
Chapter 2 

Filters 

P. Dutilleux, U. Zolzer 

2.1 Introduction 

The  term filter  can have a large number of different meanings. In general it can  be 
seen as a way to select certain  elements  with desired properties from a larger set. 
Let  us focus on the  particular field of digital  audio effects and  consider  a  signal in 
the frequency  domain. The signal  can  be seen as a  set of partials having different 
frequencies and  amplitudes.  The filter will perform  a selection of the  partials accord- 
ing to  the frequencies that we want to reject,  retain  or emphasize. In  other words: 
the filter will modify the  amplitude of the  partials according to their frequency. 
Once implemented,  it will turn  out  that  this filter is a linear  transformation. As an 
extension,  linear  transformations  can  be  said to be  filters. According to this new 
definition of a filter,  any  linear  operation could be said to  be  a  filter but  this would 
go far beyond the scope of digital  audio effects. It is possible to  demonstrate  what 
a filter is by using one’s voice and vocal tract.  Utter a vowel, a for example, at  a 
fixed pitch  and  then  utter  other vowels at  the same  pitch. By doing that we do  not 
modify our vocal cords but we modify the volume and  the interconnection pattern 
of our vocal tract.  The vocal cords  produce  a  signal  with  a fixed harmonic spec- 
trum whereas the cavities  act as acoustic  filters to enhance  some  portions of the 
spectrum. We have described  filters in the frequency  domain  here  because it is the 
usual way to consider them  but  they also have an effect in the  time  domain. After 
introducing  a  filter classification in the frequency  domain, we will review typical 
implementation  methods  and  the  associated effects in the  time  domain. 

The various types of filters  can  be defined according to the following classifica- 
tion: 

e Lowpass (LP) filters select low frequencies up  to  the cut-off frequency fc 
and  attenuate frequencies higher than fc.  
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LP BP H(f)t Resonator 

HP BR Notch 

Figure 2.1 Filter classification. 

0 Highpass (HP) filters select frequencies higher than f c  and  attenuate fre- 
quencies below f c .  

0 Bandpass (BP) filters select frequencies between a lower  cut-off frequency 
f c l  and a  higher cut-off frequency f c h .  Frequencies below fc l  and frequencies 
higher than fch are  attenuated. 

0 Bandreject (BR) filters attenuate frequencies between a lower  cut-off fre- 
quency f,.~ and a  higher cut-off frequency f&. Frequencies below fcl and fre- 
quencies  higher than f c h  are passed. 

0 Notch filters attenuate frequencies in a  narrow  bandwidth  around  the cut-off 
frequency f c. 

0 Resonator filters  amplify frequencies in a  narrow  bandwidth  around  the  cut- 
off frequency fc .  

0 Allpass filters  pass  all frequencies but modify the  phase of the input,  signal. 

Other  types of filters (LP with  resonance,  comb,  multiple  notch ...) can be de- 
scribed as a combination of these basic elements. Here are listed  some of the possible 
applications of these  filter  types: The lowpass with  resonance is very often used in 
computer music to simulate an acoustical  resonating structure;  the highpass filter 
can remove undesired  very low frequencies; the  bandpass  can  produce effects such 
as  the  imitation of a  telephone line or of a mute on an acoustical instrument;  the 
bandreject  can divide the audible  spectrum  into two bands  that seem to be uncor- 
related. The resonator  can  be used to  add artificial  resonances to a  sound;  the  notch 
is most useful in eliminating  annoying  frequency  components;  a  set of notch  filters, 
used in combination  with the  input  signal,  can  produce a  phasing effect. 
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2.2 Basic Filters 

2.2.1 Lowpass Filter  Topologies 

A filter can be implemented in various ways. It can  be  an acoustic  filter, as in the 
case of the voice. For our  applications we would rather use electronic or  digital 
means.  Although we are  interested in digital  audio effects, it is worth  having  a 
look at well-established analog  techniques  because a large  body of methods have 
been developed in the  past to design and build analog  filters. There  are intrinsic 
design methods for digital  filters but  many  structures  can  be  adapted from existing 
analog  designs.  Furthermore, some of them have been tailored for ease of operation 
within musical applications. It is therefore of interest to  gain  ideas from these  analog 
designs in  order to build digital  filters  having  similar  advantages. We will focus on 
the second-order lowpass filter because it is the most common type  and  other  types 
can  be  derived from it. The frequency  response of a lowpass filter is shown in Fig. 2.2 .  
The  tuning  parameters of this lowpass filter are  the cut-off frequency fc and  the 
damping  factor C. The lower the  damping  factor,  the higher the resonance at  the 
cut-off frequency. 

Analog Design, Sallen & Key 

Let us remind ourselves of an analog  circuit that implements a second-order lowpass 
filter with  the  least  number of components: the Sallen & Key filter  (Figure 2.2). 

C 
Frequency  response 

H(f) 1-------+ ihighL 

Figure 2.2 Sallen & Key  second-order  analog  filter and frequency  response. 

