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ABSTRACT 
This work presents a MATLAB-based digital model of the Echoplex tape delay unit. The implementation 

focuses on replicating key characteristics of the physical Echoplex device, including fluctuating time delay 
driven by capstan and pinch wheel irregularities, saturation effects, and a feedback-based comb filter. The 

model employs sinc interpolation for anti-aliasing, a leaky integrator for time delay stabilization, and 

dynamic modulation of delay times. The paper provides an overview of the implementation methodology, 

with emphasis on design challenges, debugging strategies, and practical usage demonstrations. Results are 

evaluated through audio tests and visualizations to verify the accuracy of the model. 

 
1. INTRODUCTION 

 

The Echoplex is a renowned tape delay effect 

unit introduced in the 1950s, celebrated for its warm 

and characteristically dynamic sound. Originally 

developed as a hardware device, the Echoplex 

utilizes a magnetic tape loop to create echoes, with 

adjustable delay time and feedback. Its mechanical 

imperfections, such as tape wear and drift, became 

defining features that contributed to its rich, 

textured sound. Widely adopted by musicians and 

producers, the Echoplex became a staple in shaping 

the soundscapes of the 1960s and 1970s. 

In recent years, the shift towards digital audio 

workstations and virtual instruments has spurred a 

demand for accurate digital recreations of classic 

analog effects. Such models not only preserve the 

sonic heritage of vintage devices but also offer users 

the convenience, flexibility, and reliability of 

modern digital platforms. However, replicating the 

nuanced behaviors of analog systems in the digital 

domain remains a challenging task, requiring 

sophisticated algorithms and a deep understanding 

of the physical processes being emulated. 

This paper documents the implementation of a 

MATLAB-based digital model of the Echoplex tape 

delay, inspired by prior research and hardware 

analysis by Arnardottir et al. [1]. The project 

focuses on recreating key features of the original 

unit, including delay modulation due to capstan and 

pinch wheel drift, non-linearities from tape 

saturation, and anti-aliasing techniques using sinc 

interpolation. By combining these elements, the 

model seeks to replicate the warm, unpredictable 

sound of the original device while providing an 

educational platform for understanding and 

experimenting with virtual analog modeling. 

The following sections provide an overview of 

the system’s characteristics, a detailed description 

of the implementation, and an evaluation of the 

model's performance through audio examples and 

visualizations. The challenges encountered and 

their solutions are discussed, followed by 

suggestions for future improvements to the model. 

 

 
 

Fig. 1 Maestro Echoplex EP4 Solid State Tape Delay 

2. ANALAYSIS 

There are two fundamental mechanisms of tape 

delay: speed-type and length-type. Speed-type 

delays, as exemplified by devices like the Roland 

Space Echo, alter the delay time by changing the 



speed of the tape [2]. This mechanism inherently 

couples delay time changes with pitch shifts due to 

the Doppler effect. In contrast, the Echoplex 

employs a length-type mechanism, where delay 

time adjustments occur through the physical 

displacement of the record head. This distinction 

allows for independent modulation of delay time 

and pitch, but not without introducing its own 

unique effects. This distinction allows for 

independent modulation of delay time and pitch, 

while also introducing unique artifacts and sonic 

effects. 

The defining feature of the Echoplex is its ability 

to continuously adjust delay time through the 

manipulation of the delay handle, which moves the 

record head relative to the playback head. As 

highlighted in the work of Arnardottir et al., abrupt 

movements of the delay handle can result in a range 

of distinctive sonic effects. For example, quickly 

moving the delay handle away from the playback 

head can shift the tape bias signal into the audio 

band, creating unexpected tonal artifacts. 

Conversely, when the delay handle is moved 

towards the playback head at a speed exceeding the 

tape's motion, the system experiences a "sonic 

boom" effect. This occurs because the bandwidth of 

the signal written to the tape becomes unbounded at 

the point where the record head and the tape move 

at the same speed, leading to a discontinuity in the 

output signal. 

A further central characteristic of the Echoplex 

is its feedback mechanism, controlled by the 

"Repeats" knob. This feedback loop reintroduces 

delayed signals into the playback chain, enabling a 

range of effects from subtle decaying echoes to 

dense, cascading layers of sound. The Repeats knob 

has a range of 0 to 2, meaning that saturation in the 

tape and circuitry limit the signal amplitude when 

the feedback is greater than 1. This can push the 

system into self-oscillation, producing intense and 

evolving textures that musicians often exploit for 

creative purposes. This interplay between delay and 

feedback forms the foundation of the Echoplex's 

versatility. 

Another defining trait is the nonlinearity 

introduced by the analog tape medium. Tape 

saturation, particularly at higher signal levels, 

introduces harmonic distortion, imparting warmth 

and character to the sound. Over time, tape wear and 

mechanical imperfections, such as those from the 

capstan and pinch wheel, contribute to subtle 

modulations in tape speed. These irregularities, 

often referred to as "drift," result in natural 

chorusing effects and fluctuating time delays, as 

discussed in detail by Arnardottir et al. These effects 

enhance the spatial and temporal complexity of the 

echoes, creating a sense of organic movement. 

