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0 - Introduction 

 
The Karplus-Strong algorithm (Fig. 1) 

was developed to synthesize plucked string 
and drum sounds with exceptionally realistic 
timbre and the characteristically harmonic 
decay (Karplus & Strong, 1983).  

 

 
Figure 1. The original Karplus-Strong algorithm 

(Karplus & Strong, 1983).  
 
In the original model, input of a short 

noise burst is taken and fed back with a 

delay commuted with a low-pass filter. This 
generates a faux-periodic signal (Jaffe & 
Smith, 1983) with harmonics that decay 
over time.  

This model from Karplus and Strong, 
over the decade after it was first published, 
has received modifications and extensions in 
several other studies (Jaffe & Smith, 1983; 
Karjalainen, Valimaki, & Tolonen, 1998; 
Välimäki, Huopaniemi, Karjalainen, & 
Jánosy, 1995). The simplicity of this algo-
rithm despite its quality sound, makes real-
time implementation computationally viable. 
In a later model (Välimäki et al., 1995), the 
low-pass of the loop filter was modified to 
adapt to various timbres of instruments. 
Among other works to make this model 



 
 

 

sound even more realistic, input noise burst 
before going into the loop filter, is passed 
through a comb filter. The comb filter 
efficiently introduces zeros in the input 
spectrum, the process of which resembles 
the plucking position effect that is prevalent 
in all plucked string instruments (Jaffe & 
Smith, 1983). Additionally, body responses 
have been extensively studies in the form of 
a cascade of filters; the application of which 
to the Karplus-Strong algorithm-based 
instrumental output can yield persuasive 
results that are extremely close to the real 
counterpart (Fig. 2).  

 

 
Figure 2. The extended Karplus-Strong algorithm. HC is 
the comb filter that modifies the input noise burst to 
create the plucking-point effect.  
 

However, the use of cascading filters 
can introduce a certain amount of delay in 
the system. Since this entire model is a 
linear system, the researchers have come up 
a way to bypass this costly computation by 
commuting the body filters with the input 
signal (Fig. 3). Hence, instead of recording 
the body response and try to model filters to 
fit the response, we can take the recording of 
excitation signals with the string muted. 
This process saves resources in the pro-
cessing loop.  
 

 
Figure 3. The commuted synthesis model based on 
extended Karplus-Strong algorithm.  

 

An alternative approach to commuted 
body response synthesis is to use inverse 
filtering (Välimäki et al., 1995). If we can 
accurately represent the harmonic decay of 
the signal with the loop filter. The appli-
cation of the inverse of the entire loop filter 
onto the recording of a plucked-string sound 
can yield an excitation signal that is similar 
to that of the commuted pluck-body res-
ponse.  

Due to restraint on the accessibility of 
proper equipment to record instrumental 
body response, the inverse filtering approach 
is used in this project, the methodology is 
mostly based on the paper by (Välimäki et 
al., 1995).  

 
1 - Analysis of the Electric Bass Signal 

 
The electric bass, compared to other 

plucked string instruments, has stiffer 
strings. Most basses have strictly steel 
strings, some strings have coiled structures. 
A recording of electric bass is acquired by 
the direct input/injection method via a DI 
box. The exert is a recording of a note with 
normal fingering velocity on 5th fret on D-
string. The recording is taken with a sample 
rate of 44100Hz with 16bit precision. [exert-
1] 

Using this recording, a short-time 
Fourier transform is performed with the FFT 
size of 4096 samples, hop size of 2048 sam-
ples and an overlap of 2048 samples. The 3-
D graph of magnitude in dB scale over fre-
quency and time is shown in (Fig. 4).  

Upon initial observation, we can tell that 
the first 5 harmonics decay rather linearly at 
a very slow rate over the recorded 8 se-
conds, but from harmonics 6th and up, the 



 
 

 

harmonic peaks decay at a higher rate, and 
there is some non-linearity in the form of 
energy transform between modes. Using this 
information, we can extract the bin numbers 
of the harmonic peaks along the spectra 
(Fig. 5) and isolate the amplitude values at 
the selected frequencies.  

 

 
Figure 4. STFT of the note G2 by pressing on 5th fret 
on D string and finger-plucked with normal velocity. 
Frequency axis is zoomed in from 0 to 4000Hz.  
 
 

 
Figure 5. Snapshot of STFT at the time start of the 
signal (t = 3H, H = 2048 samples).  
 

