
MATLAB Model of the Echoplex EP-4 Tape Delay

Michael Zajner

MUMT 618: Computational Modeling of Musical Acoustic Systems

Music Technology, Schulich School of Music, McGill University

Montréal, QC, CA

michael.zajner@mail.mcgill.ca

ABSTRACT
This work presents a MATLAB-based digital model of the Echoplex tape delay unit. The implementation

focuses on replicating key characteristics of the physical Echoplex device, including fluctuating time delay
driven by capstan and pinch wheel irregularities, saturation effects, and a feedback-based comb filter. The

model employs sinc interpolation for anti-aliasing, a leaky integrator for time delay stabilization, and

dynamic modulation of delay times. The paper provides an overview of the implementation methodology,

with emphasis on design challenges, debugging strategies, and practical usage demonstrations. Results are

evaluated through audio tests and visualizations to verify the accuracy of the model.

1. INTRODUCTION

The Echoplex is a renowned tape delay effect

unit introduced in the 1950s, celebrated for its warm

and characteristically dynamic sound. Originally

developed as a hardware device, the Echoplex

utilizes a magnetic tape loop to create echoes, with

adjustable delay time and feedback. Its mechanical

imperfections, such as tape wear and drift, became

defining features that contributed to its rich,

textured sound. Widely adopted by musicians and

producers, the Echoplex became a staple in shaping

the soundscapes of the 1960s and 1970s.

In recent years, the shift towards digital audio

workstations and virtual instruments has spurred a

demand for accurate digital recreations of classic

analog effects. Such models not only preserve the

sonic heritage of vintage devices but also offer users

the convenience, flexibility, and reliability of

modern digital platforms. However, replicating the

nuanced behaviors of analog systems in the digital

domain remains a challenging task, requiring

sophisticated algorithms and a deep understanding

of the physical processes being emulated.

This paper documents the implementation of a

MATLAB-based digital model of the Echoplex tape

delay, inspired by prior research and hardware

analysis by Arnardottir et al. [1]. The project

focuses on recreating key features of the original

unit, including delay modulation due to capstan and

pinch wheel drift, non-linearities from tape

saturation, and anti-aliasing techniques using sinc

interpolation. By combining these elements, the

model seeks to replicate the warm, unpredictable

sound of the original device while providing an

educational platform for understanding and

experimenting with virtual analog modeling.

The following sections provide an overview of

the system’s characteristics, a detailed description

of the implementation, and an evaluation of the

model's performance through audio examples and

visualizations. The challenges encountered and

their solutions are discussed, followed by

suggestions for future improvements to the model.

Fig. 1 Maestro Echoplex EP4 Solid State Tape Delay

2. ANALAYSIS

There are two fundamental mechanisms of tape

delay: speed-type and length-type. Speed-type

delays, as exemplified by devices like the Roland

Space Echo, alter the delay time by changing the

speed of the tape [2]. This mechanism inherently

couples delay time changes with pitch shifts due to

the Doppler effect. In contrast, the Echoplex

employs a length-type mechanism, where delay

time adjustments occur through the physical

displacement of the record head. This distinction

allows for independent modulation of delay time

and pitch, but not without introducing its own

unique effects. This distinction allows for

independent modulation of delay time and pitch,

while also introducing unique artifacts and sonic

effects.

The defining feature of the Echoplex is its ability

to continuously adjust delay time through the

manipulation of the delay handle, which moves the

record head relative to the playback head. As

highlighted in the work of Arnardottir et al., abrupt

movements of the delay handle can result in a range

of distinctive sonic effects. For example, quickly

moving the delay handle away from the playback

head can shift the tape bias signal into the audio

band, creating unexpected tonal artifacts.

Conversely, when the delay handle is moved

towards the playback head at a speed exceeding the

tape's motion, the system experiences a "sonic

boom" effect. This occurs because the bandwidth of

the signal written to the tape becomes unbounded at

the point where the record head and the tape move

at the same speed, leading to a discontinuity in the

output signal.

A further central characteristic of the Echoplex

is its feedback mechanism, controlled by the

"Repeats" knob. This feedback loop reintroduces

delayed signals into the playback chain, enabling a

range of effects from subtle decaying echoes to

dense, cascading layers of sound. The Repeats knob

has a range of 0 to 2, meaning that saturation in the

tape and circuitry limit the signal amplitude when

the feedback is greater than 1. This can push the

system into self-oscillation, producing intense and

evolving textures that musicians often exploit for

creative purposes. This interplay between delay and

feedback forms the foundation of the Echoplex's

versatility.

Another defining trait is the nonlinearity

introduced by the analog tape medium. Tape

saturation, particularly at higher signal levels,

introduces harmonic distortion, imparting warmth

and character to the sound. Over time, tape wear and

mechanical imperfections, such as those from the

capstan and pinch wheel, contribute to subtle

modulations in tape speed. These irregularities,

often referred to as "drift," result in natural

chorusing effects and fluctuating time delays, as

discussed in detail by Arnardottir et al. These effects

enhance the spatial and temporal complexity of the

echoes, creating a sense of organic movement.