Mechanical imperfections also lead to comb 

filtering effects, resulting from the interaction 

between the feedback loop and tape properties. This 

interaction introduces tonal coloration, with specific 

frequencies emphasized based on the delay time and 

tape characteristics. These resonances, particularly 

when coupled with feedback, add a unique timbral 

quality to the delayed signal. 

While analog imperfections were integral to the 

Echoplex's character, digital models must address 

challenges like anti-aliasing. Digital 

implementations must smooth abrupt delay-time 

changes and prevent high-frequency aliasing 

artifacts to preserve the natural and musical 

behavior of the original device. Arnardottir et al. 

emphasize the importance of incorporating anti-

aliasing measures, such as sinc interpolation, to 

ensure fidelity in digital recreations. 

The characteristics described above highlight the 

complex interplay of mechanical, electrical, and 

acoustic factors that define the Echoplex's sound. 

As outlined in the work by Arnardottir et al., these 

characteristics not only inform the sonic signature 

of the Echoplex but also present unique challenges 

for digital modeling. The following section 

discusses how these characteristics are translated 

into the MATLAB-based digital model, leveraging 

modern signal processing techniques to emulate the 

device's analog behavior. 

 

3. OVERVIEW 

The signal flow architecture of the MATLAB 

Echoplex model, as illustrated in the accompanying 

block diagrams (Figure 2), effectively emulates the 

fundamental processes of the original hardware. 

This architecture integrates multiple interconnected 

modules to replicate the core functionalities of the 

tape delay system, from the initial input signal 

processing to the final output. Each module plays a 

specific role in re-creating the analog characteristics 

of the Echoplex, including dynamic modulation, 

drift generation, feedback, and saturation effects. 

 



 
Fig. 2 Echoplex signal flow 

The architecture begins with the input signal and 

delay time modulation stage. The delay handle 

position (δ) determines the nominal delay time, 

which is processed via a tracking filter to ensure 

smooth transitions. Dynamic delay values (τ(t) are 

then generated by combining inputs from the 

tracking filter with drift components and 

irregularities caused by capstan and pinch wheel 

fluctuations. These elements simulate the 

mechanical imperfections that are intrinsic to the 

original tape system. 

The drift and fluctuation generation module 

introduces both low-frequency drift and periodic 

modulations to emulate mechanical imperfections. 

Drift components include white Gaussian noise, 

filtered by a low-pass filter to remove high-

frequency artifacts, and sinusoidal signals that 

replicate capstan and pinch wheel irregularities at 

characteristic frequencies such as 2.5 Hz, 5 Hz, and 

26 Hz. This module ensures the natural variability 

in delay time. 

In the dynamic delay and feedback stage, the 

delay module employs a circular buffer to simulate 

tape motion and accommodate variable delay times. 

The feedback mechanism, controlled by the 

"Repeats" knob (λ), reintegrates the delayed signal 

back into the delay module. Before re-entry, the 

feedback signal is passed through the saturation 

stage, adding harmonic richness to the repetitions. 

The saturation and equalization module applies 

nonlinear saturation using a hyperbolic tangent 

function (tanh(kx)), a cheap approximation of the 

harmonic distortion characteristic of analog tape 

systems. Following saturation, an equalization (EQ) 

stage shapes the tonal output, allowing for further 

user control over the sound. Together, these 

processes enhance the authenticity of the model by 

 
1 Arandottir et al. unfortunately do not provide detailed 

information on these values. The values used are therefore 

approximations to the graphs provided. 

replicating the warmth and coloration of tape-based 

systems. 

 

3. METHODOLOGY 

This work implements a MATLAB-based digital 

model of the Echoplex EP-4 tape delay. The 

methodology involves modeling the key physical 

and acoustic characteristics of the original device. 

The design follows prior research on the Echoplex, 

particularly the work of Arnardottir et al., 

leveraging signal processing techniques such as sinc 

interpolation, low-pass filtering, and dynamic 

feedback control.  

 

 
 
Fig. 3 Delay generation signal flow 

 

3.1 Capstan and Pinch Wheel Drift 

A defining feature of the Echoplex’s sound is the 

subtle, time-varying fluctuations in delay caused by 

mechanical imperfections in the tape transport 

system (Figure 3). These irregularities, particularly 

those caused by the capstan and pinch wheel, are 

modeled as sinusoidal modulations added to the 

nominal delay. The total drift signal can be 

expressed as: 

 

Drift(𝑡) = 𝐴1 sin(2𝜋𝑓1𝑡 + 𝜙1)
+ 𝐴2 sin(2𝜋𝑓2𝑡 + 𝜙2)
+ 𝐴3 sin(2𝜋𝑓3𝑡 + 𝜙3) 

 

where f1 = 26Hz and f2 = 2.5Hz, corresponding to 

irregularities introduced by the pinch wheel and f3 = 

5Hz resulting from the capstan. Ai and 𝜙i are the 

amplitudes and phases of the sinusoids, adjusted to 

match the observed characteristics of the Echoplex.1 

To replicate the slight variability observed in the 

hardware, a low-pass filtered white noise is added 

to the sinusoidal drift to introduce stochastic 

variations, and the noise signal is filtered using a 



Butterworth low-pass filter with a cutoff frequency 

of 100 Hz, ensuring smooth, natural fluctuation 

(Figure 4).  

