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1 Introduction

Walking down the street with my headphones on, I observe that I am listening to both continuous-
time signals (my footsteps, the cars passing by) and digitally-processed discrete-time signals (lofi
house mix on SoundCloud through my headphones). However, my brain more-or-less perceives
them as both continuous-time, in a way blurring the lines between the analog and digital worlds.
At the center of this blurring is, of course, signal processing. Wielding this idea has numerous
applications, particularly for digital sound synthesis for music creation. If we can understand how
to model mechanical and acoustical systems that are governed by physical laws using discrete-
time and discrete-space mathematical formalisms, we can simulate these systems with a control
that might not be feasible in the analog realm. This is then the task of physical modeling sound
synthesis.

2 Physical Modeling for Sound Synthesis

Within the realm of computer music, a number of formalisms for physical modeling have been
proposed over the past forty years. A few are:

• finite difference schemes

• lumped models

• digital waveguides

• modal synthesis

• finite element modeling

• state-space techniques

Certainly each of these formalisms have their own pros and cons and will be suitable or un-
suitable depending on the system. Often combinations of techniques can be used to achieve a more
precise model. In 2003, Castagne and Cadoz proposed 10 general criteria for evaluating physical
modeling techniques oriented to music creation [1]:



1. How efficient is the algorithm?

2. How faithful are the synthesized sounds?

3. How diverse are the categories of instruments that can be modelled?

4. Is the scheme exclusively dedicated to sound synthesis or more general?

5. How robust is sound plausability?

6. How modular is the technique?

7. How intuitive and effective is the associated mental model?

8. How deep is the modeling process enabled by the scheme?

9. Do generation algorithms exist?

10. Is there a friendly musician-oriented environment for using the scheme?

While it is not the task of this project to compare and contrast modeling schemes, I think these
are good criteria to keep in mind when considering this project.

3 Mass-Interaction Physical Modeling

3.1 Background

Mass-Interaction Physical Modeling is one of the oldest techniques for digital sound synthesis via
physical modeling. It was pioneered beginning in 1978 by the CORDIS-ANIMA system developed
at ACROE in Grenoble, France [2]. The basic idea is to represent physical systems in the form of
lumped networks composed of two main components: mass objects and interaction objects. Mass
objects represent material points in a given space with some inertial behavior while interaction
objects represent a specific type of coupling between mass objects (i.e. visco-elastic, collision,
non-linear). By doing this, we avoid the need to explicitly define a mathematical model such as
a partial differential equation system with boundary conditions (as is needed in finite difference
methods).

Within the past few years, there has been somewhat of a renewed interest in mass-interaction
physical modeling, driven by the release of a Max/MSP package mi-gen [3] (github) and a Faust
[4] (github) library. These tools have certainly improved the accessibility of MI-modeling thanks
to the inclusion of a model scriptor that translates a high level model into lower level code.

3.2 Basics

In order to model the physics of masses and interactions in discrete-time, we will apply a second
order central difference scheme to Newton’s second law. For a point mass, we have

f = ma = m
d2x

dt2



Figure 1 : A visco-elastic spring connecting two masses, m1 and m2 at positions x1 and
x2, respectively.

where f is the force applied to the mass, m is its inertia, a is its acceleration, and x is its
position.

Using a second order central difference scheme with sampling period ∆T , we have

f(t) = m
x(t + ∆T ) − 2x(t) + x(t− ∆T )

∆T 2
.

To discretize, we simply convert the sample period into a sample and collect the continuous-time
parameters into a discrete-time inertial constant M = m

∆T 2 .

f [n] = M(x[n + 1] − 2x[n] + x[n− 1]).

Rearranging terms, we can achieve a difference equation that describes the discrete-time posi-
tion of a mass as a result of the external forces being applied:

x[n + 1] = 2x[n] − x[n− 1] +
f [n]

M
.

A very common object in mass-interaction modeling is a visco-elastic spring connecting two
masses. Consider a spring with stiffness parameter k and damping parameter z. Hooke’s Law tells
us that the force needed to extend or compress a spring by some distance x scales linearly with
respect to that distance. In the case of a spring connecting masses as shown in Figure 1, we have

fs,1→2 = −k(x2 − x1)

where x1 and x2 are the positions of the two masses m1 and m2, respectively. In discrete-time,
this is

fs,1→2[n] = −K(x2[n] − x1[n])

where K = k is the discrete-time stiffness parameter.
If we approximate damping to the first-order, we have the following relationship describing

the force from m1 onto m2 as a result of the damper:

fd,1→2 = −z
d(x2 − x1)

dt
.