The components ( R I ,  R z ,  C) are  related to  the  tuning parameters  as: 

These  relations  are  straightforward  but  both  tuning coefficients are coupled. It is 
therefore difficult to vary one while the  other remains constant.  This  structure is 
therefore  not  recommended when the  parameters  are  to  be  tuned dynamically and 
when low damping  factors  are  desired. 
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Digital Design, Canonical 

The canonical  second-order structure,  as shown in Fig. 2.3,  can  be  implemented by 
the difference equation 

y(n) = box(?%) + b1z(n - l) + b2x(n - 2) 

-u1y(n - 1) - uay(n - 2). (2.2) 

Figure 2.3 Canonical  second-order  digital filter. 

It can  be used for any second-order  transfer  function  according to 

In  order to modify the cut-off frequency or the damping  factor, all 5 coefficients 
have to be modified. They  can  be  computed from the specification in the frequency 
plane  or from  a prototype  analog filter.  One of the  methods  that  can be used is 
based  on the bilinear  transform [DJ85]. The following set of formulas  compute the 
coefficients for a lowpass filter: 

f c  analog cut-off frequency 

c damping  factor 

f s  sampling  frequency 
c = l/[tan(7rfc/fs)l 

(2.4) 

This  structure  has  the  advantage  that  it requires very few elementary  operations 
to process the signal  itself. It  has  unfortunately some severe drawbacks. Modifying 
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the filter tuning ( fc, 4) involves rather complex computations. If the  parameters  are 
varied continuously, the complexity of the filter is more  dependent on the coefficient 
computation than on the filtering process itself. Another  drawback is the poor  signal 
to noise ratio for low frequency  signals. Other filter structures  are available that cope 
with  these  problems. We  will again review a solution in the analog  domain  and  its 
counterpart in the  digital  domain. 

State Variable Filter, Analog 

For musical applications of filters  one wishes to have an independent  control over 
the cut-off frequency and  the  damping  factor. A technique  originating from the 
analog  computing technology can solve our  problem. It is called the  state variable 
filter (Figure 2.4). This  structure is more  expensive than  the Sallen & Key but  has 
independent  tuning components ( R f  , RC) for the cut-off frequency and  the  damping 
factors: 

Furthermore, it provides  simultaneously three  types of outputs: lowpass, highpass 
and  bandpass. 

Higtlpass  output  Bandpass  output 
0 C 0 C 

Lowpass 
0 

- - - 

output 

Figure 2.4 Analog state variable  filter. 

State Variable Filter, Digital 

The  state variable  filter  has a digital  implementation, as shown in  Fig. 2.5 [Cha80], 
where 

4 n )  input signal 
Y1 (n) lowpass output 
Y b  (n )  bandpass  output 
Y h  (R) highpass output 

and  the difference equations for the  output signals are given by 
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Highpass  output  Bandpass  output  Lowpass  output ,, 

Figure 2.5 Digital state variable filter. 

With  tuning coefficients F1 and Q1, related to  the  tuning  parameters f c  and C as: 

F1 = 2sin(rfC/ f S) Q1 = 2( (2.8) 

it  can  be shown that  the lowpass transfer  function is: 

T = F1 q = l - F l Q I  
n 

This  structure is particularly effective not only as far  as  the filtering process is 
concerned but  above  all because of the simple  relations between control  parameters 
and  tuning coefficients. One  should  consider the stability of this  filter, because 
at  higher cut-off frequencies and  larger  damping  factors  it becomes unstable. A 
“usability  limit” given by Fl < 2 - Q1  assures  the  stable  operation of the  state 
variable  implementation  [DutSl, DieOO]. In  most  musical  applications however it is 
not  a  problem  because the  tuning frequencies are usually  small  compared to  the 
sampling  frequency and  the  damping  factor is usually  set to small values [Dut89a, 
Dat971. This filter has proven its  suitability for a  large  number of applications. 
The nice properties of this filter have been exploited to produce  endless  glissandi 
out of natural  sounds  and  to allow smooth  transitions between  extreme  settings 
[Dut89b, m-Vas931. It is also used for synthesizer  applications [DieOO].  We have 
considered  here  two different digital filter structures. More are available and  each  has 
its  advantages  and drawbacks. An optimum choice can  only be made in agreement 
with  the  application [Zo197]. 

Normalization 

Filters  are usually  designed in the frequency  domain  and we have seen that they 
have an action  also in the time  domain.  Another  correlated  impact lies in the loud- 
ness of the filtered  sounds. The filter might  produce the right effect but  the result 
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might  be useless because the sound  has become too weak or too  strong.  The  method 
of compensating for these  amplitude  variations is called normalization.  Usual  nor- 
malization  methods are called L1, L2 and L ,  [Zo197]. L1 is used when the filter 
should never be overloaded under  any  circumstances. This is overkill most of the 
time. L2 is used to normalize  t,he  loudness of the signal. It is accurate for broad- 
band signals and fits  many  practical musical applications. L ,  actually  normalizes 
the frequency  response. It is best when the signal to filter is sinusoidal or periodical. 
With a  suitable  normalization scheme the filter  can prove to  be very easy to handle 
whereas  with the wrong normalization,  the filter might be rejected by musicians be- 
cause  they  cannot operate  it.  The normalization of the  state variable filter has  been 
studied in [DutSl] where several implementation schemes are proposed that lead to 
an effective implementation.  In  practice, a first-order lowpass filter that processes 
the  input signal will perform the normalization in fc and  an  amplitude correction in 
& will normalize  in  (Figure 2.6). This  normalization scheme allows us to  operate 
the filter with  damping  factors down to where the filter gain reaches about 74 
dB at fc. 

l l 
t” 

Figure 2.6 &-normalization  in fc and C for the state variable filter. 

