
EXTENDED PLUCKED STRING MODEL FOR ELECTRIC GUITAR
SOUND SYNTHESIS

Junhao Wang
McGill University

MUMT 618 Final Project

Figure 1. Diagram of the implemented system

1. INTRODUCTION

Karplus-Strong algorithm, initially proposed in [3], is
a simple and efficient algorithm for synthesizing real-
sounding plucked string sound. The basic design of this
algorithm makes use of a delay line and a low-pass fil-
ter. The delay line length controls the pitch and the low-
pass filter ensures that higher frequencies decay faster than
lower ones. Based on this simple design, [2] and [4] pro-
posed various extensions and improvements to the origi-
nal Karplus-Strong algorithm, which improved its usabil-
ity and the quality of generated sound.

The main objective of this project is to explore and
implement the extensions proposed by [4], which ex-
tends Karplus-Strong algorithm to simulate specifically the
plucked string sound of an electric guitar. Beyond the basic
string model, distortion and feedback effects are also mod-
eled and incorporated into the system, which helps making
a more convincing and interesting electric guitar sound.
The model is prototyped in MATLAB and an interactive
demo is written in Python 1 .

2. OVERVIEW

An overview of the system implemented in this project is
shown in Figure 1. The design is similar to the actual set-
up that a guitar player may use in real life. The string mod-
els simulate the guitar itself. The distortion unit processes
and introduces non-linearity to the signal generated by the
string models, just like a real amplifier or distortion pedal
would do in a signal chain. After distortion, the signal
goes through a feedback unit which simulates the high-
pitch growing oscillation that happens when the electric
guitar is placed very close to the speaker. Each component
will be discussed in more detail in the next section.

1 Source code available at https://github.com/jwang44/KS-extended

3. PROJECT DESIGN

Most part of this project is designed according to [4] and
implemented in MATLAB. An interactive demo is written
in Python with a simple graphical user interface.

3.1 String model

3.1.1 Loop Filter

The basic design of a Karplus-Strong string model consists
of a delay line and a low-pass filter. The delay line length
N is set to obtain the desired fundamental frequency, as
given by the equation

N = fs/f0 (1)

where fs denotes the sampling rate and f0 denotes the fun-
damental frequency. For the low-pass filter, a 2-point av-
eraging filter is used in the original design. Although this
filter has linear phase and monotonically decreasing ampli-
tude response, it does not allow adjustment to decay rates
for different frequency regions. To address this issue, a
3-point averaging filter is used instead.

yn = a0xn + a1xn−1 + a0xn−2 (2)

It has an amplitude response of

|H1(w)| = |2a0 cosw + a1| (3)

If we set a1 > 2a0 > 0, this response is monotonically
decreasing. Linear phase is guaranteed by the symmetric
nature of its transfer function. Moreover, by adjusting a0
and a1, different magnitude response can be obtained, as
shown in Figure 2, which enables an extra measure of tim-
bre control.

One problem with this design is that with some choices
of coefficients, the dc component may ends up with a gain
equal to or higher than 1. In this case, the dc component
may not decay as desired and may even grow stronger.
This would cause a click at the end of the note. To remove
the undesired dc component, two methods are used.

3.1.2 Dc-blocking

Two approaches are taken to eliminate the potential dc
component. Considering the source of dc component, the
first approach is to remove the dc component from the ini-
tial random noise used to excite the string. This can be
easily done by subtracting the mean value of the noise vec-
tor before putting it into the delay line. During experiment,

Figure 2. Magnitude response of the loop filter with dif-
ferent coefficients

Figure 3. Frequency response of the dc-blocking filter

this was proven not sufficient. Therefore a dc-blocking fil-
ter is incorporated into the loop. In this case, a first-order
high-pass filter is used.

yn = â0xn + â1xn−1 + b1yn−1 (4)

This dc-blocking filter has zero response at dc and almost
no effect on frequencies at or higher than the fundamental,
if the coefficients are chosen properly as given in [4]

â0 = 1
1+ωco/2

â1 = −â0
b1 = â0 (1− ωco/2)

(5)

The cut-off frequency is denoted by ωco, which should be
set significantly lower than the fundamental frequency. In
this implementation, ωco = f0/10 is used. Its frequency
response is shown in Figure 3.

