
Singing Voice Synthesis of Latin Chants

Liam Pond — Final Project, MUMT 618

Singing voice synthesis (SVS) is an emerging field that involves the creation of realistic,

computer-generated singing. The goal is to produce vocals that mimic human-like qualities, such

as pitch, tone, rhythm, and expressiveness, often with the flexibility to sing lyrics in various

languages or styles. Using a dataset created from recordings of my own voice singing Latin

chants, I trained a machine-learning model to sing previously unseen chants in the style of my

own voice. Unfortunately, while numerous obstacles have ultimately prevented the model from

synthesizing audio as of December 2024, future work will continue in the coming months to

realize the tool’s potential. This document will outline the theory, approach, and difficulties

encountered.

The impetus for this project comes from Cantus Ultimus [1], a large publicly available

database of digitized medieval chant manuscripts. Each of the chants has been transcribed into

modern notation, with the words annotated below. However, the existing audio playback feature

is low-quality, does not sound like a human, and worst of all, cannot pronounce consonants. The

resulting sequences of pitched vowels leave much to be desired, and so this project was born out

of an effort to improve the feature. Given that the database is continually expanding, the tool

should ideally function automatically, requiring minimal human effort to generate audio.

For this, I chose DiffSinger [2], a state-of-the-art diffusion-based machine learning

framework for singing voice synthesis that was developed in 2022 by researchers from Zhejiang

University. Like most SVS tools, DiffSinger is language-independent, meaning that it will learn

whatever language it is given, and in fact does not even know what language it is synthesizing.

Furthermore, DiffSinger’s ease of use and streamlined training process make it an accessible

choice for hobbyists wanting to clone their own voice without needing to understand the

technical details of machine learning. As a result, DiffSinger has a robust community of

passionate users who are continuously innovating and sharing their work on platforms like

YouTube and Reddit. While most users are from Japan or China, in the West, the fanbase is also

active on the DiffSinger Discord server, with over 1100 members as of December 2024.

At the crossroads of technology and art, the DiffSinger community is a fascinating and

unique scene that is fundamentally tied to the internet and is deeply influenced by anime and

Asian pop culture. In recent years, Yamaha’s Vocaloid has become increasingly popular, with

characters like Hatsune Miku becoming iconic digital brands and performing at globally

recognizable festivals like Coachella. Similarly, enthusiasts often create unique characters with

rich backstories and personalities which they can bring to life by crafting songs and covers with

DiffSinger. Although I was an outsider creating vastly different music from everyone else’s and

had never heard of DiffSinger before the project, I was warmly welcomed and members of the

Discord server provided invaluable support, helping to guide me and troubleshoot the many

issues I encountered along the way.

Building the Model

The process of building the singing voice synthesis model is straightforward and only

requires two inputs: WAV files and LAB files. The WAV files contain the raw audio recordings,

while the LAB files provide the timestamps associated with each phoneme. From there, the

model can be trained, and new songs can be generated with the same timing, pronunciation, and

expressiveness of the original dataset.

The first step is to build the ground truth database. For this, I recorded myself singing six

of the chants from Cantus Ultimus, lasting just under 10 minutes in total. According to

experienced users, just five to fifteen minutes should suffice with improvements in quality

dropping off steadily after that point, although some choose to build databases with several hours

of music. The most accessible recording space was my room, which, unfortunately, was not

soundproofed and has some echo due to its boxy nature. While I was initially skeptical about this

setup, the quality remained high in all the recordings. Through the Audiovisual Hub in Schulich

School of Music, I reserved the Zoom H4n recorder, which is portable and did a good job of

minimizing unwanted noise. Just to be safe, I used the noise reduction feature in Audacity and

put each track through a noise gate to make sure the quiet parts stayed silent.

Once I had my dataset, it was time to annotate. I used a program called vLabeler, which

is built specifically for this task, streamlining the process of adding precise labels to WAV files.