Sharp Filters 

Apart from FIR filters (see section  2.2.3), we have so far only given examples of 
second-order  filters.  These  filters are  not  suitable for all  applications.  On  the  one 
hand,  smooth  spectral modifications are  better realized by using first-order filters. 
On  the  other  hand, processing two signal  components differently that are close 
in frequency, or imitating  t8he selectivity of our  hearing  system calls for higher 
order  filters. FIR filterss  can offer the  right selectivity but  again,  they will not  be 
easily tuned.  Butterworth filters  have attractive  features in this case. Such filters are 
optimized for a flat  frequency  response  until fc and yield a 6n dB/octave  attenuation 
for frequencies higher than f c .  Filters of order  2n  can be built out of n second-order 
sections, All sections are  tuned  to  the  same cut-off frequency f c  but each section 
has  a different damping  factor C (Table 2.1) [LKG72]. 

These  filters can be implemented  accurately in the canonical  second-order dig- 
ital filter structure  but modifying the  tuning frequency  in  real  time  can  lead to 
temporary instabilities. The  state variable structure is less accurate for high tuning 
frequencies (i.e. fc > f s / l O )  but allows faster  tuning modifications. A bandpass 
filter  comprising  a  4th-order  highpass and a 4th-order lowpass was implemented 
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Table 2.1 Damping  factors for Butterworth filters. 

2 Filters 

n 
2 I( 0.707 

C of second-order  sections 1 i ‘1 0.924 0.383 1 
10 0.988 0.891  0.707 0.454 0.156 

0.966 0.707 0.259 
0.981 0.831 0.556 0.195 

and used to  imitate a  fast  varying mute  on a trombone [Dutgl]. Higher order  filters 
(up  to  about 16)  are useful to segregate  spectral  bands or even individual partials 
within  complex  sounds. 

Behavior in the  Time Domain 

We so far considered the  action of the filters in the frequency  domain. We cannot 
forget the  time  domain because it is closely related to  it .  Narrow bandpass filters, 
or  resonant  filters even more, will induce  long  ringing  time  responses.  Filters  can 
be  optimized for their frequency  response or  time response. It is easier to grasp the 
time  behavior of FIRs than IIRs. FIRs have the drawback of a  time delay that can 
impair  the responsiveness of digital  audio effects. 

2.2.2 Parametric  AP, LP, HP, B P  and BR Filters 

Introduction 

In  this  subsection we introduce  a  special  class of parametric filter structures for 
allpass,  lowpass,  highpass, bandpass  and  bandreject filter functions.  Parametric fil- 
ter  structures  denote special  signal flow graphs where a coefficient inside the signal 
flow graph  directly  controls  the cut-off frequency and  bandwidth of the correspond- 
ing  filter.  These filter structures  are easily tunable by changing only one or two 
coefficients. They play an  important role for real-time  control  with  minimum com- 
putational complexity. 

Signal Processing 

The basis for parametric first- and second-order IIR filters is the first-  and second- 
order  allpass  filter. We will first discuss the first-order  allpass and show simple low- 
and  highpass filters, which consist of a tunable allpass filter together  with  a  direct 
path. 
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First-order allpass. A first-order  allpass  filter is given by the  transfer function 

4(z) = 
z-1 + c  
1 + cz-1 

(2.10) 

(2.11) 

The magnitude/phase  response  and  the  group delay of a first-order  allpass are 
shown in  Fig. 2.7. The  magnitude response is equal to one  and the phase  response 
is approaching -180 degrees for high frequencies. The  group delay shows the delay 
of the  input signal in samples versus frequency. The coefficient c in (2.10) controls 
the cut-off frequency of the  allpass, where the  phase response passes -90 degrees 
(see Fig.  2.7). 

Magnitude  Response,  Phase  Response. Group Delay 

-1  0 
0 0.1 0.2 0.3 0.4 0.5 

-200 ' 
0 0.1 0.2 0.3 0.4 0.5 

0 0  
0 0.1 0.2 0.3 0.4 0.5 

f/f, + 

Figure 2.7 First-order allpass filter with fc = 0.1 . fs. 

From (2.10) we can  derive the corresponding difference equation 

y(n) = cz(n) + 2(n - l) - cy(n - l), (2.12) 

which leads to  the block diagram  in  Fig. 2.8. The coefficient c occurs twice in this 
signal flow graph  and  can be adjusted  according to (2.11) to change the cut-off 
frequency. A va,riant  allpass structure with only one delay element is shown in t,he 
right part of Fig. 2.8. It is implemented by the difference equations 

(2.13) 
(2.14) 
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Direct-form structure Allpass structure 

Figure 2.8 Block diagram  for a first-order  allpass  filter. 