 

 
Fig. 4 Spectrogram of Drift Signal Across Playback-

Record Head Separations 

 

 
Fig. 5 Time-Domain Representation of Capstan and 

Pinch Wheel Drift 

3.2 Comb Filter Implementation 

Arnardottir et al. explain that spectral nulls occur 

at frequencies proportional to odd integer multiples 

of the inverse record head-playback head distance. 

These nulls are likely caused by mechanical 

disturbances propagating along the tape between the 

record and playback heads. This behavior is 

characteristic of a feedback comb filter, 

implemented here as a simple feedback system 

dynamically modulated by the delay handle 

position. 

The comb filter delay time (τc) is determined by 

the distance between the record and playback heads, 

controlled by the delay handle position (δ). This 

relationship ensures that the tonal characteristics of 

the feedback comb filter adapt dynamically as the 

delay handle is moved. The delay time, therefore, is 

given by: 

𝜏𝑐 = 𝑓(𝛿) 

 

where f(δ) maps the delay handle position to the 

corresponding delay time. As the delay handle 

moves closer to the playback head, the delay time 

decreases, causing the spectral nulls to spread 

further apart. Conversely, moving the handle away 

increases the delay time and concentrates the nulls 

at lower frequencies. 

The comb filter is implemented using a circular 

buffer to store delayed samples. The output at any 

time step n is calculated as: 

y[n]=x[n]+gc ⋅ y[n−τc] 

 

where gc is the feedback gain, controlling the 

intensity of the tonal resonances and τc  is the delay 

time, modulated by the delay handle position. 

The comb filter introduces periodic resonances 

and nulls in the frequency spectrum, with null 

frequencies determined by: 

 

𝑓𝑛𝑢𝑙𝑙 =  
𝑘

𝜏𝑐
, 𝑘 =  1, 3, 5, . .. 

 

As the delay handle adjusts the delay time, the 

null frequencies shift dynamically, creating the 

characteristic tonal movement of the Echoplex. This 

can be seen by applying white noise as the input 

signal as shown in Figure 6:  

 



 

 
Fig. 6 Comb Filter Frequency Response Applied to 

White Noise (above) and Sinusoidal Sweep (bottom). 

3.3 Feedback, Leaky integration, and Saturation 

The feedback (Repeats) mechanism is a 

fundamental component of the Echoplex tape delay 

model, as it controls the number of echoes, their 

intensity, and the overall decay characteristics. This 

feature allows the system to reintroduce delayed 

signals into the delay line buffer, enabling cascading 

repetitions that define the sonic signature of the 

Echoplex. By shaping the feedback signal through 

tonal processing, such as the comb filter, and 

applying saturation effects, the model closely 

emulates the behavior of the original hardware. 

The feedback implementation in the MATLAB 

model is governed by three core processes: 

feedback gain scaling, leaky integration for natural 

 
2 Unfortunately, Arnardottir provides little to no information 

on tape saturation here. Other papers discuss this in detail, 

though their work is restricted to other tape models [3].  

decay, and tonal shaping through the comb filter. 

Each of these components plays a critical role in 

achieving a dynamic and musically engaging delay 

response. 

The leaky integrator is a crucial component in 

modeling the natural decay behavior of the 

Echoplex tape delay. Based on Arnardottir et al., the 

leaky integrator ensures that the delay smoothly 

transitions towards a target delay value, emulating 

the gradual decay and dynamic stability observed in 

analog tape delays. 

The equation governing the leaky integrator can 

be expressed as: 

 

𝜏[𝑛 + 1] = (1 − 𝜆)𝜏𝑇 + 𝜆𝜏[𝑛], 
 

This formulation ensures that the delay gradually 

relaxes towards the target value, with λ dictating the 

rate of decay. The leaky integrator smooths the 

feedback signal, creating a more organic and natural 

decay characteristic of analog systems. 

In addition to feedback gain scaling and leaky 

integration, the application of saturation effects 

further enhances the realism of the Echoplex tape 

delay model. Saturation introduces harmonic 

distortion, emulating the non-linear behavior of 

analog tape systems. This effect not only enriches 

the tonal quality of the repeated echoes but also 

prevents signal overload by soft-clipping peaks in 

the feedback loop.2 

The saturation effect in the MATLAB model is 

implemented as a hyperbolic tangent function. 

mathematically represented as: 

 

𝑦[𝑛] = 𝑎 ⋅ 𝑡𝑎𝑛ℎ(
𝑦[𝑛]

𝑎
) 

 

This mathematical model ensures that high-

amplitude signals are compressed non-linearly, 

introducing subtle harmonic distortion while 

preserving signal stability. By incorporating this 

function, the MATLAB implementation replicates 

the soft-clipping behavior of analog systems, 

enhancing the perceived warmth and richness of the 

delay. 