Mechanical imperfections also lead to comb

filtering effects, resulting from the interaction

between the feedback loop and tape properties. This

interaction introduces tonal coloration, with specific

frequencies emphasized based on the delay time and

tape characteristics. These resonances, particularly

when coupled with feedback, add a unique timbral

quality to the delayed signal.

While analog imperfections were integral to the

Echoplex's character, digital models must address

challenges like anti-aliasing. Digital

implementations must smooth abrupt delay-time

changes and prevent high-frequency aliasing

artifacts to preserve the natural and musical

behavior of the original device. Arnardottir et al.

emphasize the importance of incorporating anti-

aliasing measures, such as sinc interpolation, to

ensure fidelity in digital recreations.

The characteristics described above highlight the

complex interplay of mechanical, electrical, and

acoustic factors that define the Echoplex's sound.

As outlined in the work by Arnardottir et al., these

characteristics not only inform the sonic signature

of the Echoplex but also present unique challenges

for digital modeling. The following section

discusses how these characteristics are translated

into the MATLAB-based digital model, leveraging

modern signal processing techniques to emulate the

device's analog behavior.

3. OVERVIEW

The signal flow architecture of the MATLAB

Echoplex model, as illustrated in the accompanying

block diagrams (Figure 2), effectively emulates the

fundamental processes of the original hardware.

This architecture integrates multiple interconnected

modules to replicate the core functionalities of the

tape delay system, from the initial input signal

processing to the final output. Each module plays a

specific role in re-creating the analog characteristics

of the Echoplex, including dynamic modulation,

drift generation, feedback, and saturation effects.

Fig. 2 Echoplex signal flow

The architecture begins with the input signal and

delay time modulation stage. The delay handle

position (δ) determines the nominal delay time,

which is processed via a tracking filter to ensure

smooth transitions. Dynamic delay values (τ(t) are

then generated by combining inputs from the

tracking filter with drift components and

irregularities caused by capstan and pinch wheel

fluctuations. These elements simulate the

mechanical imperfections that are intrinsic to the

original tape system.

The drift and fluctuation generation module

introduces both low-frequency drift and periodic

modulations to emulate mechanical imperfections.

Drift components include white Gaussian noise,

filtered by a low-pass filter to remove high-

frequency artifacts, and sinusoidal signals that

replicate capstan and pinch wheel irregularities at

characteristic frequencies such as 2.5 Hz, 5 Hz, and

26 Hz. This module ensures the natural variability

in delay time.

In the dynamic delay and feedback stage, the

delay module employs a circular buffer to simulate

tape motion and accommodate variable delay times.

The feedback mechanism, controlled by the

"Repeats" knob (λ), reintegrates the delayed signal

back into the delay module. Before re-entry, the

feedback signal is passed through the saturation

stage, adding harmonic richness to the repetitions.

The saturation and equalization module applies

nonlinear saturation using a hyperbolic tangent

function (tanh(kx)), a cheap approximation of the

harmonic distortion characteristic of analog tape

systems. Following saturation, an equalization (EQ)

stage shapes the tonal output, allowing for further

user control over the sound. Together, these

processes enhance the authenticity of the model by

1 Arandottir et al. unfortunately do not provide detailed

information on these values. The values used are therefore

approximations to the graphs provided.

replicating the warmth and coloration of tape-based

systems.

3. METHODOLOGY

This work implements a MATLAB-based digital

model of the Echoplex EP-4 tape delay. The

methodology involves modeling the key physical

and acoustic characteristics of the original device.

The design follows prior research on the Echoplex,

particularly the work of Arnardottir et al.,

leveraging signal processing techniques such as sinc

interpolation, low-pass filtering, and dynamic

feedback control.

Fig. 3 Delay generation signal flow

3.1 Capstan and Pinch Wheel Drift

A defining feature of the Echoplex’s sound is the

subtle, time-varying fluctuations in delay caused by

mechanical imperfections in the tape transport

system (Figure 3). These irregularities, particularly

those caused by the capstan and pinch wheel, are

modeled as sinusoidal modulations added to the

nominal delay. The total drift signal can be

expressed as:

Drift(𝑡) = 𝐴1 sin(2𝜋𝑓1𝑡 + 𝜙1)
+ 𝐴2 sin(2𝜋𝑓2𝑡 + 𝜙2)
+ 𝐴3 sin(2𝜋𝑓3𝑡 + 𝜙3)

where f1 = 26Hz and f2 = 2.5Hz, corresponding to

irregularities introduced by the pinch wheel and f3 =

5Hz resulting from the capstan. Ai and 𝜙i are the

amplitudes and phases of the sinusoids, adjusted to

match the observed characteristics of the Echoplex.1

To replicate the slight variability observed in the

hardware, a low-pass filtered white noise is added

to the sinusoidal drift to introduce stochastic

variations, and the noise signal is filtered using a

Butterworth low-pass filter with a cutoff frequency

of 100 Hz, ensuring smooth, natural fluctuation

(Figure 4).