Using a first-order backward difference scheme to discretize the derivative, we have



Figure 2 : A visco-elastic spring connecting a mass and a fixed point.

fd,1→2 = −z
(x2(t) − x1(t)) − (x2(t− ∆T ) − x1(t− ∆T ))

∆T
,

where ∆T is the sampling period. In discrete-time, we have

fd,1→2[n] = −Z[(x2[n] − x2[n− 1]) − (x1[n] − x1[n− 1])].

Thus, we have computed the discrete-time external forces for a spring connecting two masses.
More common, however, is the world-reknown linear harmonic damped oscillator (mass on a
spring) where one end of the spring is now fixed to a point, as shown in Figure 2. Writing the
sum of the forces on mass m as a result of the spring and the damper, we have

ftot,m[n] = fs,m[n] + fd,m[n]

ftot,m[n] = −Kx[n] − Zx[n] + Zx[n− 1].

We can now substitute this expression into the discrete-time Newton’s second law from above
and rearrange terms to achieve a difference equation that describes the motion of a harmonic oscil-
lator.

x[n + 1] =

(
2 − K + Z

M

)
x[n] +

(
Z

M
− 1

)
x[n− 1]

Notice that the position of the mass at time n + 1 simply depends on a linear combination
of the position of the mass at time n and n − 1, where the coefficients are simply terms in the
stiffness parameter K, the damping parameter Z, and the inertial parameter M . In practice, these
parameters are normalized to 1. Although they are functions of the sample rate, they do provide a
direct view of stability conditions for the system. In order to stay in an oscillatory regime, we must
have 4M > K + 2Z. A derivation of stability conditions for the linear harmonic oscillator can be
found in the appendix of [3].

3.3 Building Topologies

Based on this formalism, modeling with MI involves building a geometrical model by positioning
and connecting masses together through interaction objects, and by specifying the parameters and
initial conditions for each one. Figure 3 shows a basic physical model of a triangle (the percussion



Figure 3 : Physical model of a triangle. Taken from [4].

instrument). Three masses are joined by dampened springs with one of the masses fixed to a point.
The system is then excited by a pluck at the input module and the output is taken from one of the
masses. Because sound is essentially just air being pushed, we can listen to the motion of a given
mass as the output of our system.

One main advantage arises when comparing MI modeling with other physical modeling paradigms:
It introduces the ability to build and excite virtual mechanical constructions that are not bounded by
realism. We know from more traditional musical acoustics research that many nonlinear behaviors
exist in acoustic musical instruments which contribute to their unique and interesting timbres. It
is often the task of other physical modeling techniques to model these nonlinearities for a given
system with the goal of achieving a more realistic sound synthesis. With MI modeling, we are
”atomically” building structures grounded in Newton’s second law, meaning nonlinear behavior
will arise naturally if a system is excited properly and maintains numerical stability. If we can
model and excite the right structure, theoretically we can discover new interesting behaviors and
sounds for use in an artistic process.

One main disadvantage, however, is the task at hand. It is difficult to develop an intuition of
how to model structures to achieve a certain timbre or behavior, especially when there are three
parameters to adjust for every object. The goal of this project, then, is to simplify this process by
introducing higher level (timbral) control objects to build MI geometries.

4 Towards Higher Level Control of MI Systems

This project attempts to introduce higher level control objects for mass-interaction physical models.
This was done by first assessing what a set optimal control parameters would look like in this
context. Next, a series of experiments were conducted to build models for the relationships between
existing parameters and optimal parameters. And finally, a Max patch was developed with these
controls as input to determine if it is a more intuitive approach to MI modeling.

4.1 Optimal Control Parameters

If an artist wants to use mass-interaction modeling as a sound synthesis paradigm in their creative
process, what parameters would they be interested in controlling? Considering the victories of
previous synthesizers, I contend pitch and decay rate would be suitable as a start.



Figure 4 : Inertial parameter M vs. fundamental frequency. A least-squares fit indicates
a first-order power law relationship.

As for timbral control, we can use spectral descriptors to build a control object. Spectral
descriptors are a set of perceptually-relevant algorithms that can be computed on any audio signal
to learn information about that signal. Some examples are spectral centroid, decrease, kurtosis,
and spread. Sound events are analyzed in terms of various input representations including the
short-term Fourier transform, harmonic sinusoidal components, and an auditory model based on
the equivalent rectangular bandwidth concept. A number of audio descriptors are then derived
from each of these representations to capture temporal, spectral, spectrotemporal, and energetic
properties of the sound events [5].

