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Abstract—This paper presents a discrete-time model for simulation of woodwind
toneholes in a musical sound synthesis context. Starting from a lumped element
approximation of the partially open tonehole, we develop an efficient digital tonehole
model with dynamically adjustable tonehole state. The model, that covers a wider
range of woodwind toneholes than those previously reported, is discretised with the
use of wave digital filter techniques.

INTRODUCTION

Physical modelling of woodwind instruments with ap-
plication to musical sound synthesis requires a digi-
tal tonehole model that 1) can represent toneholes of
any physically and musically feasible dimensions, 2)
can be applied in the efficient travelling-wave formu-
lation (such as a digital waveguide model), 3) closely
approximates acoustical tonehole theories in the low-
frequency-limit, 4) characterises all tonehole states
from open to closed, and 5) is computationally effi-
cient. Tonehole models that were previously developed
in this context [5, 7, 8, 9, 10] do not meet all of these re-
quirements. The three-port tonehole model described
in [9], in which wave propagation in the tonehole is
modelled using a short delay-line, meets all criteria
except the first. This is because the model is only
computable for tonehole lengths that correspond to a
round-trip time of at least one delay. For an audio
sampling frequency fs = 44.1kHz and a wave velocity
c = 342m/s, the tonehole length is restricted to a min-
imum of t = c/(2fs) ≈ 3.8mm. Since increasing the
sample rate is undesirable for a variety of reasons, sim-
ulation of woodwind instruments that contain holes of
shorter length (such as the saxophone) requires an al-
ternative modelling approach.

WAVE DIGITAL MODELLING

Wave digital filter (WDF) techniques are used for dig-
ital simulation of analog networks [1, 2]. The result-
ing digital networks are called wave digital filters. The

classical analogy between electric and acoustic systems
allows application of similar techniques for the dis-
cretisation of lumped elements in an acoustic model.
WDF techniques are similar to digital waveguide mod-
elling (DWM) techniques in the sense that they both
digitise continuous-time models using wave variables.
A combined approach (“wave digital modelling”) is
possible in which lumped elements are modelled using
WDF techniques and distributed elements are mod-
elled using DWM techniques. For example, in [6], such
an approach has been taken for digital simulation of
force interaction between hammer and string in a pi-
ano. In the current context of modelling acoustic wind
instruments, the instantaneous acoustic variables are
pressure (P ) and volume flow (U). We define the de-
compostion of these into wave variables as:

P+ =
P +RU

2
(1)

P− =
P −RU

2
,

where R is the port-resistance. In the case of a dis-
tributed acoustic element, the wave variables corre-
spond to pressure-waves travelling through a certain
medium. The port-resistance then equals the refer-
ence impedance that characterises the medium (as in
DWM). In the lumped case, the waves may only be
understood to be travelling instantaneously [6]. From
an acoustical point of view, the port-resistance may
then be considered arbitrary. Similar to the deriva-
tion of WDFs (as described in [1, 2]), this freedom of
choice can be used to avoid delay-free loops in the final
discrete-time modelling structure.
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THE HALF-HOLE MODEL

Figure 1 shows a cross-sectional view of a woodwind
tonehole. In the low-frequency limit, the hole dimen-
sions are usually small in comparison with the acoustic
wavelength, thus the acoustic behaviour may be char-
acterised by a lumped acoustic element. For an open
hole, the behaviour is approximately that of a pure
inertance, while for a closed one it approximately cor-
responds to a pure compliance [10]. For intermediate
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Figure 1: Cross-sections of a woodwind tonehole.

tonehole states (partially open holes or “half-holes”),
the tonehole volume Vb can be divided into an “open
part” that behaves as an inertance, and a “closed part”
that behaves as a compliance. These volumes operate
in parallel, thus the half-hole load impedance is:

Zs(ω) =
jωL

1− ω2LC
, (2)

Figure 2 shows the network equivalent of this model.
The half-hole compliance (C) and inertance (L) are

LC1P 2P

1U 2U

Figure 2: Electrical network representation of the half-
hole model.

given by:

C = (1− g) · Sbt

ρc2
, L =

ρte
gSb

, (3)

where the parameter g expresses the tonehole state,
defined as the ratio between open and total tonehole
volume. The tonehole height t is defined such that
its product with the tonehole surface Sb equals the
geometric volume Vb [3]:

t = tw + 0.125b(b/a)
(
1 + 0.172(b/a)2

)
, (4)

The tonehole effective length te is similar to t, though
it includes inner and outer length-correction terms.