Fig. 4 Spectrogram of Drift Signal Across Playback-

Record Head Separations

Fig. 5 Time-Domain Representation of Capstan and

Pinch Wheel Drift

3.2 Comb Filter Implementation

Arnardottir et al. explain that spectral nulls occur

at frequencies proportional to odd integer multiples

of the inverse record head-playback head distance.

These nulls are likely caused by mechanical

disturbances propagating along the tape between the

record and playback heads. This behavior is

characteristic of a feedback comb filter,

implemented here as a simple feedback system

dynamically modulated by the delay handle

position.

The comb filter delay time (τc) is determined by

the distance between the record and playback heads,

controlled by the delay handle position (δ). This

relationship ensures that the tonal characteristics of

the feedback comb filter adapt dynamically as the

delay handle is moved. The delay time, therefore, is

given by:

𝜏𝑐 = 𝑓(𝛿)

where f(δ) maps the delay handle position to the

corresponding delay time. As the delay handle

moves closer to the playback head, the delay time

decreases, causing the spectral nulls to spread

further apart. Conversely, moving the handle away

increases the delay time and concentrates the nulls

at lower frequencies.

The comb filter is implemented using a circular

buffer to store delayed samples. The output at any

time step n is calculated as:

y[n]=x[n]+gc ⋅ y[n−τc]

where gc is the feedback gain, controlling the

intensity of the tonal resonances and τc is the delay

time, modulated by the delay handle position.

The comb filter introduces periodic resonances

and nulls in the frequency spectrum, with null

frequencies determined by:

𝑓𝑛𝑢𝑙𝑙 =
𝑘

𝜏𝑐
, 𝑘 = 1, 3, 5, . ..

As the delay handle adjusts the delay time, the

null frequencies shift dynamically, creating the

characteristic tonal movement of the Echoplex. This

can be seen by applying white noise as the input

signal as shown in Figure 6:

Fig. 6 Comb Filter Frequency Response Applied to

White Noise (above) and Sinusoidal Sweep (bottom).

3.3 Feedback, Leaky integration, and Saturation

The feedback (Repeats) mechanism is a

fundamental component of the Echoplex tape delay

model, as it controls the number of echoes, their

intensity, and the overall decay characteristics. This

feature allows the system to reintroduce delayed

signals into the delay line buffer, enabling cascading

repetitions that define the sonic signature of the

Echoplex. By shaping the feedback signal through

tonal processing, such as the comb filter, and

applying saturation effects, the model closely

emulates the behavior of the original hardware.

The feedback implementation in the MATLAB

model is governed by three core processes:

feedback gain scaling, leaky integration for natural

2 Unfortunately, Arnardottir provides little to no information

on tape saturation here. Other papers discuss this in detail,

though their work is restricted to other tape models [3].

decay, and tonal shaping through the comb filter.

Each of these components plays a critical role in

achieving a dynamic and musically engaging delay

response.

The leaky integrator is a crucial component in

modeling the natural decay behavior of the

Echoplex tape delay. Based on Arnardottir et al., the

leaky integrator ensures that the delay smoothly

transitions towards a target delay value, emulating

the gradual decay and dynamic stability observed in

analog tape delays.

The equation governing the leaky integrator can

be expressed as:

𝜏[𝑛 + 1] = (1 − 𝜆)𝜏𝑇 + 𝜆𝜏[𝑛],

This formulation ensures that the delay gradually

relaxes towards the target value, with λ dictating the

rate of decay. The leaky integrator smooths the

feedback signal, creating a more organic and natural

decay characteristic of analog systems.

In addition to feedback gain scaling and leaky

integration, the application of saturation effects

further enhances the realism of the Echoplex tape

delay model. Saturation introduces harmonic

distortion, emulating the non-linear behavior of

analog tape systems. This effect not only enriches

the tonal quality of the repeated echoes but also

prevents signal overload by soft-clipping peaks in

the feedback loop.2

The saturation effect in the MATLAB model is

implemented as a hyperbolic tangent function.

mathematically represented as:

𝑦[𝑛] = 𝑎 ⋅ 𝑡𝑎𝑛ℎ(
𝑦[𝑛]

𝑎
)

This mathematical model ensures that high-

amplitude signals are compressed non-linearly,

introducing subtle harmonic distortion while

preserving signal stability. By incorporating this

function, the MATLAB implementation replicates

the soft-clipping behavior of analog systems,

enhancing the perceived warmth and richness of the

delay.

Integrating the saturation stage with the leaky

integrator creates a feedback loop with dynamic

tonal shaping. The interaction between these

components not only prevents runaway feedback

but also introduces the signature harmonic

coloration associated with the Echoplex tape delay.