With the information we have of the 
STFT analysis, we can extract the first 20 
harmonics (Fig. 6). Upon initial inspection, 
we can already see the plucking point effect 
at the start of the signal that resembles the 
magnitude response of a comb filter.  

 

 
Figure 6. First 20 harmonics of the G2 note. Frequency 
axis is zoomed in from 0 to 2000Hz.  
 
 
 
2 - Loop Filter Design 

 
The loop filter is the core of this algo-

rithm, it is the low-pass filter that provides 
frequency-dependent damping. The loop 
filter I used in this project is in the form of a 
minimal-phase all-pole low-pass filter 
(Välimäki et al., 1995), denoted by:  

 

𝐻!(𝑧) = 𝑔
1 + 𝑎"

1 + 𝑎"𝑧#"
 

 
with:  
 

𝑔 ∈ (0,1), 𝑎" ∈ (−1, 0) 
 
To approximate the value of g and a1, 

we need the value of the order-1 (linear) 
slope (decay rate) at each harmonic peak. 
Since the information we have is the STFT 
analysis of an actual recording, the slope 
will have to be linear regressed based on 
these values. In Matlab, these slope values, 



 
 

 

along with the y-intercept (order-0, initial 
gain, Gi) are approximated using the 
polyfit() function.  

The filter gain (g) can be reliably deter-
mined by taking the average from the slopes 
of the first three harmonics:  

 
g	=	0.9967	
 
To determine the best of a1, we can use a 

weighted least-squared error function, as 
suggested in (Välimäki et al., 1995):  

 

𝐸 = 	5𝑊(𝐺$)	[	|𝐻!(w$)| − 𝐺$ 		]%
%&

$'"

 

 
where,  
 

𝑊(𝐺$) =
1

1 − 𝐺$
 

 
However, the use of this weight function 

𝑊(𝐺$) did not yield promising result for a1, 
possibly because of the paper only 
mentioned nylon and steel string guitar but 
not electric bass, or because of the hugely 
non-linear upper harmonics that are present 
in the recording. Hence, I decided to modify 
the weight function to:  
 

𝐸 = 	5𝑊′	[	|𝐻!(w$)| − 𝐺$ 		]%
%&

$'"

 

 
where,  
 

𝑊′ = 𝐺( 
 
This error function is now weighted 

towards the lower harmonics, since they are 

less affected by non-linearity and plucking 
point effect.  

The finding of a1 which results in the 
least error is carried out by an iteration loop: 
within each iteration, the value of a1 is 
changed slightly, and the error function is 
reevaluated. The starting value is a1 = 0. 
(Fig. 7) shows the evolution of the error that 
subtly decreases over 100 iterations and 
stabilizes eventually. The results of the filter 
coefficient a1 is:  

 
a1	=	-0.0063	
 
The magnitude response of this filter is 

shown in (Fig. 8).  
 

 
Figure 7. Estimation of a1. Error function evaluation 
over 100 iterations.  
 
 

 
Figure 8. Magnitude response of the loop filter HP(z), 
with g = 0.9967, a1 = -0.0063 

 



 
 

 

The value of a1 is extremely low, so the 
loop filter is a mild low pass filter, but the 
absence of it is definitely noticeable.  

Beside the low-pass filter in the 
feedback loop, we also require a delay that 
has the value of:  

 

𝐿 =
𝑓)
𝑓&

 

 
The length of the delay we can 

implement with a circular buffer, without 
interpolation can only be an integer, as this 
becomes problematic, we can divide the 
delay length to two parts:  

 

𝐿 = 𝑓𝑙𝑜𝑜𝑟 D
𝑓)
𝑓&
E + 𝑃* 

 
An integer part, which will be 

implemented using a buffer, and a fractional 
part (Pc) in the form of an all-pass filter:  

 

𝐻+(𝑧) =
𝐶 + 𝑧#"

1 + 𝐶	𝑧#" 

 
where the all-pass coefficient is 

calculated as,  
 

𝐶 =
1 − 𝑃*
1 + 𝑃*

 

 
At this point, we have finalized all the 

parts of the feedback loop (Fig. 9).  
 
 

 
Figure 9. Finalized form of the feedback loop for the 
Karplus-Strong electric bass model 

 
 
 
 

3 - Inverse Filtering 
 
As mentioned earlier in this report, the 

inverse filtering technique is implemented to 
generate the excitation sequence as the input 
of this algorithm (Välimäki et al., 1995).  