The value for te given in [3] is frequency-dependent,
though at low frequencies the following approximation
is sufficiently accurate:

te = t+ b
(
1.4− 0.58(b/a)2

)
(5)

An additional effect of inserting a hole in a woodwind
bore is that the effective acoustic length of the bore
is slightly reduced on both sides of the hole [3, 10].
This length-correction depends on the tonehole series
equivalent length, for which we found a simplified ex-
pression that applies to both open and closed tonehole
state:

ta =
0.47b(b/a)4

1 + 0.62(b/a)2 + 0.64(b/a)
(6)

The total main bore negative length correction for
a tonehole with series equivalent length ta is la =
−(a/b)2ta [3]. Thus if the lengths of the main bore
sections on each side of the tonehole are l1 and l2,
they should be corrected to l1 + la/2 and l2 + la/2, re-
spectively. Because the length-correction is very small,
this formulation differs only slightly from the series
impedance formulation in [3].

DISCRETISATION

In order to represent a half-hole model in a wave dig-
ital modelling context, a decomposition of the instan-
taneous variables (P and U) into wave variables is re-
quired. Taking a three-port modelling approach (as
described in [5, 7, 9]), and applying eqs. (1) to the
network in figure 2, the modelling structure depicted
in figure 3 results. Because the main bore is modelled
as a digital waveguide, both R1 and R2 must equal the
main bore characteristic impedance Z0. The scatter-
ing equations of the three-port junction that models
the wave interaction at the intersection between the
main bore and the tonehole are:

P−
1 = P−

2 +W

P+
2 = P+

1 +W (7)
P+

3 = P+
1 + P−

2 − P−
3 +W,

with

W =
( −Z0

2R3 + Z0

) [
P+

1 + P−
2 − 2P−

3

]
, (8)

where the lumped element port-resistance R3 has to
be chosen such that the structure is computable. The
continuous-time tonehole “reflectance” Rs(ω) is:

Rs(ω) =
Zs(ω)−R3

Zs(ω) +R3
(9)

Note that Rs(ω) does not correspond to the actual
physical tonehole reflectance as seen from the main
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Figure 3: Structure for discrete-time modelling of the
half-hole model. The delay-lines model wave propagation
in the main bore.

bore. Substitution of eq. (2) and applying the bilinear
transform gives the wave digital reflectance, which has
the form of an all-pass filter:

Rs(z) = − α1 + α2z
−1 + z−2

1 + α2z−1 + α1z−2
, (10)

with

α1 =
R3

(
1 + β2LC

) − βL

R3 (1 + β2LC) + βL

(11)

α2 =
2R3

(
1− β2LC

)
R3 (1 + β2C) + βL

,

where β = 2fs is the bilinear operator. In order to
avoid a delay-free loop, R3 must be chosen such that
the wave P+

3 entering Rs(z) is not immediately re-
flected back towards the three-port scattering junc-
tion via P−

3 . This requires setting the filter coef-
ficient α1 = 0, which means that we must choose
R3 = β/(L−1+β2C). The resulting digital reflectance
is:

Rs(z) = −z−1

(
α2 + z−1

1 + α2z−1

)
, (12)

with

α2 =
L−1 − β2C

L−1 + β2C
. (13)

Both R3 and α2 are computed using the term L−1,
so that we can let L→ ∞ (which corresponds to fully
closing the tonehole). In order to investigate the effect
of the discretisation, the half-hole two-port reflectance
(i.e., the reflectance P−

1 /P+
1 ) of the half-hole was com-

puted for a range of tonehole states. Figure 4 compares
the continuous-time half-hole model with its digital
version, the “wave digital tonehole model”, in terms of
magnitude response. As can be expected, the discrete-
time model closely approximates the continuous-time
model at the lower frequencies. However, the devi-
ation is rather large at the higher frequencies. For-
tunately, this discrepancy is relatively insignificant in
a full instrument implementation, because the air col-
umn reflection function is strongly low-pass due to vis-
cothermal and radiation losses.
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Figure 4: Two-port reflectance of the continuous-time
(top) and the discrete-time (bottom) half-hole model, for
a range of tonehole states (g = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0).