The resulting  transfer  function is equal to  (2.10). For simple  implementations a 
table  with a  number of coefficients for different cut-off frequencies is sufficient, but 
even for real-time  applications  this  structure offers very few computations.  In  the 
following we use this first-order  allpass  filter to perform  low/highpass  filtering. 

First-order low/highpass. A first-order lowpass filter  can be achieved by 
adding or subtracting (+/-) the  input signal  from the  output signal of a  first-order 
allpass  filter. As the  output signal of the first-order  allpass filter has a  phase  shift 
of -180 degrees for high  frequencies, this  operation  leads to low/highpass  filtering. 
The  transfer  function of a low/highpass filter is then given by 

H ( z )  = - (1 f A ( z ) )  (LP/HP +/-) l 
2 

(2.15) 

(2.16) 

(2.17) 

where  a tunable  first-order allpass 4(z)  with  tuning  parameter c is used. The plus 
sign (+) denotes the lowpass operation  and  the minus  sign (-) the highpass  opera- 
tion. A block diagram in Fig. 2.9 represents  the  operations involved in performing 
the low/highpass  filtering. The allpass  filter  can  be  implemented by the difference 
equation (2.12) as shown in Fig. 2.8. 

Figure 2.9 Block diagram of a first-order  low/highpass  filter. 

The  magnitude/phase response and  group delay are  illustrated for low- and high- 
pass  filtering  in  Fig.  2.10. The -3dB  point of the  magnitude response for lowpass and 



2.2 Basic Falters 41 

Magnitude  Response,  Phase  Response,  Group  Delay  Magnitude  Response,  Phase  Response,  Group  Delay 

,., 
0 0.1 02 0.3 0.4 0.5 

U 
.- 

a' I !! -100 - 5 1 L l  0 0.1 0.2 0.3 0.4 0.5 

9 l / ,  , , , I 
-10 

0 0.1 0.2 0.3 0.4 0.5 

flf, + flf, + 

Figure 2.10 First-order low/highpass filter  with fc = O . l f s  

highpass is passed at  the cut-off frequency. With  the help of the allpass  subsystem 
in  Fig. 2.9 tunable low- and highpass  systems are achieved. 

Second-order allpass. The  implementation of tunable  bandpass  and  band- 
reject  filters  can  be achieved with  a  second-order  allpass  filter. The transfer  function 
of a second-order  allpass filter is given by 

(2.18) 

(2.19) 

(2.20) 

The  parameter d adjusts  the cut-off frequency and  the  parameter c the  bandwidth. 
The  magnitude/phase response and  the  group delay of a second-order  allpass are 
shown in Fig. 2.7. The magnitude  response is again  equal to one  and  the  phase 
response  approaches -360 degrees for high frequencies. The cut-off frequency WC de- 
termines  the point  on the  phase curve, where the  phase response passes -180 degrees. 
The width  or slope of the phase transition  around  the cut-off frequency is controlled 
by the  bandwidth  parameter W B .  From (2.18) the corresponding difference equation 

y(n) = -cz(n) + d(l - c)z(n - 1) + z(n - 2) 
-d(l  - c)y(n - 1) + cy(n - 2) (2.21) 
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can  be  derived, which leads to  the block diagram in Fig. 2.12. The cut-off frequency 
is controlled by the coefficient d and  the  bandwidth by coefficient c. 

Magnitude Response,  Phase  Response, Group  Delay 

-10 
0 0.1 0.2 0.3 0.4 0.5 

-400 L J 
0 0.1 0.2 0.3 0.4 0.5 

v i s  --t 

Figure 2.11 Second-order allpass filter  with fc = O . l f s  and f b  = 0.022fs. 

Figure 2.12 Block diagram for a second-order  allpass  filter. 
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Second-order bandpass/bandreject. Second-order  bandpass and  bandreject 
filters  can  be  described by the following transfer  function 

H ( z )  = 5 [l ‘F A(z)] (BP/BR -/+) 1 
(2.22) 

(2.23) 

(2.24) 

(2.25) 

where a tunable  second-order  allpass A(z)  with  tuning  parameters c and d is used. 
The plus sign (+) denotes  the  bandpass  operation  and  the minus sign (-) the  band- 
reject  operation.  The block diagram  in  Fig. 2.13 shows the  bandpass  and  bandreject 
filter implementation  based  on  a  second-order  allpass  subsystem,  which  can  be  im- 
plemented by the  signal flow graph of Fig. 2.12. The  magnitude/phase response and 
group delay are  illustrated in Fig. 2.14  for both filter types. 

Figure 2.13 Second-order  bandpass and bandreject  filter. 

Second-order low/highpass  filters. The coefficients for second-order low- 
and  highpass  filters given by the  transfer  function of (2.3)  are shown in Table 2.2. 
A control of single coefficients for adjusting  the cut-off frequency is not possible. 
A complete set of coefficients is necessary, if the cut-off frequency is changed.  The 
implementation of these  second-order low- and  highpass filters can  be achieved by 
the difference equation (2.2) and  the filter structure in Fig. 2.3. 