3.1.3 Exact Tuning

One major drawback of the basic Karplus-Strong algo-
rithm is that it does not allow a continuous range of fre-
quency. As delay line length can only be an integer, it can

Figure 4. Desired pitch versus resulting pitch for a 50KHz
sampling rate [2]

only generate notes with fundamental frequencies whose
period is an integer multiple of the sampling period. As
demonstrated in Figure 4 from [2], although we desire a
continuous range of frequencies, the resulting frequencies
are quantized to the nearest level. The difference between
two adjacent levels gets larger as desired frequency gets
higher and delay line gets shorter. For low pitches, this
does not cause noticeable inaccuracy in tuning, but for
higher pitches, the difference becomes innegligible.

To address this issue, [2] and [4] both proposed the idea
of using interpolating delay line, which allows a fractional
delay line length. [2] introduced a first-order all-pass filter,

yn = Cxn + xn−1 − Cyn−1 (6)

where C is the all-pass coefficient that can be computed
with the fractional part of the delay denoted by ∆.

C =
1−∆

1 + ∆
(7)

This filter introduces a small delay while keeping the loop
gain unchanged. But as suggested in [4], this all-pass filter
does not satisfy linear phase. As shown in Figure 5, the
phase delay of the all-pass filter is frequency dependent.
∆ is best kept within the range 0.3 6 ∆ 6 1.3 to achieve
an acceptable close-to-linear phase response. If ∆ goes
outside this range, the non-linearity in phase response can
lead to slightly different loop delays for the fundamental
and its harmonics. Consequently, the harmonics are per-
ceived slightly out-of-tune with the fundamental. In this
project, linear interpolation is used instead of all-pass in-
terpolation. Linear interpolation is implemented as a two-
point averaging filter which is similar to the ones used in
both the basic design [3] and extended Karplus-Strong al-
gorithm [2]. In Jaffe and Smith’s extensions, it’s used for
achieving desired decay rate, while in this implementation
it’s used only for addressing fractional delay length. This

Figure 5. Phase delay for the fine-tuning all-pass filter [2]

2-point averaging filter is not always linear-phase, but as
suggested in [4], it’s generally closer to linear phase than
the all-pass filter. Using linear interpolation instead of all-
pass interpolation also benefits glissandi.

3.1.4 Glissandi

To perform a glissando, the fundamental frequency needs
to be adjusted continuously. In an electric guitar con-
text, the idea is used in playing techniques such as bend,
slide, vibrato, and whammy-bar dive, which are very pop-
ular playing techniques that add expression and emotion
to the music. These techniques all cause a gradual change
in pitch. As described in the last section, the interpolating
delay line allows a continuous range of frequencies, which
is key to a smooth glissando. The linear interpolation filter
can be represented by

yn = c0xn + c1xn−1 (8)

To perform a glissando, coefficients c0 and c1 are gradually
adjusted. For instance, when a string bend is simulated,
the pitch should gradually go up. The delay length should
decrease. In this case, c0 is increased until it hits the upper
boundary, where c0 = 1 and c1 = 0. Then delay line
length is decreased by one sample and c0 is set back to 0.
As shortening the delay line by one sample is equivalent to
having c1 = 1 in the filter, there is no glitch in this process.

In using all-pass filter, the delay length can be adjusted
in a similar way. However, due to the non-linear nature
of its phase response, the all-pass filter works well only
within a certain delay range, i.e. 0.3 6 ∆ 6 1.3, where ∆
denotes the fractional part of the delay. To make sure that
its coefficients always stay in this range, as soon as ∆ goes
below 0.3, one sample should be subtracted from delay line
length and added to ∆, this sudden change in coefficients
would produce a glitch and thus affect the smoothness of
glissandi.

While linear interpolation does work as advertised in
[4], its low-pass nature should not be neglected. Choos-
ing between all-pass and linear interpolation is a trade-off
between linear phase and constant loop gain. By incorpo-
rating linear interpolation into the loop, the signal is put
through an extra low-pass filter, which attenuates the high
frequency harmonics. It is mentioned by [4] that when us-
ing linear interpolation, its magnitude response should be
taken into account, and the coefficients in the loop filter
should be adjusted accordingly. However, there is no sim-
ple way to implement this other than tuning the coefficients
for each fundamental frequency. In this project, the linear
interpolation is simply cascaded with the loop filter. This
leads to extra attenuation for high frequencies, which is
one of the limitations of this model.