Integrating the saturation stage with the leaky 

integrator creates a feedback loop with dynamic 



tonal shaping. The interaction between these 

components not only prevents runaway feedback 

but also introduces the signature harmonic 

coloration associated with the Echoplex tape delay. 

 

3.4 Delay Line Interpolation 

The delay line in the Echoplex model ensures 

smooth and time-varying delay times by 

implementing interpolated signal values between 

discrete samples. This method is fundamental to 

achieving the continuous-like behavior of analog 

tape delays within a digital framework. Arnardottir 

et al. directly reference the resampling method by 

sinc interpolation [4], which enables non-uniform 

and time-varying sampling through interpolated 

lookup techniques. 

The delay line interpolation builds on the 

concept of bandlimited interpolation, which 

reconstructs a continuous-time signal x(t) from its 

discrete samples’ x[n]. Accordingly, the key 

equation for reconstruction is: 

 

𝑥(𝑡) = 𝑛∑𝑥[𝑛] ⋅ 𝑠𝑖𝑛𝑐(𝜋𝐹𝑠 ⋅ (𝑡 − 𝑛𝑇𝑠)) 

 

To achieve fractional delays, this equation 

requires evaluation of x(t) at arbitrary, non-integer 

time indices t = kTs + Δt, where Δt is a fractional 

offset. The implementation proposes using 

precomputed filter coefficients stored in a lookup 

table, combined with linear interpolation to 

approximate intermediate values. The MATLAB 

script models this delay line interpolation by using 

a circular buffer and a sinc-based interpolation 

kernel, as seen in Figure 7: 

 

 
Fig. 7 Impulse Response with Sinc Interpolation 

3.5 Anti-Aliasing and High Frequency Behaviour 

Anti-aliasing is a critical component of digital 

delay systems, particularly in tape delay models like 

the Echoplex, which exhibit time-varying delay 

lines. Time-varying delays, such as those modulated 

by capstan drift or pinch wheel irregularities, 

introduce high-frequency artifacts that can alias into 

the audible range during digital processing. 

Arnardottir et al. emphasize the need to carefully 

address these artifacts to ensure that the model 

accurately emulates the smooth, warm sound of the 

original hardware. 

In their paper, Arnardottir et al. recommend 

using interpolation-based anti-aliasing techniques 

to suppress unwanted high-frequency components. 

Specifically, they propose linear or higher-order 

interpolation methods to reconstruct the signal with 

minimal distortion. They also discuss low-pass 

filtering as a complementary method to attenuate 

the high frequencies that can arise from abrupt 

changes in the delay line’s phase. 

The key mathematical considerations for anti-

aliasing in a time-varying delay are: 

1. Filtering the input signal before writing it to 

the delay buffer (pre-anti-aliasing). 

2. Interpolating between delay line samples to 

avoid abrupt discontinuities (interpolated 

read or write). 

3. Applying a post-low-pass filter to the 

reconstructed signal for additional high-

frequency smoothing. 

The MATLAB script attempts to implement 

anti-aliasing and high-frequency behavior control in 

alignment with the theoretical recommendations 

outlined by Arnardottir et al. The model 

incorporates a 64th-order FIR low-pass filter with a 

cutoff frequency of 20 kHz. Additionally, sinc 

interpolation is employed for delay line reads, 

ensuring smooth transitions between samples and 

minimizing artifacts caused by time-varying delay 

modulation. To further enhance the interpolation 

process, the sinc kernel is windowed using a Hann 

function, reducing ringing artifacts and improving 

the naturalness of the reconstructed signal. 

Together, these features replicate the smooth and 

warm sound of the Echoplex while mitigating 

aliasing artifacts inherent to digital systems. 

Despite this, the implementation leaves room 

for refinement. Adjusting the FIR filter's cutoff 

frequency dynamically based on the rate of delay 

modulation could not be achieved without extreme 



CPU cost. Exploring alternative interpolation 

methods, such as polynomial or spline interpolation, 

may offer computational trade-offs that are more 

suitable for real-time applications. Overall, the anti-

aliasing and interpolation techniques adopted in the 

MATLAB implementation come close to 

addressing the high-frequency challenges and align 

with the principles described by Arnardottir et al., 

while offering a foundation for further optimization 

and validation. 

 

4. CONCLUSION 

The MATLAB implementation of the Echoplex 

tape delay model provides a flexible and robust 

platform for replicating the dynamic and tonal 

qualities of the original hardware. By integrating 

key features such as dynamic delay modulation, 

leaky integration, and anti-aliasing, the script 

adheres closely to the theoretical principles outlined 

by Arnardottir et al. and offers a comprehensive 

digital emulation of the Echoplex’s analog 

behavior. 

