
In Proceedings of the 2005 International Computer Music Conference, Barcelona, Spain 1

RTMIDI, RTAUDIO, AND A SYNTHESIS TOOLKIT (STK) UPDATE

Gary P. Scavone
gary@music.mcgill.ca

Perry R. Cook
prc@cs.princeton.edu

Music Technology, Faculty of Music
McGill University

Departments of Computer Science & Music
Princeton University

ABSTRACT

This paper presents new and ongoing development efforts
directed toward open-source, cross-platform C++ “tools”
for music and audio programming.RtMidi provides a
common application programming interface (API) for re-
altime MIDI input and output on Linux, Windows, Mac-
intosh, and SGI computer systems.RtAudio provides
complementary functionality for realtime audio input and
output streaming. The Synthesis ToolKit in C++ (STK) is
a set of audio signal processing and algorithmic synthesis
classes designed to facilitate rapid development of music
synthesis and audio processing software.

1. INTRODUCTION

The development of cross-platform computer applications
for music and audio has long been limited by the lack
of universal programming interfaces to communicate with
audio and MIDI hardware. The multitude of APIs in ex-
istence offer vastly different levels of control and often
present fundamentally different programming paradigms.
In several instances, multiple APIs exist for a single op-
erating system (OS).RtAudio is a set of C++ classes
that provides a uniform, flexible, and easy to use interface
for realtime audio input/output across the most common
audio APIs [8].RtMidi , a set of companion classes for
realtime MIDI input/output, was more recently released in
September 2004.

The Synthesis ToolKit in C++ (STK) has been avail-
able and in use for nearly ten years [7]. STK provides a
flexible set of objects that can be used for rapid prototyp-
ing of music and audio algorithms, embedded in a com-
puter program to provide audio signal processing func-
tionality, or used to teach practical aspects of computer
music programming, for example. In this paper, we dis-
cuss recent updates that have been made in a continuing
effort to serve the STK user community of over 200 de-
velopers and thousands of users worldwide.

2. RTAUDIO

TheRtAudio C++ class was originally developed to pro-
vide realtime audio input/output support for the Synthe-
sis ToolKit. A completely redesigned, standalone version
of the class was released by the first author in 2002 [8].

This version included support for Linux (OSS and ALSA),
Windows (DirectSound), and Irix platforms. Since then,
support has expanded to also include the CoreAudio (Mac-
intosh OS X), ASIO (Windows), and Jack (Linux) APIs.

2.1. TheRtAudio API

Given space limitations, it is not possible to provide a
complete programming example ofRtAudio here. How-
ever, an extensive tutorial and class documentation are
available from theRtAudio website1 . The following
pseudo-code outlines a typicalRtAudio “session”.

// Write a callback function to process
// audio data to/from buffer.
int callback(char * buffer, int frames,

void * userData) {}

// Open an RtAudio stream
RtAudio audio(oDevice, oChannels,

iDevice, iChannels,
dataFormat, sampleRate,
&bufferFrames, nBuffers);

// Set callback and start the stream
audio.setStreamCallback(&callback, NULL);
audio.startStream();

// Running ... until done

// Stop and close the stream
audio.stopStream();
audio.closeStream();

2.2. Simultaneous Multi-API Support

Since release 3.0,RtAudio has provided support for com-
pilation of multiple simultaneous APIs within a given op-
erating system. For example, it is now possible to com-
pile simultaneous support for the OSS, ALSA, and Jack
APIs in Linux or both the DirectSound and ASIO APIs
in Windows. This was accomplished by subclassing each
API and redesigningRtAudio to choose an appropriate
subclass for instantiation. The user can specify a particu-
lar API during object construction or theRtAudio con-
troller will automatically search for an available API sup-
port in a prioritized order (for example, Jack, ALSA, and

1 http://music.mcgill.ca/˜gary/rtaudio/

In Proceedings of the 2005 International Computer Music Conference, Barcelona, Spain 2

OSS in Linux). It should be noted that this change re-
quired no modification to theRtAudio API aside from
the addition of an optional parameter in the constructor.

2.3. Other Changes

One of the original design objectives forRtAudio was
concurrent support for multiple audio devices. This func-
tionality was dropped with version 3.0 to simplify the in-
terface. Further, such support was deemed unnecessary
and unreliable given the difficulties of synchronizing mul-
tiple devices with independent clocks. It is still possible
with most APIs to simultaneously interface with multiple
soundcards by creating several instances ofRtAudio .