3.4 Delay Line Interpolation

The delay line in the Echoplex model ensures

smooth and time-varying delay times by

implementing interpolated signal values between

discrete samples. This method is fundamental to

achieving the continuous-like behavior of analog

tape delays within a digital framework. Arnardottir

et al. directly reference the resampling method by

sinc interpolation [4], which enables non-uniform

and time-varying sampling through interpolated

lookup techniques.

The delay line interpolation builds on the

concept of bandlimited interpolation, which

reconstructs a continuous-time signal x(t) from its

discrete samples’ x[n]. Accordingly, the key

equation for reconstruction is:

𝑥(𝑡) = 𝑛∑𝑥[𝑛] ⋅ 𝑠𝑖𝑛𝑐(𝜋𝐹𝑠 ⋅ (𝑡 − 𝑛𝑇𝑠))

To achieve fractional delays, this equation

requires evaluation of x(t) at arbitrary, non-integer

time indices t = kTs + Δt, where Δt is a fractional

offset. The implementation proposes using

precomputed filter coefficients stored in a lookup

table, combined with linear interpolation to

approximate intermediate values. The MATLAB

script models this delay line interpolation by using

a circular buffer and a sinc-based interpolation

kernel, as seen in Figure 7:

Fig. 7 Impulse Response with Sinc Interpolation

3.5 Anti-Aliasing and High Frequency Behaviour

Anti-aliasing is a critical component of digital

delay systems, particularly in tape delay models like

the Echoplex, which exhibit time-varying delay

lines. Time-varying delays, such as those modulated

by capstan drift or pinch wheel irregularities,

introduce high-frequency artifacts that can alias into

the audible range during digital processing.

Arnardottir et al. emphasize the need to carefully

address these artifacts to ensure that the model

accurately emulates the smooth, warm sound of the

original hardware.

In their paper, Arnardottir et al. recommend

using interpolation-based anti-aliasing techniques

to suppress unwanted high-frequency components.

Specifically, they propose linear or higher-order

interpolation methods to reconstruct the signal with

minimal distortion. They also discuss low-pass

filtering as a complementary method to attenuate

the high frequencies that can arise from abrupt

changes in the delay line’s phase.

The key mathematical considerations for anti-

aliasing in a time-varying delay are:

1. Filtering the input signal before writing it to

the delay buffer (pre-anti-aliasing).

2. Interpolating between delay line samples to

avoid abrupt discontinuities (interpolated

read or write).

3. Applying a post-low-pass filter to the

reconstructed signal for additional high-

frequency smoothing.

The MATLAB script attempts to implement

anti-aliasing and high-frequency behavior control in

alignment with the theoretical recommendations

outlined by Arnardottir et al. The model

incorporates a 64th-order FIR low-pass filter with a

cutoff frequency of 20 kHz. Additionally, sinc

interpolation is employed for delay line reads,

ensuring smooth transitions between samples and

minimizing artifacts caused by time-varying delay

modulation. To further enhance the interpolation

process, the sinc kernel is windowed using a Hann

function, reducing ringing artifacts and improving

the naturalness of the reconstructed signal.

Together, these features replicate the smooth and

warm sound of the Echoplex while mitigating

aliasing artifacts inherent to digital systems.

Despite this, the implementation leaves room

for refinement. Adjusting the FIR filter's cutoff

frequency dynamically based on the rate of delay

modulation could not be achieved without extreme

CPU cost. Exploring alternative interpolation

methods, such as polynomial or spline interpolation,

may offer computational trade-offs that are more

suitable for real-time applications. Overall, the anti-

aliasing and interpolation techniques adopted in the

MATLAB implementation come close to

addressing the high-frequency challenges and align

with the principles described by Arnardottir et al.,

while offering a foundation for further optimization

and validation.

4. CONCLUSION

The MATLAB implementation of the Echoplex

tape delay model provides a flexible and robust

platform for replicating the dynamic and tonal

qualities of the original hardware. By integrating

key features such as dynamic delay modulation,

leaky integration, and anti-aliasing, the script

adheres closely to the theoretical principles outlined

by Arnardottir et al. and offers a comprehensive

digital emulation of the Echoplex’s analog

behavior.

Included in the script is parameter adjustability.

Users can fine-tune critical aspects of the delay

model, including the delay time and feedback gain,

which directly influence the number of echoes and

their intensity. Parameters such as the leak

coefficient and modulation amount further allow for

precise control over natural decay and dynamic

instability, emulating the subtle irregularities of

analog drift. Additionally, tonal shaping through the

comb filter and the inclusion of high-frequency

behavior controls, such as FIR-based anti-aliasing,

ensure a nuanced reproduction of the Echoplex’s

unique sound.

The script also incorporates a variety of input

signal options to facilitate debugging and evaluation

of its components. Impulse signals are particularly

useful for observing the decay characteristics and

temporal spacing of echoes, while white noise

enables a detailed analysis of spectral response,

including the interplay between feedback and tonal

shaping mechanisms. Sine waves can be used to

identify resonance effects and validate the

frequency-dependent behavior of the delay line, and

sine sweeps are instrumental in assessing the

performance of anti-aliasing and time-varying delay

modulation. This testing flexibility enables a

methodical approach to refining and optimizing the

model.