Included in the script is parameter adjustability. 

Users can fine-tune critical aspects of the delay 

model, including the delay time and feedback gain, 

which directly influence the number of echoes and 

their intensity. Parameters such as the leak 

coefficient and modulation amount further allow for 

precise control over natural decay and dynamic 

instability, emulating the subtle irregularities of 

analog drift. Additionally, tonal shaping through the 

comb filter and the inclusion of high-frequency 

behavior controls, such as FIR-based anti-aliasing, 

ensure a nuanced reproduction of the Echoplex’s 

unique sound. 

The script also incorporates a variety of input 

signal options to facilitate debugging and evaluation 

of its components. Impulse signals are particularly 

useful for observing the decay characteristics and 

temporal spacing of echoes, while white noise 

enables a detailed analysis of spectral response, 

including the interplay between feedback and tonal 

shaping mechanisms. Sine waves can be used to 

identify resonance effects and validate the 

frequency-dependent behavior of the delay line, and 

sine sweeps are instrumental in assessing the 

performance of anti-aliasing and time-varying delay 

modulation. This testing flexibility enables a 

methodical approach to refining and optimizing the 

model. 

Future work should focus on systematically 

validating the MATLAB implementation against 

physical measurements of an Echoplex unit. 

Spectral analysis could confirm that the model’s 

frequency response aligns with the hardware’s 

analog characteristics, while time-domain analyses 

would ensure accurate decay and modulation 

behavior. Stress tests using extreme parameter 

values could further assess the robustness of anti-

aliasing, interpolation, and drift components under 

challenging conditions. Subjective listening tests 

involving expert feedback could fine-tune the 

model’s sonic output to align with user 

expectations. Together, these methodologies would 

not only validate the existing implementation but 

also provide a pathway for enhancing its fidelity, 

ensuring that the digital emulation captures the 

complexity and nuance of the original Echoplex 

tape delay. 
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Echoplex Tape Delay Model
% This code implements an Echoplex tape delay model based on the work of Steinunn 
Arnardottir, 
% Jonathan S. Abel, & Julius O. Smith,  “A digital model of the echoplex tape 
delay,” in
% Audio Engineering Society Convention 125, Oct 2008.
% https://secure.aes.org/forum/pubs/conventions/?elib=14800

% For more information and the downloadable plugin, please visit
% https://michaelzajner.com/research/echoplex/

% The model includes interpolated write, anti-aliasing filtering, leaky integrator,
% and additional irregularities such as capstan drift and pinch wheel drift.

Section 1: Initialization and Parameters Setup
% Adjustable Parameters
% Many parameters are approximations based on the materials provided in the
% article.
% clear all;

sampleRate = 48000; % Sampling rate in Hz
initialDelayMs = 300; % Initial delay in milliseconds (can be adjusted to control 
delay time)
combFeedbackGain = 0.1; % Comb filter feedback gain (adjustable to control comb 
filtering effect)
delayFeedbackGain = 0.95; % Feedback/repeats control (adjustable to control repeats 
amount)
leakCoefficient = 0.95; % Coefficient for leaky integrator (adjustable for natural 
decay effect)
dryWetMix = 0.75; % Dry/Wet Mix Ratio (0 = All Dry, 1 = All Wet)
saturationAmount = 0.5; % Amount of saturation applied (0 = No saturation, 1 = Full 
saturation)
modulationAmount = 0.1; % Modulation control of capstan & pinch wheel (0 = No 
modulation, 1 = Full modulation)

% Simulate moving delay time
delaySweepRangeMs = 100; % Maximum variation for sweeping delay in milliseconds
sweepFrequency = 10; % Frequency of the sweeping delay in Hz

% Convert delay time to samples
initialDelaySamples = round(initialDelayMs * (sampleRate / 1000)); % Convert delay 
to samples

% Create UI controls for parameters
%{
fig = uifigure('Name', 'Echoplex Tape Delay Controls');

1



initialDelaySlider = uislider(fig, 'Position', [100, 300, 300, 3], 'Limits', [50, 
800], 'Value', initialDelayMs);
initialDelaySlider.ValueChangedFcn = @(src, event) assignin('base', 
'initialDelayMs', src.Value);
initialDelaySlider.Tooltip = 'Delay (ms)';

delayFeedbackSlider = uislider(fig, 'Position', [100, 250, 300, 3], 'Limits', [0, 
1.5], 'Value', delayFeedbackGain);
delayFeedbackSlider.ValueChangedFcn = @(src, event) assignin('base', 
'delayFeedbackGain', src.Value);
delayFeedbackSlider.Tooltip = 'Repeats';

dryWetMixSlider = uislider(fig, 'Position', [100, 200, 300, 3], 'Limits', [0, 1], 
'Value', dryWetMix);
dryWetMixSlider.ValueChangedFcn = @(src, event) assignin('base', 'Mix', src.Value);
dryWetMixSlider.Tooltip = 'Dry/Wet Mix Ratio';

modulationAmountSlider = uislider(fig, 'Position', [100, 150, 300, 3], 'Limits', 
[0, 0.05], 'Value', modulationAmount);
modulationAmountSlider.ValueChangedFcn = @(src, event) assignin('base', 
'modulationAmount', src.Value);
modulationAmountSlider.Tooltip = 'Modulation Amount';
%}