2.4. Ongoing Support

A number of items remain on theRtAudio “to-do” list:

• Currently, the API provides no method for select-
ing specific channels of a soundcard. For exam-
ple, if an audio device supports 8 channels and the
user wishes to send data out channels 7-8 only, it is
necessary to open all 8 channels and write the two
channels of output data to the correct positions in
each audio frame of an interleaved data buffer.

• WhileRtAudio does support devices and APIs that
pass non-interleaved buffers, it does not expose a
mechanism for the user to read or write data that
is non-interleaved. That is, the data buffer passed
to the user must always be read or filled with inter-
leaved data.

• There currently does not exist a mechanism to allow
the user to “pre-fill” audio output buffers in order to
allow precise measurement of an acoustic response.

• Support for multi-channel (> 2) audio input/output
under the Windows OS is currently available only
via the ASIO interface (in large part due to limita-
tions with the DirectSound API). Other options for
multi-channel support, perhaps using the WinMM
API, should be investigated.

In an effort to have these issues addressed as fast as
possible, it is likely thatRtAudio will be made available
for community development through a CVS server.

3. RTMIDI

Inspired byRtAudio , RtMidi is a set of C++ classes
(RtMidiIn andRtMidiOut) that provides a common
programming interface for realtime MIDI input and output
across multiple computer operating systems. RtMidi sig-
nificantly simplifies the process of interacting with com-
puter MIDI hardware and software, with support for the
Linux ALSA, Macintosh CoreMIDI, SGI md, and Win-
dows Multimedia Library APIs.

Within the RtMidi framework, MIDI input and out-
put functionality are separated into theRtMidiIn and

RtMidiOut subclasses. Whereas simultaneous audio in-
put/output operations must be handled together for proper
synchronization, MIDI input and output operations are asyn-
chronous. By separating the two functionalities, a simpler
and more robust interface was possible.

In the following examples, we ignore error checking
for the sake of clarity.RtMidi uses the same C++ ex-
ception handling class (RtError) asRtAudio . The er-
ror reporting functionality inRtMidi is encapsulated in
a single function and can be easily modified to suit a given
error handling scheme. Complete documentation is avail-
able from theRtMidi website2 .

3.1. MIDI Output

The RtMidiOut class provides simple functionality to
immediately send messages over a MIDI connection. No
timing functionality is provided.

RtMidiOut midiout;
std::vector<unsigned char> message(3);

// Open first available port.
midiout.openPort(0);

// Compose a Note On message.
message[0] = 144;
message[1] = 64;
message[2] = 90;

// Send the message immediately.
midiout.sendMessage(&message);

3.2. MIDI Input

The RtMidiIn class uses an internal callback function
or thread to receive incoming messages from a MIDI port.
These messages are then either queued and read by the
user via thegetMessage() function or immediately
passed to a user-specified callback function (which must
be “registered” using thesetCallback() function).
The following example uses the polled queue approach.

RtMidiIn midiin;
std::vector<unsigned char> message;
int nBytes;
double stamp;

// Open first available port.
midiin.openPort(0);

// Periodically check input queue.
while (!done) {

stamp = midiin.getMessage(&message);
nBytes = message.size();
if (nBytes > 0) {

// Do something with MIDI data.
}

// Sleep for 10 milliseconds.
SLEEP(10);

}

2 http://music.mcgill.ca/˜gary/rtmidi/

In Proceedings of the 2005 International Computer Music Conference, Barcelona, Spain 3

TheRtMidiIn class provides theignoreTypes()
function to specify that certain MIDI message types be
ignored. By default, system exclusive, timing, and active
sensing messages are ignored.

The getMessage() function does not block. If a
MIDI message is available in the queue, it is copied to
the user-providedstd::vector<unsigned char>
container. When no MIDI message is available, the func-
tion returns an empty container. The default maximum
MIDI queue size is 1024 messages. This value may be
modified with thesetQueueSizeLimit() function.
If the maximum queue size limit is reached, subsequent
incoming MIDI messages are discarded until the queue
size is reduced.