APPLICATION TO A SIX-HOLE FLUTE

The wave digital (WD) tonehole model closely approx-
imates the tonehole transmission-line model described
in [3]. This was verified by comparing the reflection
function of a six-hole flute, as computed in [3], with
the reflection function of a WD model of the flute.
Figure 5 displays this comparison for a fingering that
corresponds to the note G. A 5kHz low-pass filter was
applied to both reflection functions in order to facil-
itate a visual comparison. In the WD model, frac-
tional delay-lengths were modelled using third-order
Lagrange interpolation filters [5], which have a negli-
gible error in a bandwidth of 5kHz. In order to further
ensure that the comparison is focussed on the tonehole
part of the model, viscothermal losses were neglected
in both computations. Note that the fit is so close that
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Figure 5: Six-hole flute reflection function for the note
G (the first three holes closed).

the difference between the curves is barely visible.
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SOUND RADIATION

Sound is radiated from a fully or partially open tone-
hole because the air just outside the tonehole is dis-
turbed by the vibrational motion of the “open” part
of the tonehole volume. Hence the flow Ue exiting the
hole equals the flow through the inertance:

Ue =
P3

jωL
(14)

A woodwind tonehole may be considered as an
isotropic source [4]. Given a source-strength Ue, the
radiation pressure at a distance r from such a source
is:

Prad(r) =
(
jωρ

4πr

)
Ue e

−jkr , (15)

where k = ω/c is the free space wave velocity. By
combining (14) and (15), we can compute the pressure
radiated from a woodwind tonehole as:

Prad(r) =
( ρ

4πrL

)
P3 e

−jkr (16)

Note that the frequency term jω has disappeared in
the final result. The term e−jkr represents a pure time-
delay (i.e., the time it takes for a radiated pressure
wave to reach the “listening point”). Thus, the radi-
ated pressure at any distance from the tonehole can
be computed by simply scaling and delaying the bore
pressure P3 just underneath the tonehole. We can in-
corporate this into the wave digital tonehole model by
formulating the digital domain version of (16) as:

Prad(r) =
(g
r

)
ξ P3 z

−N , (17)

where z−N represents a delay-line of fractional length
N = r/(cT ), and where ξ = Sb/(4πte) is a constant. It
must be noted that eq. (17) gives a good approxima-
tion at lower frequencies, but the accuracy decreases
for higher frequencies. This is mainly because the WD
tonehole model is based on a low-frequency approxi-
mation of the real acoustical behaviour of the tone-
hole. Moreover, we have assumed that the radiation
is isotropic (i.e., the flow spreads out evenly in all di-
rections). This assumption is valid for low frequencies,
but for higher frequencies the effects of directivity need
to be taken into account (such as described in [11]).
Since the higher frequencies are relevant from a per-
ceptual point of view, an extra filter (that compensates
for the deviations described above) can be applied to
the pressure calculated with eq. (17) in order to ob-
tain a better aural result. In general, such a filter has
a rather “smooth” high-pass amplitude response, and
can be approximated with a lower-order digital filter.

CONCLUSIONS

The WD tonehole model uses only two multiplications
per sample (one for the three-port scattering and one
for the reflectance filter). Similar to the three-port
tonehole model presented in [9], the model allows dy-
namic control of the tonehole state and closely approx-
imates the established theories on tonehole acoustics.
The advantages of the WD model are that 1) there is
no minimum tonehole length, which allows simulation
of toneholes of particular small dimensions and 2) no
fractional delay filters are required for implementation
of fractional delay tonehole lengths.
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