Table 2.2 Filter  coefficients for second-order  lowpass/highpass  filters [Zo197] . 
lowpass  (second-order)  with K = tan (7rfc/fs) 

bo a2 a1 b2 bl  
K2 2 K 2  

1+&K+K2 
K 2  

I + & K + K ~  I + & K + K ~  I + & K + K ~  I + & K + K ~  
2(K”- l )  I - & K + K ~  

highpass  (second-order)  with K = tan (rfc/fs)  
bo 

I+&K+K~ 
~ - & K + K ~  

I+&K+K~ I + & K + K ~  I + & K + K ~  I+&K+K~ 

a 2  a1 b2 b l  
1 -2 1 2 ( K L - l )  
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Magnitude  Response,  Phase  Response,  Group  Delay  Magnltude  Response, Phase Response,  Group  Delay 
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Figure 2.14 Second-order bandpasslbandreject 
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filter with fc = O . l f s  and fb = 0.022fs. 

Series connection of first- and second-order filters. If several  filters are 
necessary for spectrum  shaping, a series connection of first- and second-order  filters 

is performed, which is given by the  product of the single transfer  functions 

(2.26) 

(2.27) 

(2.28) 

A series  connection of three  stages is shown in Fig. 2.15. The resulting difference 
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Stage 1 Stage 2 Stage 3 

Figure 2.15 Series  connection of firstfsecond-order  stages. 

equation  can  be  split  into  three difference equations as given by 

stage 1 
y1(n) = h f z (n )  + b;lz(n - l) - a;lyl(n - 1) (2.29) 

.2(.> = Y1 (n) (2.30) 
y2(.) = bi2.2(n) + b;2z2(n - 1) + b;%2(n - 2) 

-a, ya(n - 1) - a;2y2(n - 2) S 2  (2.31) 

23(72) = Y2(n) (2.32) 
y(n) = b;3.3(n) + b?323(n - 1) + b;323(n - 2) 

-43y(n - 1) - 43y(n  - 2).  (2.33) 

stage 2 

stage 3 

Musical Applications 

The simple  control of the cut-off frequency and  the  bandwidth of these  parametric 
filters  leads to very efficient implementations for real-time  audio  applications.  Only 
second-order low- and  highpass  filters need the  computation of a complete  set of 
coefficients. The series connection of these filters can  be  done very easily as shown 
in  the previous paragraph. 

2.2.3 FIR Filters 

Introduction 

The  digital filter that we have  seen  before is said to have an infinite impulse  response. 
Because of the feedback  loops  within the  structure,  an  input  sample will excite 
an  output signal whose duration is dependent  on  the  tuning  parameters  and  can 
extend over a fairly long  period of time.  There  are  other filter structures  without 
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T 

Figure 2.16 Finite  Impulse  Response Filter. 

feedback  loops (Figure 2.16). These  are called finite  impulse  response  filters (FIR), 
because the response of the filter to a  unit  impulse lasts only for a fixed period 
of time.  These  filters allow the building of sophisticated  filter  types where strong 
attenuation of unwanted frequencies or decomposition of the signal into several 
frequency bands is necessary. They typically  require  more  computing power than 
IIR  structures  to achieve similar  results but when they  are implemented in the  form 
known as fast  convolution they become competitive,  thanks to  the  FFT algorithm. 
It is rather unwieldy to  tune these  filters  interactively. As an example,  let us briefly 
consider the vocoder  application. If the frequency bands  are fixed, then  the FIR 
implementation  can  be  most effective but if the frequency bands have to be  subtly 
tuned by a performer,  then  the  IIR  structures will certainly prove superior [Mai97]. 
However, the filter structure  in  Fig. 2.16  finds  widespread  applications for head- 
related  transfer  functions  and  the  approximation of first  room reflections, as will be 
shown in  Chapter 6. For applications where the impulse  response of a  real  system 
has been  measured, the  FIR filter structure  can  be used directly to simulate  the 
measured  impulse  response. 

Signal Processing 

The  output/input  relation of the filter structure in Fig.  2.16 is described by the 
difference equation 

N-l 

y(n) = c bi . z(n - i )  (2.34) 
i=O 

= boz(n) + b1z(n - 1) + . . . + b,Ai_1z(n - N + l ) ,  (2.35) 

which is a weighted sum of delayed input samples. If the  input signal is a  unit 
impulse 6(n), which is one for n = 0 and zero for n # 0, we get the impulse 
response of the system  according to 

N-l 

h(n) = c bi .6(n - i ) .  (2.36) 

A graphical  illustration of the impulse  response of a 5-tap  FIR filter is shown in 
Fig. 2.17. The Z-transform of the impulse  response gives the transfer  function 

i = O  

N-l 

(2.37) 
i=O 
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Figure 2.17 Impulse  response of an  FIR filter. 

and with z = ejn the frequency  response 

H(ej")  = bo + ble-j" + b2e-j2" + . . . + b ~ - l  . e- j (N-l)n (2.38) 
with 0 = 2rf  / fs  = WT. 