3.1.5 Tone Control

Plucked string sound synthesized by Karplus-Strong algo-
rithm is considered very realistic. But when compared with
a real guitar string, the synthesized sound is often much
brighter than the real guitar sound. To further manipu-
late the timbre of synthesized sound, another extension is
added to control the initial harmonic contents. The initial
random values are passed through another 3-point averag-
ing filter before being put into the delay line. The filter can
be represented as

yn = a(xn + xn−1 + xn−2) (9)

The coefficient a is set to |2 cosω0 + 1|−1 so that this fil-
ter only reduces the amplitudes of harmonics and not the
fundamental. Harmonic contents are reduced each time the
initial random values are passed through this filter. More
passes result in a warmer string sound. Adjusting this
achieves an effect somehow similar to adjusting the tone
control on an actual electric guitar.

3.2 Distortion

Distortion is originated when the guitar amplifier is turned
up so much that circuit limitation is reached and clipping or
other non-linear behavior starts to occur. This non-linearity
produces a unique sound that is rich in harmonics. For a
more vivid and interesting guitar sound, a distortion unit
is incorporated into the loop in this implementation. For
simplicity, distortion is implemented as a simple non-linear
function applied to samples output by the string model. In
real amplifiers or distortion pedals, the non-linear charac-
teristics are much more complicated than that.

The output signal of the string model is multiplied by a
gain parameter before being sent into the non-linear distor-
tion unit. Soft-clipping, which is somehow similar to the
behavior of tube amplifiers, is used in this project. As op-
posed to hard-clipping, soft-clipping produces a relatively
wide range of distortion, as we have more control over in-
termediate sound levels between 0 and the threshold. Soft-
clipping function is represented as follows

f(x) =


2/3; x > 1
x− x3/3; −1 < x < 1
−2/3; x 6 −1

(10)

Figure 6. Spectrum resulted from summing the individu-
ally distorted notes

In this project, the output is taken only from the distor-
tion unit, instead of a combination of clean and distorted
signal as used in [4]. As we maintain 2a0 + a1 = 1 in the
loop filter, the signal multiplied by a gain of 1 does not ex-
ceed the non-linear threshold, so it does not get clipped.
Passing through the intermediate non-linear region does
not make significant difference to the sound. It is thus con-
sidered the clean signal. To get a distorted signal, gain
parameter is set higher than 1. This simplification reduces
the number of parameters and makes it easier to adjust the
timbre. The thresholds in the non-linear function also help
limit the amplitude of signal when feedback effect is used.

In implementing the distortion, plucking a single note is
relatively easy to implement. When synthesizing chords,
two approaches are explored. Intuitively, a chord played
with distortion effect can be simulated as a combination
of several distorted notes. However, this is not how a real
electric guitar works. In a real guitar, simultaneous notes
are summed together before distortion is added. If we con-
sider the distortion effect as a transfer function, the output
should have the same period as input. When we input two
notes with fundamental frequencies f1 and f2 simultane-
ously, the output will contain components at the greatest
common divisor of f1 and f2, and its harmonics, which
do not exist in the input signal. These new components
play an important part in what we hear in a real distor-
tion. This is different from summing individually distorted
notes, where the result only contains the fundamentals and
harmonics of each note added by distortion. Figure 6 and
Figure 7 shows the difference in spectra of the same chord
synthesized using these two approaches. It can be seen
that distorting the sum produces a more harmonically-rich
sound.

3.3 Feedback

Feedback is originated when an electric guitar is placed
very close to the amplifier. Energy from the amplifier (or
the speaker cabinet, to be precise) hits the guitar body,
neck, and strings. Motion of the strings is picked up by the

Figure 7. Spectrum resulted from distorting the sum of
individual notes

pick-ups and then amplified by the amplifier. They form
a positive feedback loop that produces the feedback effect.
For feedback to occur, there must be enough gain in the
loop, that is, the player must play loud enough and the gui-
tar must be placed close enough to the speaker cabinet.