Future work should focus on systematically

validating the MATLAB implementation against

physical measurements of an Echoplex unit.

Spectral analysis could confirm that the model’s

frequency response aligns with the hardware’s

analog characteristics, while time-domain analyses

would ensure accurate decay and modulation

behavior. Stress tests using extreme parameter

values could further assess the robustness of anti-

aliasing, interpolation, and drift components under

challenging conditions. Subjective listening tests

involving expert feedback could fine-tune the

model’s sonic output to align with user

expectations. Together, these methodologies would

not only validate the existing implementation but

also provide a pathway for enhancing its fidelity,

ensuring that the digital emulation captures the

complexity and nuance of the original Echoplex

tape delay.

REFERENCES

[1] Arnardottir, S., Abel, J. S., & Smith, J. O.

(2008). A Digital Model of the Echoplex Tape

Delay. Audio Engineering Society

Convention 125. Retrieved from

https://secure.aes.org/forum/pubs/conventions

/?elib=14800.

[2] Downing, Jon, & Terjesen, Christian (2016).

"Real-Time Digital Modeling of the Roland

Space Echo." University of Rochester ECE
472 - Audio Signal Processing.

[3] Chowdhury, J. (2019). Real-time physical
modelling for analog tape machines.

Proceedings of the 22nd International

Conference on Digital Audio Effects (DAFx-

19), Birmingham, UK, September 2–6, 2019.

Available at:

https://ccrma.stanford.edu/~jatin/420/tape/

[4] Smith, J. O. (1984). A Flexible Sampling-Rate

Conversion Method. Proceedings of the IEEE

International Conference on Acoustics,

Speech, and Signal Processing (ICASSP).

Retrieved from

https://ccrma.stanford.edu/~jos/resample/

https://secure.aes.org/forum/pubs/conventions/?elib=14800
https://secure.aes.org/forum/pubs/conventions/?elib=14800
https://ccrma.stanford.edu/~jatin/420/tape/
https://ccrma.stanford.edu/~jos/resample/

Echoplex Tape Delay Model
% This code implements an Echoplex tape delay model based on the work of Steinunn
Arnardottir,
% Jonathan S. Abel, & Julius O. Smith, “A digital model of the echoplex tape
delay,” in
% Audio Engineering Society Convention 125, Oct 2008.
% https://secure.aes.org/forum/pubs/conventions/?elib=14800

% For more information and the downloadable plugin, please visit
% https://michaelzajner.com/research/echoplex/

% The model includes interpolated write, anti-aliasing filtering, leaky integrator,
% and additional irregularities such as capstan drift and pinch wheel drift.

Section 1: Initialization and Parameters Setup
% Adjustable Parameters
% Many parameters are approximations based on the materials provided in the
% article.
% clear all;

sampleRate = 48000; % Sampling rate in Hz
initialDelayMs = 300; % Initial delay in milliseconds (can be adjusted to control
delay time)
combFeedbackGain = 0.1; % Comb filter feedback gain (adjustable to control comb
filtering effect)
delayFeedbackGain = 0.95; % Feedback/repeats control (adjustable to control repeats
amount)
leakCoefficient = 0.95; % Coefficient for leaky integrator (adjustable for natural
decay effect)
dryWetMix = 0.75; % Dry/Wet Mix Ratio (0 = All Dry, 1 = All Wet)
saturationAmount = 0.5; % Amount of saturation applied (0 = No saturation, 1 = Full
saturation)
modulationAmount = 0.1; % Modulation control of capstan & pinch wheel (0 = No
modulation, 1 = Full modulation)

% Simulate moving delay time
delaySweepRangeMs = 100; % Maximum variation for sweeping delay in milliseconds
sweepFrequency = 10; % Frequency of the sweeping delay in Hz

% Convert delay time to samples
initialDelaySamples = round(initialDelayMs * (sampleRate / 1000)); % Convert delay
to samples

% Create UI controls for parameters
%{
fig = uifigure('Name', 'Echoplex Tape Delay Controls');

1

initialDelaySlider = uislider(fig, 'Position', [100, 300, 300, 3], 'Limits', [50,
800], 'Value', initialDelayMs);
initialDelaySlider.ValueChangedFcn = @(src, event) assignin('base',
'initialDelayMs', src.Value);
initialDelaySlider.Tooltip = 'Delay (ms)';

delayFeedbackSlider = uislider(fig, 'Position', [100, 250, 300, 3], 'Limits', [0,
1.5], 'Value', delayFeedbackGain);
delayFeedbackSlider.ValueChangedFcn = @(src, event) assignin('base',
'delayFeedbackGain', src.Value);
delayFeedbackSlider.Tooltip = 'Repeats';

dryWetMixSlider = uislider(fig, 'Position', [100, 200, 300, 3], 'Limits', [0, 1],
'Value', dryWetMix);
dryWetMixSlider.ValueChangedFcn = @(src, event) assignin('base', 'Mix', src.Value);
dryWetMixSlider.Tooltip = 'Dry/Wet Mix Ratio';

modulationAmountSlider = uislider(fig, 'Position', [100, 150, 300, 3], 'Limits',
[0, 0.05], 'Value', modulationAmount);
modulationAmountSlider.ValueChangedFcn = @(src, event) assignin('base',
'modulationAmount', src.Value);
modulationAmountSlider.Tooltip = 'Modulation Amount';
%}