Filter design. The  filters  already described  such as LP, HP, BP and BR are also 
possible with  FIR filter structures (see Fig. 2.18). The N coefficients b o , .  . . , bN-1 
of a nonrecursive filter have to be  computed by special design  programs,  which  are 
discussed in all DSP text books. The N coefficients of the impulse  response can 
be  designed to yield a linear phase  response,  when  the coefficients fulfill certain 
symmetry  conditions.  The  simplest  design is based  on the inverse discrete-time 
Fourier transform of the ideal lowpass  filter, which leads to  the impulse  response 

h(n) = - .  2fc sin [ W C / f S  (n - +l)] 
f s  2rfclfs (. - F) ,n = 0 , .  . . , N - 1. (2.39) 

To  improve the frequency  response this impulse  response  can  be  weighted by an 
appropriate window function like Hamming or Blackman  according to 

(2.40) 
(2.41) 

If a lowpass filter is designed and  an impulse  response h ~ p ( n )  is derived, a frequency 
transformation of this lowpass filter leads to highpass,  bandpass  and  bandreject 
filters (see Fig.  2.18). 

Figure 2.18 Frequency transformations: LP and frequency  transformations to BP and 
HP. 
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Frequency transformations  are performed in the  time  domain by taking  the 
lowpass  impulse  response h ~ p ( n )  and  computing  the following equations: 

0 LP-HP 

0 LP-BP 

hBp(n) = 2 h L p ( n ) .  cos [ 2n- ;( 71 - - N i l ) ]  n = o ,  ... , N - 1 (2.43) 

0 LP-BR 

- hsp(n)  72 = o , . .  . , N  - 1. (2.44) 

Another  simple  FIR filter design is based  on  the FFT algorithm  and is called fre- 
quency  sampling.  Design  examples for audio  processing with  this design  technique 
can  be  found in [Zo197]. 

Musical Applications 

If linear  phase  processing is required,  FIR filtering offers magnitude  equalization 
without  phase  distortions.  They allow real-time  equalization by making  use of the 
frequency  sampling  design  procedure [Zo197] and  are  attractive equalizer counter- 
parts  to  IIR  filters,  as shown in [McG93].  A  discussion of more  advanced  FIR  filters 
for audio processing can  be  found  in [Zo197]. 

2.2.4 Convolution 

Introduction 

Convolution is a generic  signal  processing operation like addition  or  multiplication. 
In  the realm of computer  music  it  has  nevertheless  the  particular  meaning of im- 
posing a spectral  or  temporal  structure  onto  a  sound.  These  structures  are usually 
not defined by a set of few parameters,  such  as  the  shape  or  the  time response of a 
filter,  but given  by  a  signal  which lasts  typically a few seconds or more.  Although 
convolution has been  known and used for a very  long time in the signal  processing 
community,  its significance for computer music and  audio processing has grown  with 
the availability of fast  computers  that allow long  convolutions to be  performed in a 
reasonable  period of time. 
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Signal Processing 

We could say in general that  the convolution of two signals means  filtering the  one 
with  the  other.  There  are several ways of performing  this  operation.  The  straight- 
forward  method is a direct  implementation in a  FIR filter structure  but  it is com- 
putationally very ineffective when the impulse  response is several thousand  samples 
long. Another  method, called the  fast  convolution, makes  use of the FFT algorithm 
to  dramatically  speed  up  the  computation.  The  drawback of the  fast convolution 
is that  it  has a processing  delay  equal to  the length of two FFT blocks, which is 
objectionable for real-time  applications  whereas the FIR method  has  the  advantage 
of providing a result  immediately  after  the first sample  has  been  computed.  In  or- 
der  to  take  advantage of the FFT algorithm  while  keeping  the  processing  delay to a 
minimum,  low-latency  convolution  schemes  have  been  developed  which are  suitable 
for real-time  applications  [Gar95, MT991. 

The  result of convolution can  be  interpreted in both  the frequency and  time 
domains. If U(.) and b(n )  are  the two  convolved signals, the  output  spectrum will be 
given  by the  product of the two spectra S ( j )  = A ( f ) . B ( f ) .  The  time  interpretation 
derives from the fact that if b(n )  is a pulse at time k, we  will obtain a copy of u(n) 
shifted at time ko, i.e. s(n)  = a(n  - k). If b(n) is a  sequence of pulses, we  will 
obtain a copy of U(.) in correspondence to every  pulse, i.e. a rhythmic,  pitched, 
or  reverberated  structure,  depending  on t,he pulse distance. If b(n )  is pulse-like, we 
obtain  the  same  pattern  with a filtering effect. In this case b(n )  should  be interpreted 
as  an impulse  response.  Thus  convolution will result  in  subtractive  synthesis, where 
the frequency shape of the filter is determined by a real  sound. For example the 
convolution  with  a bell sound will be  heard  as filtered by the resonances of the bell. 
In  fact the bell sound is generated by a  strike  on the bell and  can  be considered as 
the impulse  response of the bell. In this way  we can  simulate  the effect of a  sound 
hitting  a bell, without  measuring  the resonances and designing the filter. If both 
sounds a ( n )  and b ( n )  are complex in time  and frequency, the  resulting  sound will 
be  blurred  and will tend  to lack the original  sound’s  character. If both  sounds  are of 
long duration  and each  has a strong  pitch  and  smooth  attack,  the  result will contain 
both  pitches  and  the  intersection of their  spectra. 