Section 2: Load and Prepare Audio File
% For testing: Load an audio file (mono channel), and set up parameters.
% [inputSignal, sampleRate] = audioread('Test.wav'); % Replace with your audio file
% inputSignal = inputSignal(:, 1)'; % Use the first channel if stereo, transpose to 
a row vector

% For testing: Generate white noise
% testDuration = 5; % Duration of the test signal in seconds
% whiteNoiseInput = randn(1, sampleRate * testDuration); % Generate white noise

% For testing: Generate an impulse response
% testDuration = 1; % Duration of the test signal in samples
% impulseInput = zeros(1, sampleRate);
% impulseInput(1) = 1; % Set the first sample to 1 to create an impulse

% For testing: % Generate sine sweep 
% sineSweepInput = chirp(timeVector, 20, timeVector(end), 20000); % Frequency sweep 
from 20 Hz to 20 kHz

% For testing: % Generate sinewave 
% sineFreq = 100; % Frequency in Hz
% sineWaveInput = sin(2 * pi * sineFreq * (0:1/sampleRate:1)); % 1 second sine wave

% Replace the 'inputSignal' with the impulse or white noise for testing
% inputSignal = whiteNoiseInput;
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% inputSignal = impulseInput;
% inputSignal = sineSweepInput;
% inputSignal = sineWaveInput;

% Time vector based on audio length
timeVector = (0:length(inputSignal)-1) / sampleRate;

%% Section 2.1: Sweeping Delay Modulation Setup
% Generate sweeping modulation for delay time
sweepModulation = sawtooth(2 * pi * sweepFrequency * timeVector, 0.5) * 
(delaySweepRangeMs / 2);

% Create a sharp drop lasting 30 milliseconds
sharpDropDurationSamples = round(30 * (sampleRate / 1000));
sharpDrop = linspace(1, 0, sharpDropDurationSamples);
sweepModulation = [sweepModulation(1:end-sharpDropDurationSamples), sharpDrop];

sweepingDelaySamples = initialDelaySamples + round((sweepModulation * (sampleRate / 
1000)));

Section 3: Capstan Pinch Wheel, and Noise Drift Generation
% Generate various drift components affecting the tape delay system.

% Capstan Drift (Sinusoidal)
capstanFrequency = 26; % Frequency for capstan drift in Hz
capstanAmplitudeSec = 0.00005; % Amplitude of the capstan drift
capstanPulse = sin(2 * pi * capstanFrequency * timeVector); % Generate sinusoidal 
signal
phaseNoiseCutoff = 100; % Cutoff frequency for phase noise filter in Hz
[b, a] = butter(2, phaseNoiseCutoff / (sampleRate / 2)); % Butterworth IIR filter 
(2nd order)
whiteNoise = randn(1, length(timeVector)); % Generate white noise
filteredPhaseNoise = filter(b, a, whiteNoise); % Filter the noise to add drift

combinedPhase = capstanPulse + filteredPhaseNoise; % Combined phase signal
capstanDrift = tanh(sin(combinedPhase) * capstanAmplitudeSec * sampleRate * 
modulationAmount); % Capstan drift calculation with limiting

% Pinch Wheel Drift
pinchWheelFreq1 = 2.5; % First pinch wheel irregularity in Hz
pinchWheelFreq2 = 5.0; % Second pinch wheel irregularity in Hz
pinchWheelPulse1 = sin(2 * pi * pinchWheelFreq1 * timeVector);
pinchWheelPulse2 = sin(2 * pi * pinchWheelFreq2 * timeVector);
pinchWheelDrift = tanh((pinchWheelPulse1 + pinchWheelPulse2) * 0.00005 * 
initialDelayMs / 1000 * sampleRate * modulationAmount); % Pinch wheel drift 
calculation with limiting

% Noise
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% Add noise to simulate mechanical imperfections.
noiseAmplitude = 0.00075 * (initialDelayMs / 1000);
mechanicalNoiseSignal = noiseAmplitude * whiteNoise;
filteredMechanicalNoise = filter(b, a, mechanicalNoiseSignal);

%% Plot Capstan and Pinch Wheel Drift
figure;
subplot(2, 1, 1);
plot(timeVector, capstanDrift);
xlim([0 0.5]); % Focus on the first 0.5 seconds
title('Capstan Drift');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;

subplot(2, 1, 2);
plot(timeVector, pinchWheelDrift);
xlim([0 0.5]); % Focus on the first 0.5 seconds
title('Pinch Wheel Drift');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;

