: Time domain plot of sustained excitation with f0 = 300. a) has a beating ratio
of 1.001 and noise gain of 0, where b) has beating ratio of 1.05 and noise gain of 0.1.
Notice how the energy buildup is faster in b), though they reach same energy level at the
point where the bow is released (bowPressure = 0)
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(a) (b)

Figure 9: a) stick-slip helmholtz motion for bowed string in [6] Blue trace is string velocity
at bowed point. b) Stick slip illustration for the synthetic bowl. ρ = 1 for sticking. ε
denotes different bow pressures, and is a scalar applied to the lowest pressure that allowed
frictional oscillation, i.e. ε = 1. Notice that the stick-slip oscillation obtained in b) does
not resemble any type of Helmholtz motion in a). Notice also how the stick-slip pattern
starts to disappear already for ε = 1.2

(a) noiseAmp = 0 (b) noiseAmp = 0.1

Figure 8: Spectrogram of bowl at sustained excitation. The dotted line marks when the
excitation is stopped. (a) shows how mainly mode 1 & 4 is excited with a noise free friction
interaction, and (b) shows how all modes are excited when noise is present, and how the
overall envelope has a shorter attack, as energy builds up faster
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6. Conclusion

A model of the Tibetan bowl was successfully implemented in matlab, with
banded waveguides and the STK bow table. The long decay was achieved
by fine tuning the passband gains and decoupling the modes, which also
enabled a flexible control of the beating modes. Using the frequency ratios
obtained from [9] yielded realistic timbres, and the dry friction sound was
successfully enhanced by adding noise to the model. This did though change
the response of the system drastically, and in general the system showed to
be very sensitive to the interaction parameters. Specifically self sustained
excitation could only be achieved for a very small range of bow pressures, as
illustrated in fig. 9, yielding very limited possibilities for interacting with the
model. These issues are discussed in the next section.

7. Discussion & Improvements

Bowl size

As explained in 3.4 the size of the bowl is changed by simply scaling f0,
according to one of 4 presets of frequency ratios. A smooth transition could
be obtained by interpolating these presets, or by modelling the geometry and
propagation speed of the bowl directly, and deriving the ratios from here.

Excitation position

For a realistic situation, the change in excitation position is very slow relative
to the wave propagation, and therefore not audible[2]. Though, changing it
extreme extremely fast gives an interesting vibrato-like effect, which could
be used as a modulation tool. In order to remove the artifacts related to this
feature, 2 improvements should be made:

• de-interpolation for continuously changing position

• two cross-fading read pointers to avoid colliding read-write pointers

Helmholtz motion

As shown in fig. 9, the oscillation at the friction interaction does not resemble
any type of Helmholtz motion [6]. This is not surprising as Helmholtz motion
is a concept describing the bowed string, where a harmonic comb response
interacts with the friction model. To verify the results shown in fig. 9, further
studies into stick-slip motion on inharmonic and beating resonators should
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be made. Hopefully this could cast some light on the sensitivity towards
bowing parameters, that currently limits the interaction possibilities.
Furthermore, the final implementation has no transition between bowing and
striking, but instead 2 parts of the code that is conditionally evaluated based
on the doBow. This is due to a limitation in the bow table: the width of its
sticking region approaches 0 asymptotically as the pressure falls.
These results suggests that the bow table, as originally designed for bow-
string interaction, is too crude a simplification in this application.
A possible improvement would be to introduce more physical accuracy the
interaction scheme. For instance, a model that takes into account both radial
and tangential velocity and pressure, as in [9], would describe both striking
and bowing well, and need no explicit information on whether to bow or not.
Furthermore it would allow changing material constants such as stiffness,
mass and damping of the puja, to enhance the possibilities of interaction
with the model.

Noise

When noise was added to the model, the sensitivity towards bowing param-
eters decreased drastically along with a drastic increase in output energy,
resulting in a confusing user experience. Studying the effect of the noise on
the system dynamics, could hopefully lead to a more stable implementation.
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