Musical Applications 

The  sound  example  “quasthal”  [m-quasthal]  illustrates  the use of the impulse re- 
sponse  as a way  of characterizing a linear  system.  In  this  example,  a spoken  word 
is convolved  with a series of impulses which are derived  from  measurements of 2 
loudspeakers  and of 3 rooms. The  first  loudspeaker, a small studio  monitor, al- 
ters  at  least  the  original  sound.  The second  loudspeaker, a spherical  one, colors 
the sound  strongly.  When the sound is convolved  with the impulse  responses of a 
room,  it is projected in the  corresponding  virtual  auditory  space [DMT99]. A dif- 
fuse reverberation  can  be  produced by convolving with  broad  band  noise  having 
a  sharp  attack  and  exponentially decreasing amplitude.  Another  example  features 
a tuba glissando  convolved by a series of snare-drum  strokes.  The  tuba is trans- 
formed in something like a tibetan  trumpet playing in the  mountains.  Each  stroke 
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of the  snare  drum  produces a copy of the  tuba  sound. Since  each stroke is noisy 
and  broadband,  it  acts like a  reverberator.  The series of strokes  acts like several 
diffusing boundaries  and  produces  the  type of echo that can  be  found in natural 
landscapes  [DMT99,  m-tubg5snal. 

The convolution can  be used to  map a rhythm  pattern  onto a sampled  sound.  The 
rhythm  pattern  can  be defined by positioning  a  unit  impulse at each  desired time 
within a signal block. The convolution of the  input  sound  with  the  time  pattern will 
produce  copies of the  input  signal at each of the  unit impulses. If the  unit impulse 
is replaced  by  a  more  complex  sound,  each  copy will be modified in its  timbre  and 
in its  time  structure. If a snare  drum  stroke is used, the  attacks will be  smeared 
and  some diffusion will be  added [m-gendsna]. The convolution  has an effect both 
in  the  frequency  and in the  time  domain. Take  a  speech  sound  with sharp frequency 
resonances  and  a  rhythm  pattern defined by a series of snare-drum  strokes.  Each 
word will appear  with  the  rhythm  pattern,  also  the  rhythm  pattern will be  heard 
in each  word  with the frequency  resonances of the  initial speech  sound  [m-chu5sna]. 

The convolution as a tool for musical  composition  has  been  investigated by 
composers  such  as  Horacio Vaggione  [m-Vag96, Vag981 and  Curtis  Roads [Roa97]. 
Because the convolution has a combined effect in  the  time  and frequency  domains, 
some  expertise is necessary to foresee the  result of the combination of two  sounds. 

2.3 Equalizers 

Introduction and  Musical Applications 

In  contrast t o  lowlhighpass  and  bandpasslreject  filters, which attenuate  the audio 
spectrum  above or below a cut-off frequency, equalizers shape  the  audio  spectrum 
by enhancing  certain  frequency  bands while others  remain unaffected. They  are  built 
by a series connection of first-  and  second-order  shelving  and  peak  filters, which are 
controlled  independently (see Fig. 2.19). Shelving filters boost or cut  the low or high 
frequency bands  with  the  parameter cut-off frequency fc and  gain G. Peak filters 
boost or cut mid-frequency bands  with  parameters cut-off frequency fc, bandwidth 
fb and  gain G. One  often  used filter type is the  constant Q peak  filter.  The Q factor 
is defined by the  ratio of the  bandwidth  to cut-off frequency Q = k. The cut-off 
frequency of peak  filters  are  then  tuned, while keeping the Q factor  constant.  This 
means  that  the  bandwidth is increased  when  the cut-off frequency is increased and 
vice versa.  Several  proposed  digital filter structures for shelving  and  peak filters can 
be  found in the  literature  [Whi86, RM87, Dut89a, HB93, Bri94, Orf96,Orf97, Zo1971. 

Applications of these  parametric  filters  can  be  found  in  parametric  equalizers, 
octave  equalizers ( fc=31.25, 62.5, 125, 250, 500, 1000, 2000, 4000,  8000, 16000 Hz) 
and  all  kinds of equalization  devices in mixing consoles, outboard  equipment  and 
foot pedal controlled stomp boxes. 



2.3 Equalizers 51 

Cut-off frequency f, Cut-off frequency f,  Cut-off  frequency f, Cut-off  frequency f, 
Gain G in dB  Bandwidth  f  Bandwidth  f 

Gain G  in d d  
Gain G  in dB 

Gain G  in d d  

Figure 2.19 Series  connection of shelving and peak  filters. 