Section 4: Comb Filter
% Parameters for Comb Filter
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initialCombDelay = 0.02 * sampleRate; % Base comb delay length (e.g., 20 ms)
combBufferLength = round(initialCombDelay) + 1; % Buffer length for comb filter
combBuffer = zeros(1, combBufferLength); % Initialize comb buffer
combWritePointer = 1; % Write pointer for comb filter

% Update comb filter delay time dynamically
for n = 1:length(inputSignal)
    % Update comb filter delay time based on delay handle position
    currentDelayHandle = sin(2 * pi * sweepFrequency * (n / sampleRate)); % Example 
modulation
    combDelaySamples = round(initialCombDelay + modulationAmount * 
currentDelayHandle);

    % Ensure delay time is bounded
    combDelaySamples = max(1, min(combDelaySamples, combBufferLength - 1));

    % Retrieve delayed value from comb buffer
    combReadPointer = combWritePointer - combDelaySamples;
    if combReadPointer <= 0
        combReadPointer = combReadPointer + combBufferLength;
    end

    % Calculate comb filter output
    combDelayedValue = combBuffer(combReadPointer);
    combFilterOutput = inputSignal(n) + combFeedbackGain * combDelayedValue;

    % Update comb buffer
    combBuffer(combWritePointer) = combFilterOutput;
    combWritePointer = combWritePointer + 1;
    if combWritePointer > combBufferLength
        combWritePointer = 1; % Wrap around buffer
    end

    % Store the comb filter output for analysis
    combOutputSignal(n) = combFilterOutput;
end

% Plot the time-domain response of the comb filter
figure;
plot(combOutputSignal);
xlabel('Sample');
ylabel('Amplitude');
title('Time-Domain Response of Comb Filter');
grid on;
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% Frequency response of comb filter
fftCombOutput = abs(fft(combOutputSignal, 1024));
freqAxis = (0:511) * (sampleRate / 1024);
figure;
plot(freqAxis, 20*log10(fftCombOutput(1:512)));
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');
title('Frequency Response of Comb Filter Applied to a Swept Sinewave');
grid on;
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Section 5: Anti-Aliasing Filters

% Anti-Aliasing Filter Setup
% Implement an FIR filter for anti-aliasing to reduce high-frequency components
antiAliasFilterOrder = 64; % Order of the anti-aliasing filter
antiAliasCutoffFreq = 20000; % Initial cutoff frequency for anti-aliasing filter 
(in Hz)
antiAliasCoeffs = fir1(antiAliasFilterOrder, antiAliasCutoffFreq / (sampleRate / 
2)); % Design a low-pass FIR filter

% Sinc Interpolation for Anti-Aliasing
% Parameters for sinc interpolation
desiredDelaySamples = 4.7; % Desired delay in samples
numSteps = length(inputSignal); % Number of time steps
delayLineLength = initialDelaySamples + 50;
delayLineBuffer = zeros(1, delayLineLength);
outputSignal = zeros(1, numSteps); % Output signal

% Initialize pointers
writePointer = 1;
readPointer = writePointer - initialDelaySamples;
if readPointer <= 0
    readPointer = readPointer + delayLineLength; % Wrap around for negative values
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end

% Setup FIR filter for anti-aliasing (using sinc interpolation)
sincFilterLength = 32; % Length of sinc filter (must be even)
normalizedCutoffFreq = 0.5; % Normalized cutoff frequency for sinc interpolation
sincKernel = sinc(normalizedCutoffFreq * (-sincFilterLength/2:sincFilterLength/2));
sincKernel = sincKernel .* hann(length(sincKernel))'; % Apply Hann window for 
smoother response

Section 6: Main Loop for Delay Processing
% Incorporate the Comb Filter, Leaky Integrator, and Feedback
for n = 1:length(inputSignal)
    % Step 1: Update Read Pointer with Drift
    drift = modulationAmount * (capstanDrift(n) + pinchWheelDrift(n)) + 
filteredMechanicalNoise(n);
    
    % Simulate a sweep in the delay time (remove if desired)
    delaySamples = max(1, sweepingDelaySamples(n)); % Prevent negative or zero delay
    readPointer = writePointer - delaySamples + drift;
    
    % Without sweeping delay Time
    readPointer = readPointer + 1 + drift;

    % Ensure read pointer wraps around the delay line buffer
    if readPointer > delayLineLength
        readPointer = readPointer - delayLineLength;
    elseif readPointer <= 0
        readPointer = readPointer + delayLineLength;
    end

    % Step 2: Sinc Interpolation for Anti-Aliasing
    interpolatedOutput = 0;
    for k = -sincFilterLength/2:sincFilterLength/2
        currentIndex = floor(readPointer) + k;

        % Handle circular buffer wrapping for the delay line
        if currentIndex <= 0
            currentIndex = currentIndex + delayLineLength;
        elseif currentIndex > delayLineLength
            currentIndex = currentIndex - delayLineLength;
        end