Since the system is linear, we can take 
an inverse of what represents the entire 
feedback loop:  

 

𝑆(𝑧) =
1

1 − 𝑧#,𝐻!(𝑧)𝐻+(𝑧)
 

 
to:  
 

𝑆"#(𝑧) =
1 + 𝑎#𝑧"# − 𝑔(1 + 𝑎#𝑧"#)𝑧"$𝐻%(𝑧)

1 + 𝑎#𝑧"#
 

 
This inverse filter has relatively few co-

efficients in play, but it has a high order that 
depends on the fundamental frequency of 
the recording of the real instrument. In our 
case, the order is 457. This means that we 
cannot use this in real-time synthesis, nor 
did I intend to. For real-time algorithmic 
implementation of the bass model, the in-
verse filtering step is performed offline, to 
generate a small-size audio that is truncated 
to milliseconds, which is used as the input of 
the model.  



 
 

 

For the recording of our one bass note 
only, the inverse filter is applied, and the 
result is truncated before the periodicity 
kicks in. [exert-2] 

 
 
 

4 - Resynthesis 
 
Before diving into resynthesizing the 

bass tone, we can apply a plucking-point 
comb filter to the input signal, which we 
extracted using the method of the previous 
section. The effect of plucking position has 
been thoroughly studied in several papers, 
including (Karjalainen et al., 1998).  

In our implementation, we combine a 
delay with a low-pass filter for timbral 
control in a feedforward fashion, in the form 
shown in (Fig. 10).  

 

 
Figure 10. HC Feedforward comb filter for plucking 
position. The delay in the feedforward part is L/b, 
where L is the length of the Karplus-Strong loop delay 
length in samples, and b is the distance from the 
plucking position to the bridge from 0 to 1.  

 
This application of the comb filter can 

adequately simulate the plucking position, 
and the low-pass filter can polish the input 
timbre additionally, it has the transfer 
function of:  

 

𝐻, =
0.01 + 0.01𝑧#"

1 − 0.98𝑧#"  

 

The magnitude response of this comb 
filter is shown in (Fig. 11).  

 

 
Figure 11. HC Feedforward comb filter magnitude 
response.  

 
The same low-pass filter is used at the 

end of this model, as a further varnish to the 
output timbre.  

The finalized form of the model is 
shown in (Fig. 12).  

 

 
Figure 12. Finalized form of the extended Karplus-
Strong algorithm implemented in this project.  

 
The resynthesis is carried out exactly to 

what is described in the previous figure, the 
note-off effect is achieved by changing the 
filter gain of the loop filter suddenly to a 
low value right before the simulation ends. 
The result is pretty close to the original 
recording audibly(Fig. 13). [exert-3] 
However, there is a uniform buzz to the 
signal at higher fre-quency. My suspicion is 
that the truncation of the body response is 
flawed, and it might have some non-zero 
samples when it is wrapped around in the 
circular buffer.  
 



 
 

 

 
Figure 13. Resynthesized G2 electric bass tone.  
 

After further experimentation, spe-
cifically using this one body response to 
generate tones that are of different pitch than 
the original recording, [exert-4] the high-
frequency buzz becomes more audible. 
Additionally, the further the pitch is from 
the designated spot, the less natural the bass 
timbre is. This range of “sweet spot”, 
outside which we can perceptually tell from 
an algorithm to a re-cording, is potentially 
due to the effect of the thumb of fingering 
hand pressing down on the neck. In future 
implementations, this problem can be solved 
by taking a lexicon of body responses at 
different finger positions (Fig. 14) at each 
string. We can construct a table exci-tation 
sequences that are made of these body 
responses. A string allocation program can 
ensure that the correct responses are used in 
case of real-time performance.   

 

 

 
Figure 14. A scheme of taking finger position zones for 
a closer-to-natural timbre throughout the entire range 
of the instrument.  
 

In future development and expansion to 
this project, I will probably look into imple-
mentation in the C++ Stk class, with support 
of real-time performance using RtMidi and 
RtAudio.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
 

 

Appendix:  
 
Audio exerts:  
Exert-1: D_5.wav 
Exert-2: body_response.wav 
Exert-3: resynthesized_G2.wav 
Exert-4: mario_kart_lick.wav 
 
Matlab Scripts:  

Script file name Related sections 
HDE_1.m 
 

Analysis of the electric bass signal 
Loop filter design 

KSLF_2.m 
 

Loop filter design 
Resynthesis 

INVF_3.m 
 

Inverse filtering 

RS_4.m 
 

Resynthesis 
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