When set, a user-provided callback function will be in-
voked after the input of a complete MIDI message. It is
possible to provide a pointer to user data that can be ac-
cessed in the callback function.

3.3. MIDI Ports

The RtMidiIn and RtMidiOut classes both provide
getPortCount() andgetPortName() functions to
query the available MIDI ports on a system. A MIDI port
represents a single MIDI input source or output destina-
tion.

The Linux ALSA and Macintosh CoreMIDI APIs al-
low for the establishment of virtual, or software-based, in-
put and output MIDI ports to which other software clients
can connect.RtMidi incorporates this functionality with
theopenVirtualPort() function. Any messages sent
with the sendMessage() function will also be trans-
mitted through an open virtual output port. If a virtual
input port is open and a user callback function is set, the
callback function will be invoked when messages arrive
via that port. If a callback function is not set, the user must
poll the input queue to check whether messages have ar-
rived. No notification is provided for the establishment of
a client connection via a virtual port.

4. AN STK UPDATE

The Synthesis ToolKit in C++ has been publicly available
since 1996. Throughout that time, the fundamental design
goals have remained the same:

• Cross-platform functionality
• Programming flexibility
• Ease of use (educational example code)
• User extensibility
• Real-time synthesis and control
• Open source C and C++ code

STK currently runs with “realtime” support (provided
by RtAudio andRtMidi) on Linux, Macintosh OS X,
Windows, and SGI (Irix) computer platforms. Generic,
non-realtime, scorefile-based support is available for all
computer systems with a standard C++ compiler. There
are currently over 90 classes provided in the ToolKit, 11
of which contain operating system dependencies related

to audio and MIDI input/output, threading support, and
socket-based, network communication.

STK provides an assortment of “unit generator” classes
such as envelopes, filters, noise generators, looping waveta-
bles, and input/output handlers. A large number of sound
synthesis and audio effects algorithms are provided as well,
including additive (Fourier) synthesis, subtractive synthe-
sis, frequency modulation synthesis of various topologies,
modal (resonant filter) synthesis, a variety of physical mod-
els including stringed and wind instruments, and physi-
cally inspired stochastic event models for the synthesis of
particle sounds. Detailed usage and class information is
available from the STK website3 .

4.1. StkFloat

All audio and control signals in STK are handled using
theStkFloat floating-point data type. TheStkFloat
type is defined in theStk abstract base class and can
be modified to achieve a desired precision. By default,
the StkFloat type is defined to be a 64-bit, double-
precision floating-point value. Operations with ToolKit
instruments and unit generators assume input and output
values in the range± 1.0. Note that this data type was
previously defined asMYFLOATin STK versions before
4.2.0 (October 2004).

4.2. “Ticking”

STK was initially developed around a single-sample com-
putational framework. All audio sample-based unit gener-
ators in STK implement atick() method in which their
fundamental sample calculations are performed. Some
unit generators are only sample sources, such as the lin-
ear envelope generatorEnvelope , the noise generator
Noise , or the soundfile input classWvIn . These source-
only objects returnStkFloat values, but take no input
arguments via theirtick() function. Consumer-only
objects, like the soundfile output classWvOut, take an
StkFloat argument and but return nothing. Objects like
filters take and yieldStkFloat values via theirtick()
function. In addition, all objects which are sources of
audio samples implement a methodlastOut() that re-
turns the last computed sample. This allows a single source
to feed multiple sample consuming objects without neces-
sitating an interim storage variable.

4.3. Multi-Channel Data & StkFrames

New with STK version 4.2.0, the classStkFrames is
provided to explicitly support vectorized computations and
multi-channel audio data. Built using the efficient C++
Standard Libraryvalarray class,StkFrames supports
both interleaved and non-interleaved data, as well as an
arbitrary number of channels per audio frame [9]. While
functionality for vectorized computations using arrays of
StkFloat values is still available, theStkFrames class

3 http://ccrma.stanford.edu/software/stk/

In Proceedings of the 2005 International Computer Music Conference, Barcelona, Spain 4

provides a safer, robust, and more flexible mechanism for
passing data arrays between STK unit generators. All
unit generators have been modified to provide overloaded
tick() functions that accept and/or return references
to StkFrames objects. For classes that inherently op-
erate on single-channel data, these overloadedtick()
functions accept an input parameter specifying a particu-
lar channel for processing.