        % Accumulate the weighted samples using the sinc kernel
        interpolatedOutput = interpolatedOutput + delayLineBuffer(currentIndex) * 
sincKernel(k + sincFilterLength/2 + 1);
    end

    % Step 3: Apply Feedback Gain (Repeats Control)
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    feedbackSignal = delayFeedbackGain * interpolatedOutput;

    % Step 4: Apply Comb Filter in Feedback Loop
    combDelayedValue = combBuffer(combWritePointer); % Get delayed value from comb 
buffer
    combFilterOutput = feedbackSignal + combFeedbackGain * combDelayedValue; % 
Apply comb filter feedback
    combBuffer(combWritePointer) = combFilterOutput; % Store in comb buffer for 
future use

    % Step 5: Apply Leaky Integrator 
    if n == 1
        previousFeedback = 0;
    end
    feedbackSignal = leakCoefficient * combFilterOutput + (1 - leakCoefficient) * 
previousFeedback;
    previousFeedback = feedbackSignal;
    saturatedFeedback = saturationAmount * tanh(feedbackSignal);

    % Step 6: Combine Dry and Wet Signal (Dry/Wet Mix)
    drySignal = inputSignal(n);
    wetSignal = saturatedFeedback;
    outputSignal(n) = (1 - dryWetMix) * drySignal + dryWetMix * wetSignal;

    % Step 7: Write Feedback and Current Input Back to Delay Line
    delayLineBuffer(writePointer) = saturatedFeedback + inputSignal(n);

    % Update the read and write pointers for the delay line, handle circular 
wrapping
    writePointer = writePointer + 1;
    combWritePointer = combWritePointer + 1;

    if writePointer > delayLineLength
        writePointer = 1;
    end
    if combWritePointer > combBufferLength
        combWritePointer = 1; % Wrap around the buffer
    end
end

% Apply Anti-Aliasing Filter to Output Signal
outputSignal = filter(antiAliasCoeffs, 1, outputSignal); % Apply anti-aliasing 
filter to output signal

Section 7: Plotting the Results
% Plot the input signal for reference
figure;
subplot(3,1,1);
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plot(timeVector, inputSignal);
title('Input Signal');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;

% Plot the final output signal with dry/wet mix applied
subplot(3,1,3);
plot(timeVector, outputSignal);
title('Final Output Signal with Dry/Wet Mix');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;

sgtitle('Echoplex Tape Delay with Sinc Interpolation and Dynamic Anti-Aliasing 
Visualization');

% Frequency Response Analysis (FFT)
figure;
outputFFT = abs(fft(outputSignal));
frequencies = linspace(0, sampleRate/2, length(outputFFT)/2 + 1);
plot(frequencies, 20*log10(outputFFT(1:length(frequencies))));
title('Frequency Response of Output Signal (FFT Analysis)');
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');
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grid on;

%{
% Plot input vs. output for the sine sweep
figure;
subplot(2, 1, 1);
plot(timeVector, sineSweepInput);
title('Sine Sweep Input');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;

subplot(2, 1, 2);
plot(timeVector, outputSignal);
title('Sine Sweep Output');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;
%}

%{
% Plotting results for the sinc interpolation with impulse response
timeSteps = 0:numSteps-1;

figure;
subplot(3,1,1)

11



stem(timeSteps, inputSignal(1:numSteps))
grid
xlabel('Time (samples)');
ylabel('Amplitude');
title('Input Signal (Impulse)');

subplot(3,1,2)
stem(timeSteps, outputSignal)
grid
xlabel('Time (samples)');
ylabel('Amplitude');
title('Sinc Interpolated Output Signal');

subplot(3,1,3)
plot(timeSteps, outputSignal)
grid
xlabel('Time (samples)');
ylabel('Amplitude');
title('Interpolated Output for Debugging');

sgtitle('Sinc Interpolation Debugging for Impulse Response');
%}

% Plot the read pointer drift over time
figure;
plot(timeVector, capstanDrift + pinchWheelDrift);
title('Read Pointer Drift Over Time');
xlabel('Time (s)');
ylabel('Delay Samples');
grid on;
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Section 7: Output
% Normalize and Clip the Output Signal
% Normalize to prevent clipping during audio writing
maxAmplitude = max(abs(outputSignal)); % Find the maximum absolute value
if maxAmplitude > 1
    outputSignal = outputSignal / maxAmplitude; % Normalize to range -1 to 1
end

% Optional: Clip to ensure no value exceeds -1 to 1
outputSignal = max(min(outputSignal, 1), -1);

%% Save the Output Audio File
outputFilename = 
['C:\Users\mikez\Documents\MATLAB\Echoplex\AudioExamples\modulation.wav']; % Change 
to desired output location
audiowrite(outputFilename, outputSignal, sampleRate); % Save the output signal
fprintf('Processed test output saved to: %s\n', outputFilename);

Processed test output saved to: C:\Users\mikez\Documents\MATLAB\Echoplex\AudioExamples\modulation.wav
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