Section 2: Load and Prepare Audio File
% For testing: Load an audio file (mono channel), and set up parameters.
% [inputSignal, sampleRate] = audioread('Test.wav'); % Replace with your audio file
% inputSignal = inputSignal(:, 1)'; % Use the first channel if stereo, transpose to
a row vector

% For testing: Generate white noise
% testDuration = 5; % Duration of the test signal in seconds
% whiteNoiseInput = randn(1, sampleRate * testDuration); % Generate white noise

% For testing: Generate an impulse response
% testDuration = 1; % Duration of the test signal in samples
% impulseInput = zeros(1, sampleRate);
% impulseInput(1) = 1; % Set the first sample to 1 to create an impulse

% For testing: % Generate sine sweep
% sineSweepInput = chirp(timeVector, 20, timeVector(end), 20000); % Frequency sweep
from 20 Hz to 20 kHz

% For testing: % Generate sinewave
% sineFreq = 100; % Frequency in Hz
% sineWaveInput = sin(2 * pi * sineFreq * (0:1/sampleRate:1)); % 1 second sine wave

% Replace the 'inputSignal' with the impulse or white noise for testing
% inputSignal = whiteNoiseInput;

2

% inputSignal = impulseInput;
% inputSignal = sineSweepInput;
% inputSignal = sineWaveInput;

% Time vector based on audio length
timeVector = (0:length(inputSignal)-1) / sampleRate;

%% Section 2.1: Sweeping Delay Modulation Setup
% Generate sweeping modulation for delay time
sweepModulation = sawtooth(2 * pi * sweepFrequency * timeVector, 0.5) *
(delaySweepRangeMs / 2);

% Create a sharp drop lasting 30 milliseconds
sharpDropDurationSamples = round(30 * (sampleRate / 1000));
sharpDrop = linspace(1, 0, sharpDropDurationSamples);
sweepModulation = [sweepModulation(1:end-sharpDropDurationSamples), sharpDrop];

sweepingDelaySamples = initialDelaySamples + round((sweepModulation * (sampleRate /
1000)));

Section 3: Capstan Pinch Wheel, and Noise Drift Generation
% Generate various drift components affecting the tape delay system.

% Capstan Drift (Sinusoidal)
capstanFrequency = 26; % Frequency for capstan drift in Hz
capstanAmplitudeSec = 0.00005; % Amplitude of the capstan drift
capstanPulse = sin(2 * pi * capstanFrequency * timeVector); % Generate sinusoidal
signal
phaseNoiseCutoff = 100; % Cutoff frequency for phase noise filter in Hz
[b, a] = butter(2, phaseNoiseCutoff / (sampleRate / 2)); % Butterworth IIR filter
(2nd order)
whiteNoise = randn(1, length(timeVector)); % Generate white noise
filteredPhaseNoise = filter(b, a, whiteNoise); % Filter the noise to add drift

combinedPhase = capstanPulse + filteredPhaseNoise; % Combined phase signal
capstanDrift = tanh(sin(combinedPhase) * capstanAmplitudeSec * sampleRate *
modulationAmount); % Capstan drift calculation with limiting

% Pinch Wheel Drift
pinchWheelFreq1 = 2.5; % First pinch wheel irregularity in Hz
pinchWheelFreq2 = 5.0; % Second pinch wheel irregularity in Hz
pinchWheelPulse1 = sin(2 * pi * pinchWheelFreq1 * timeVector);
pinchWheelPulse2 = sin(2 * pi * pinchWheelFreq2 * timeVector);
pinchWheelDrift = tanh((pinchWheelPulse1 + pinchWheelPulse2) * 0.00005 *
initialDelayMs / 1000 * sampleRate * modulationAmount); % Pinch wheel drift
calculation with limiting

% Noise

3

% Add noise to simulate mechanical imperfections.
noiseAmplitude = 0.00075 * (initialDelayMs / 1000);
mechanicalNoiseSignal = noiseAmplitude * whiteNoise;
filteredMechanicalNoise = filter(b, a, mechanicalNoiseSignal);

%% Plot Capstan and Pinch Wheel Drift
figure;
subplot(2, 1, 1);
plot(timeVector, capstanDrift);
xlim([0 0.5]); % Focus on the first 0.5 seconds
title('Capstan Drift');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;

subplot(2, 1, 2);
plot(timeVector, pinchWheelDrift);
xlim([0 0.5]); % Focus on the first 0.5 seconds
title('Pinch Wheel Drift');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;