In the implementation for this project, a separate delay
line is used to simulate feedback delay. The length of feed-
back delay controls the frequency of the feedback sound.
Output samples are attenuated and then written into the
feedback delay line and eventually added back to the delay
line in the string model. For the feedback effect to work
properly, there must be sufficient gain in the loop so that
the feedback sound can occur and grow. At the same time,
the output signal must be significantly attenuated before
adding back to input, otherwise the feedback sound would
grow too fast.

4. IMPLEMENTATION DETAILS

The project is first implemented in MATLAB and then mi-
grated to Python for building the interactive demo. The
main algorithm, including the string model, dc-blocking,
tone control, distortion, and feedback, is written as a func-
tion in both languages.

4.1 MATLAB Implementation

The main algorithm is written in pluck.m, and function-
ized in pluck_func.m. There is a separate MATLAB script
load_midi.m for synthesizing audio from MIDI files. That
script makes use of miditoolbox [5], which is a dedicated
library of MATLAB functions for analysing MIDI files.
The pluck_func function is called in pluck_chord.m and
load_midi.m for synthesizing notes. The distortion unit is
written as a separate function named non-linear.m.

4.2 Python Implementation

A more complete implementation is done in the interactive
demo. The whole algorithm is implemented in pluck.py,
which includes 2 functions: pluck and pluck_chord. These

two functions are called in interface.py, which generates
the graphical interface. Pitch bend is only implemented in
Python and can be controlled using the graphical interface.
The implementation is otherwise the same as the MAT-
LAB implementation, except the value range of the tone
parameter.

5. LIMITATIONS AND FUTURE WORK

The model implemented in this project produces a rela-
tively realistic electric guitar sound. The extensions on
karplus-strong algorithm enables more control over the
synthesizing process and improves the output quality. The
distortion and feedback effect add some more interesting
characteristics to the sound. However, this project has
some limitations. First, the glissando is implemented in
this project, but when synthesizing audio with MIDI files,
the pitch bend information in MIDI is ignored. If we can
detect and perform pitch bends as given in midi files, the
result would be more expressive and useful. Second, for
exact tuning, the linear interpolation is simply cascaded
with the loop filter. This leads to extra attenuation for high
frequencies. Ideally, the attenuation caused by linear inter-
polation should be compensated by changing the frequency
response of the loop filter. Third, the dc-blocking filter
used in the string model does not satisfy linear phase and
can potentially cause tuning problem for harmonics.

Other than solving the above issues, future development
can also focus on applying more complicated design for
the distortion unit. Related work [1] [6] [7]on modeling
real distortion pedals using virtual analog approach might
also work well on synthesized guitar sound.

6. REFERENCES

[1] Eero-Pekka Damskägg, Lauri Juvela, Vesa Välimäki,
et al. Real-time modeling of audio distortion circuits
with deep learning. In Proc. Int. Sound and Mu-
sic Computing Conf.(SMC-19), Malaga, Spain, pages
332–339, 2019.

[2] David A Jaffe and Julius O Smith. Extensions of
the karplus-strong plucked-string algorithm. Computer
Music Journal, 7(2):56–69, 1983.

[3] Kevin Karplus and Alex Strong. Digital synthesis of
plucked-string and drum timbres. Computer Music
Journal, 7(2):43–55, 1983.

[4] Charles R Sullivan. Extending the karplus-strong algo-
rithm to synthesize electric guitar timbres with distor-
tion and feedback. Computer Music Journal, 14(3):26–
37, 1990.

[5] Petri Toiviainen and Tuomas Eerola. Midi toolbox 1.1.
URL: https://github. com/miditoolbox/1.1, 2016.

[6] David T Yeh, Jonathan S Abel, and Julius O Smith.
Simplified, physically-informed models of distortion
and overdrive guitar effects pedals. In Proc. of the Int.

Conf. on Digital Audio Effects (DAFx-07), pages 10–
14. Citeseer, 2007.

[7] David Te-Mao Yeh. Digital implementation of musical
distortion circuits by analysis and simulation. Stanford
University, 2009.