The following example demonstrates the use of an
StkFrames instance for vectorized computations:

// Create 20 two-channel frames
StkFrames frames(20, 2);
Noise noise;

// Perform vectorized computation on
// channel two only.
noise.tick(frames, 2);

Within the ToolKit, multi- and single-channel data pro-
cessing are distinguished via the use oftickFrame()
functions, as shown in the following example:

// Create 20 two-channel frames
StkFrames frames(20, 2);
Noise noise;

// Fill both channels with noise.
unsigned int i;
for (i=0; i<frames.channels; i++)

noise.tick(frames, i);

// Filter each channel separately.
BiQuad filter1, filter2;
filter1.setResonance(440.0, 0.99, true);
filter2.setResonance(660.0, 0.99, true);
filter1.tick(frames, 1);
filter2.tick(frames, 2);

// Output the result to 16-bit WAV-file.
WvOut output("icmc.wav", 2,

WvOut::WVOUT_WAV,
Stk::STK_SINT16);

output.tickFrame(frames);

4.4. More Recent Changes

Several new classes were introduced with version 4.2.0
of the ToolKit, including an exponential envelope genera-
tor (Asymp) and a MIDI file reader (MidiFileIn). A
variety of less visible modifications were made to the un-
derlying structure of the ToolKit in an effort to improve
performance, functionality, and better conform to stan-
dard C++ programming practices. Most of the classes
were organized by functionality under the following new
base class groupings:Effect , Filter , Function ,
Generator , andInstrmnt . To provide more consis-
tent realtime performance across all supported platforms,
most of the STK example programs were rewritten to use
an audio callback paradigm.

Since STK version 4.0.0 (April 2002), complete class
documentation and a tutorial have been provided in the

distribution and from the STK website. This was accom-
plished usingDoxygen by Dimitri van Heesch [10].

5. OTHER LIBRARIES & TOOLKITS

A variety of other open-source audio processing libraries
exist, such as CLAM, SPKit, Sig++, Csound, and SndObj
[1, 4, 2, 6, 3]. Of these, only CLAM, Csound, and SndObj
appear to be actively supported. There are many common
elements among these libraries, though STK is unique in
its emphasis on algorithmic synthesis examples, including
an extensive set of physical models.

RtAudio andRtMidi share many of the same goals
as the PortAudio and PortMidi projects [5]. At the present
time, however, PortMidi does not provide support for the
Irix OS and version 19 of PortAudio has still not been
completed after more than 3 years of development. In
comparison,RtAudio andRtMidi provide a more sim-
ple interface for audio and MIDI control that makes for
easier, and perhaps more robust, cross-platform support.

6. REFERENCES

[1] C++ Library for Audio and Music (CLAM).
http://www.iua.upf.es/mtg/clam/.

[2] Sig++: Musical Signal Processing in C++.
http://ccrma.stanford.edu/˜craig/sig/.

[3] The Sound Object Library (SndObj).
http://www.nuim.ie/academic/music/musictec/-
SndObj/.

[4] The Sound Processing Kit (SPKit).
http://www.music.helsinki.fi/research/spkit/.

[5] R. Bencina and P. Burk. PortAudio - an Open Source
Cross Platform Audio API. InProc. 2001 Int. Com-
puter Music Conf., pages 263–266, Havana, Cuba,
2001. Comp. Music Assoc.

[6] R. Boulanger, editor.The Csound Book: Perspec-
tives in Software Synthesis, Sound Design, Signal
Processing and Programming. MIT Press, Boston,
MA, 2000.

[7] P. R. Cook and G. P. Scavone.Audio Anecdotes:
A Cookbook of Audio Algorithms and Techniques,
chapter The Synthesis ToolKit (STK) in C++. A.K.
Peters, Natick, MA, 2004.

[8] G. P. Scavone. RtAudio: A Cross-Platform C++
Class for Realtime Audio Input/Output. InProc.
2002 Int. Computer Music Conf., pages 196–199,
Göteborg, Sweden, 2002. Comp. Music Assoc.

[9] B. Stroustrup. The C++ Programming Language.
Addison-Wesley, Reading, Massachusetts, 2000.

[10] D. van Heesch.http://www.doxygen.org/ .