Section 4: Comb Filter
% Parameters for Comb Filter

4

initialCombDelay = 0.02 * sampleRate; % Base comb delay length (e.g., 20 ms)
combBufferLength = round(initialCombDelay) + 1; % Buffer length for comb filter
combBuffer = zeros(1, combBufferLength); % Initialize comb buffer
combWritePointer = 1; % Write pointer for comb filter

% Update comb filter delay time dynamically
for n = 1:length(inputSignal)
 % Update comb filter delay time based on delay handle position
 currentDelayHandle = sin(2 * pi * sweepFrequency * (n / sampleRate)); % Example
modulation
 combDelaySamples = round(initialCombDelay + modulationAmount *
currentDelayHandle);

 % Ensure delay time is bounded
 combDelaySamples = max(1, min(combDelaySamples, combBufferLength - 1));

 % Retrieve delayed value from comb buffer
 combReadPointer = combWritePointer - combDelaySamples;
 if combReadPointer <= 0
 combReadPointer = combReadPointer + combBufferLength;
 end

 % Calculate comb filter output
 combDelayedValue = combBuffer(combReadPointer);
 combFilterOutput = inputSignal(n) + combFeedbackGain * combDelayedValue;

 % Update comb buffer
 combBuffer(combWritePointer) = combFilterOutput;
 combWritePointer = combWritePointer + 1;
 if combWritePointer > combBufferLength
 combWritePointer = 1; % Wrap around buffer
 end

 % Store the comb filter output for analysis
 combOutputSignal(n) = combFilterOutput;
end

% Plot the time-domain response of the comb filter
figure;
plot(combOutputSignal);
xlabel('Sample');
ylabel('Amplitude');
title('Time-Domain Response of Comb Filter');
grid on;

5

% Frequency response of comb filter
fftCombOutput = abs(fft(combOutputSignal, 1024));
freqAxis = (0:511) * (sampleRate / 1024);
figure;
plot(freqAxis, 20*log10(fftCombOutput(1:512)));
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');
title('Frequency Response of Comb Filter Applied to a Swept Sinewave');
grid on;

6

Section 5: Anti-Aliasing Filters

% Anti-Aliasing Filter Setup
% Implement an FIR filter for anti-aliasing to reduce high-frequency components
antiAliasFilterOrder = 64; % Order of the anti-aliasing filter
antiAliasCutoffFreq = 20000; % Initial cutoff frequency for anti-aliasing filter
(in Hz)
antiAliasCoeffs = fir1(antiAliasFilterOrder, antiAliasCutoffFreq / (sampleRate /
2)); % Design a low-pass FIR filter

% Sinc Interpolation for Anti-Aliasing
% Parameters for sinc interpolation
desiredDelaySamples = 4.7; % Desired delay in samples
numSteps = length(inputSignal); % Number of time steps
delayLineLength = initialDelaySamples + 50;
delayLineBuffer = zeros(1, delayLineLength);
outputSignal = zeros(1, numSteps); % Output signal

% Initialize pointers
writePointer = 1;
readPointer = writePointer - initialDelaySamples;
if readPointer <= 0
 readPointer = readPointer + delayLineLength; % Wrap around for negative values

7

end

% Setup FIR filter for anti-aliasing (using sinc interpolation)
sincFilterLength = 32; % Length of sinc filter (must be even)
normalizedCutoffFreq = 0.5; % Normalized cutoff frequency for sinc interpolation
sincKernel = sinc(normalizedCutoffFreq * (-sincFilterLength/2:sincFilterLength/2));
sincKernel = sincKernel .* hann(length(sincKernel))'; % Apply Hann window for
smoother response

Section 6: Main Loop for Delay Processing
% Incorporate the Comb Filter, Leaky Integrator, and Feedback
for n = 1:length(inputSignal)
 % Step 1: Update Read Pointer with Drift
 drift = modulationAmount * (capstanDrift(n) + pinchWheelDrift(n)) +
filteredMechanicalNoise(n);

 % Simulate a sweep in the delay time (remove if desired)
 delaySamples = max(1, sweepingDelaySamples(n)); % Prevent negative or zero delay
 readPointer = writePointer - delaySamples + drift;

 % Without sweeping delay Time
 readPointer = readPointer + 1 + drift;

 % Ensure read pointer wraps around the delay line buffer
 if readPointer > delayLineLength
 readPointer = readPointer - delayLineLength;
 elseif readPointer <= 0
 readPointer = readPointer + delayLineLength;
 end

 % Step 2: Sinc Interpolation for Anti-Aliasing
 interpolatedOutput = 0;
 for k = -sincFilterLength/2:sincFilterLength/2
 currentIndex = floor(readPointer) + k;

 % Handle circular buffer wrapping for the delay line
 if currentIndex <= 0
 currentIndex = currentIndex + delayLineLength;
 elseif currentIndex > delayLineLength
 currentIndex = currentIndex - delayLineLength;
 end