Though the software was efficient, precisely annotating is an extremely time-consuming process,

made worse (and quite frustrating) by lag in the audio playback, which I eventually realized was

due to my Bluetooth headphones, although sound from other applications was lag-free. Once

each vowel, consonant, breath, and pause for the entire dataset was marked, I exported the LAB

files and was ready to begin training.

The training process was straightforward thanks to a community-built Jupyter notebook

that provided detailed code samples for each step. However, some of the cells did not run and

were missing required imports or had undefined variables, which fortunately I was able to fix on

my own. The code was well commented, although many of the comments were not particularly

inspiring...

Figure 1. A particularly uninspiring comment

It was at this point that I discovered that the LAB file for my longest song was

improperly encoded and could not be read by the computer. The error message indicates that this

is usually the case when non-ASCII characters are embedded in the file, although this was not

the case. Ultimately, I was unable to determine the cause of this issue, especially given that the

other LAB files were fully functional, and so I decided to remove this song from the dataset.

While time-consuming, the training itself was not too difficult and was run through

Google Colab, which offers free cloud computing. I naively trained my model until I ran out of

credits, at which point I found out that the model needed to be trained twice. The first time tuned

the variance parameters, which represents pitch and timing variations, and the second was for the

acoustic parameters, which model the timbre and sonic characteristics of the voice. Fortunately, I

was able to move my project to a second Google account and resume where I had left off, again

training my model until I ran out of credits. Once the model was trained, its output was

converted into the Open Neural Network Exchange (ONNX) format, which encodes machine

learning models, and then into an OpenUTAU voicebank, which allows me to create new songs

using OpenUTAU.

OpenUTAU is a powerful tool with a piano interface where you can input musical notes,

type in the corresponding lyrics, and even add expressive vocal parameters like breathiness,

vibrato, and dynamics. However, when I attempted to create my first song, I encountered an

issue: after clicking "play," nothing happened. After troubleshooting, I discovered that my

voicebank model had been improperly converted to the ONNX format, meaning that it was

incompatible with OpenUTAU. Users on the Discord server believed this to be a Mac issue,

given that DiffSinger has recently had numerous problems running on Mac.

Figure 2. OpenUTAU interface

Results

Unfortunately, I was unable to repeat the process on a Windows machine in time to use

my own voicebank. However, I did create a song using “Tiger”, a voicebank that I found on

Discord that was created by @spicytigermeat on GitHub. The results are less than ideal, in part

because “Tiger” was trained on English pop music, a far cry from medieval Latin chants. I also

added a chorus effect and a preset cathedral reverb in Ableton in an effort to bring the aesthetic

closer to that of medieval chants. However, the output still sounds like heavily autotuned

English, lacks musical direction, and has unnatural transitions between notes. On the positive

side, the diction is clear, and the consonants are well-pronounced, which is a clear improvement

over the previous Cantus Ultimus playback feature.

Figure 3. “Tiger” singing Ecce dies venient from Einsiedeln, CH-E 611

While the results of the project are certainly disappointing, I was able to lay the

groundwork for future development despite the many technical issues in labeling, encoding, and

training. Moving forward, I plan to continue building on the groundwork outlined in this project

and will redo the training on a Windows computer, which will hopefully allow me to use my

own voice to synthesize audio for medieval Latin chants and integrate the feature into Cantus

Ultimus.

Bibliography

[1] Cantus: A Database for Latin Ecclesiastical Chant. Directed by Debra Lacoste (2011-

present), Terence Bailey (1997-2010), and Ruth Steiner (1987-1996); developed for the web by

Jan Koláček (2011-2023), McGill University Distributed Digital Music Archives & Libraries

Lab - DDMAL (2023-present); and funded through the Digital Analysis of Chant

Transmission project at Dalhousie University, Halifax, Nova Scotia, Canada (SSHRC 895-2023-

1002), https://cantusdatabase.org.

[2] Liu, Jinglin, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou Zhao. "Diffsinger: Singing voice

synthesis via shallow diffusion mechanism." In Proceedings of the AAAI conference on artificial

intelligence, vol. 36, no. 10, pp. 11020-11028. 2022.