There are often correlations between spectral descriptors and perceptual attributes. For exam-
ple, spectral centroid is known to be correlated with brightness. I contend that we can exploit this
idea to obtain higher level control over mass-interaction physical models.

4.2 Experiments

To determine the relationship between the inertial parameter and the pitch, an experiment was
carried out by varying the inertial parameter M and estimating the fundamental frequency, as shown
in Figure 4. A 50 mass string was used as the test structure. The data was fit to a first-order power
law of the form f(x) = axb and a 0.9995 R-square value was achieved. Thus, to control the inertial
parameter with pitch, an inverse function f−1(x) is taken and solved for f(x):

M = af b
0

f0 = b
√
M/a,

where M is the discrete-time inertial parameter, f0 is the fundamental frequency in Hz, a =
113.4, and b = −0.4982. It is important to note that while the first order power law relationship
holds across different structures, the coefficients of the model do not and can therefore not be gener-
alizable. This drastically increases the difficulty for pitch control via inertial parameter modulation
and it would likely be easier to use known pitch shifting techniques.



Figure 5 : Inertial parameter M vs. decay time (ms). A least-squares fit indicates a
linear relationship.

Next, an experiment was carried out to determine the relationship between the inertial param-
eter and the decay time, as shown in Figure 5. This indicated a linear relationship between the two
variables and a control object was constructed accordingly. Again, while the fit coefficients are not
generalizable for any given structure, the linear relationship holds.

To determine what a timbral control object would look like, a number of experiments were
carried out using spectral descriptors to try to determine the relationship between MI geometry and
timbre. First, several spectral descriptors were measured against the number of masses in an ideal
string to determine the timbral effect of masses. Some of the results are shown in Figure 6. Adding
masses to a string therefore decreases centroid, increases spectral decrease, increases kurtosis, and
decreases slope.

Then, six mid-level macro objects were constructed using the Mass Interaction Model Scripter
(MIMS) provided in the mi-gen Max/MSP toolbox: string (ideal string fixed at both ends), stiff
string (a string accounting for 2nd order stiffness, fixed at both ends), a chain (string but not fixed
at end), mesh (2d string with open boundary conditions), closedMesh (entirely fixed boundary
conditions), and cornerMesh (fixed points at each of the four corners). Then, the parameters were
tuned so that all objects had the same fundamental frequency and damping (it doesn’t make sense
to compare timbres of objects of different pitches/decays). The objects were measured against
spectral descriptors (centroid, decrease, kurtosis, spread, skewness, rolloff) to try to determine
their effect on the timbre. Some of the results are shown in Figure 7. The main takeaway from
these experiments was that not fixing points has the effect of boosting low frequencies (as in the
case of the chain).

4.3 Max Patch

A Max patch was constructed with a novel ”timbral control” object based on the results of the
experiments in the previous section. The object is based off of Max’s pattrstorage object while
allows for linear interpolation between presets. Six timbral ”modes” are contained as presets in
this object, between which the user can interpolate. The modes were determined by varying the



Figure 6 : Some results of experiment testing timbral effects of number of masses on an
ideal string.

Figure 7 : Some results of experiment testing timbral effects of various mid-level structures.



gain of each of the six macro objects described earlier while holding the other five constant and
determining their effect on six spectral descriptors (centroid, kurtosis, decrease, skewness, rolloff).
If a spectral descriptor quantity reached a maximum as the gains were varied, it was determined to
be a timbral ”mode” and was added to the object.

5 Conclusions

Mass-Interaction Physical Modeling is a physical modeling sound synthesis technique performed
by representing physical systems in the form of lumped networks composed of two main compo-
nents: mass objects and interaction objects. Modeling with MI involves building a geometrical
model by positioning and connecting masses together through interaction objects, and by specify-
ing the parameters and initial conditions for each one. However, it is difficult to achieve intuition
over how to build physical models since the objects are so low-level. This project sought to cre-
ate higher level timbral control objects by experimenting with spectral descriptors across various
topologies.

While I have made some progress towards higher level control of MI models, there is still far
more to be done. The task ended up being far more difficult than I expected and would require a
much deeper understanding in order to implement such an object in a synthesizer. Nonetheless, I
believe MI modeling has endless potential as a physical modeling technique and I look forward to
continue studying it in the future.
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