 % Accumulate the weighted samples using the sinc kernel
 interpolatedOutput = interpolatedOutput + delayLineBuffer(currentIndex) *
sincKernel(k + sincFilterLength/2 + 1);
 end

 % Step 3: Apply Feedback Gain (Repeats Control)

8

 feedbackSignal = delayFeedbackGain * interpolatedOutput;

 % Step 4: Apply Comb Filter in Feedback Loop
 combDelayedValue = combBuffer(combWritePointer); % Get delayed value from comb
buffer
 combFilterOutput = feedbackSignal + combFeedbackGain * combDelayedValue; %
Apply comb filter feedback
 combBuffer(combWritePointer) = combFilterOutput; % Store in comb buffer for
future use

 % Step 5: Apply Leaky Integrator
 if n == 1
 previousFeedback = 0;
 end
 feedbackSignal = leakCoefficient * combFilterOutput + (1 - leakCoefficient) *
previousFeedback;
 previousFeedback = feedbackSignal;
 saturatedFeedback = saturationAmount * tanh(feedbackSignal);

 % Step 6: Combine Dry and Wet Signal (Dry/Wet Mix)
 drySignal = inputSignal(n);
 wetSignal = saturatedFeedback;
 outputSignal(n) = (1 - dryWetMix) * drySignal + dryWetMix * wetSignal;

 % Step 7: Write Feedback and Current Input Back to Delay Line
 delayLineBuffer(writePointer) = saturatedFeedback + inputSignal(n);

 % Update the read and write pointers for the delay line, handle circular
wrapping
 writePointer = writePointer + 1;
 combWritePointer = combWritePointer + 1;

 if writePointer > delayLineLength
 writePointer = 1;
 end
 if combWritePointer > combBufferLength
 combWritePointer = 1; % Wrap around the buffer
 end
end

% Apply Anti-Aliasing Filter to Output Signal
outputSignal = filter(antiAliasCoeffs, 1, outputSignal); % Apply anti-aliasing
filter to output signal

Section 7: Plotting the Results
% Plot the input signal for reference
figure;
subplot(3,1,1);

9

plot(timeVector, inputSignal);
title('Input Signal');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;

% Plot the final output signal with dry/wet mix applied
subplot(3,1,3);
plot(timeVector, outputSignal);
title('Final Output Signal with Dry/Wet Mix');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;

sgtitle('Echoplex Tape Delay with Sinc Interpolation and Dynamic Anti-Aliasing
Visualization');

% Frequency Response Analysis (FFT)
figure;
outputFFT = abs(fft(outputSignal));
frequencies = linspace(0, sampleRate/2, length(outputFFT)/2 + 1);
plot(frequencies, 20*log10(outputFFT(1:length(frequencies))));
title('Frequency Response of Output Signal (FFT Analysis)');
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');

10

grid on;

%{
% Plot input vs. output for the sine sweep
figure;
subplot(2, 1, 1);
plot(timeVector, sineSweepInput);
title('Sine Sweep Input');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;

subplot(2, 1, 2);
plot(timeVector, outputSignal);
title('Sine Sweep Output');
xlabel('Time (s)');
ylabel('Amplitude');
grid on;
%}

%{
% Plotting results for the sinc interpolation with impulse response
timeSteps = 0:numSteps-1;

figure;
subplot(3,1,1)

11

stem(timeSteps, inputSignal(1:numSteps))
grid
xlabel('Time (samples)');
ylabel('Amplitude');
title('Input Signal (Impulse)');

subplot(3,1,2)
stem(timeSteps, outputSignal)
grid
xlabel('Time (samples)');
ylabel('Amplitude');
title('Sinc Interpolated Output Signal');

subplot(3,1,3)
plot(timeSteps, outputSignal)
grid
xlabel('Time (samples)');
ylabel('Amplitude');
title('Interpolated Output for Debugging');

sgtitle('Sinc Interpolation Debugging for Impulse Response');
%}

% Plot the read pointer drift over time
figure;
plot(timeVector, capstanDrift + pinchWheelDrift);
title('Read Pointer Drift Over Time');
xlabel('Time (s)');
ylabel('Delay Samples');
grid on;

12

Section 7: Output
% Normalize and Clip the Output Signal
% Normalize to prevent clipping during audio writing
maxAmplitude = max(abs(outputSignal)); % Find the maximum absolute value
if maxAmplitude > 1
 outputSignal = outputSignal / maxAmplitude; % Normalize to range -1 to 1
end

% Optional: Clip to ensure no value exceeds -1 to 1
outputSignal = max(min(outputSignal, 1), -1);

%% Save the Output Audio File
outputFilename =
['C:\Users\mikez\Documents\MATLAB\Echoplex\AudioExamples\modulation.wav']; % Change
to desired output location
audiowrite(outputFilename, outputSignal, sampleRate); % Save the output signal
fprintf('Processed test output saved to: %s\n', outputFilename);

Processed test output saved to: C:\Users\mikez\Documents\MATLAB\Echoplex\AudioExamples\modulation.wav

13