2.3.1 Shelving Filters 

First-order Design 

First-order  low/high  frequency  shelving  filters [Zo197] can  be  described by the  trans- 
fer function 

H ( z )  = 1 + - [l + &A(z)]  (LF/HF +/-) H0 
2 

(2.45) 

with  the first-order  allpass 

(2.46) 

The block diagram  in  Fig. 2.20 shows a first-order low/high-frequency shelving 

Figure 2.20 First-order low/high-frequency  shelving  filter. 
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filter, which  leads to  the following difference equations: 

y1 (n) aB/Cz(n)  + - 1) - aB/cyl  (n - 1) (2.47) 

?An> = 2 [.(n) Yl(n)l+ 4.). H0 (2.48) 

The  gain G in dB for low/high  frequencies can  be  adjusted by the  parameter 

H0 = V' - 1, with V. = 1OGl2'. (2.49) 

The cut-off frequency  parameter U B  for boost  and a c  for cut  can  be  calculated  as 

(2.50) 

(2.51) 

The cut-off frequency  parameters for boost  and  cut for a first-order  high-frequency 
shelving  filter [Zo197] are  calculated by 

(2.52) 

(2.53) 

Magnitude  responses for a  low-frequency  shelving filter are  illustrated in the left 
part of Fig. 2.21 for several cut-off frequencies and  gain  factors.  The slope of the 
frequency  curves for these  first-order  filters  are  with 6 dB per  octave. 

Second-order Design 

For  several  applications especially in advanced  equalizer  designs the slope of the 
shelving filter is further  increased by second-order  transfer  functions.  Design  formu- 
las for second-order  shelving  filters  are  given  in  Table  2.3  from [Zo197]. Magnitude 
responses  for  second-order  low/high  frequency  shelving  filters  are  illustrated  in the 
right  part of Fig. 2.21 for two cut-off frequencies and several gain  factors. 

2.3.2 Peak Filters 

A second-order  peak filter [Zo197] is given by the  transfer  function 

Ho 
2 

H ( z )  = 1 + - [l - (2.54) 

where 
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Table 2.3 Second-order  shelving  filter  design  with K = tan (rfC/fs) [Zo197]. 

low-frequency  shelving  (boost V0 = loG/”) 

I + J Z K + K ~  
2(K2-1) 

I I I I 

low-frequency  shelving (cut V. = 

I 

high-frequency  shelving  (boost V0 = loG/”) 

I I I I 

high-frequency  shelving (cut V0 = 10-G/20) 

bo I bl I b2 a2 a1 

First-order  Shelving  Filters  Second-order  Shelving  Filters 

f i n H z  + f i n H z  + 

Figure 2.21 Frequency  responses  for  first-order and second-order  shelving  filters. 

is a second-order  allpass  filter. The block diagram  in Fig. 2.22 shows the second- 
order  peak  filter, which leads to the following difference  equations: 

y1(n) = -uqcz (n )  + d(1- uB/c)z(n - 1) + z (n  - 2) 
(2.56) 



54 2 Filters 

:+ 

Figure 2.22 Second-order peak filter. 

The center/cut-off  frequency parameter d and  the coefficient H0 are given by 

(2.58) 
(2.59) 
(2.60) 

The  bandwidth f b  is adjusted  through  the  parameters ag and a c  for boost and  cut 
and  are given by 

(2.61) 

(2.62) 

This  peak filter offers almost  independent  control of all three musical parameters 
center/cut-off  frequency,  bandwidth and gain.  Another  design  approach from [Zo197] 
shown in  Table 2.4 allows direct  computation of the five coefficients for a second- 
order  transfer  function  as given in the difference equation (2.2). 

Frequency  responses for several  settings of a  peak  filter  are shown in Fig. 2.23. 
The left part shows a variation of the gain  with a fixed center  frequency and  band- 
width. The right part show for fixed gain and center  frequency  a  variation of the 
bandwidth  or Q factor. 
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Table 2.4 Peak  filter  design with K = tan (.-fc/fs) [Zo197]. 

peak (boost v0 = loG/”) 
bo 

I + ~ K + K ~  ~ + & K + K z  I + & K + K ~  1 + x K + K 2  

a2 a1 62 bl 

I f ~ K f K 2  

I++K+K~ m Qm 

I - - ~ K + K ~  Z(K2-1) I - P K f K ’  2(K2-1) Q m  

peak (cut v0 = 

bo 1 bz a1 

20 

15 

10 

T 5  
m n o  
c -5 
I 

-10 

-1 5 

.- 
- 

-20, 

2.4 

Second-order Peak Filters 
Parameter:  Gain  Factor 

Y 1 1 

200 2000 20000 

Second-order  Peak  Filters 
Parameter:  Bandwidth 

f i n  Hz --f f i n  Hz + 

Figure 2.23 Frequency  responses  second-order  peak  filters. 

Time-varying Filters 
The  parametric  filters discussed in  the previous sections allow the  time-varying 
control of the filter parameters  gain, cut-off frequency and  bandwidth  or Q factor. 
Special  applications of time-varying  audio filters will be  shown in the following. 

2.4.1 Wah-wah Filter 

The wah-wah effect is produced  mostly by foot-controlled signal  processors  contain- 
ing  a  bandpass filter with variable centerlresonant frequency and  a small bandwidth. 
Moving the pedal  back  and  forth  changes the  bandpass  cut-offlcenter frequency. 
The “wah-wah” effect  is then mixed  with the direct  signal  as  shown in Fig. 2.24. 
This effect leads to a spectrum  shaping  similar to speech and  produces a speech 
like “wah-wah”  sound. If the  variation of the  center frequency is controlled by the 
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Figure 2.24 Wah-wah:  time-varying bandpass filter. 

input signal, a low-frequency oscillator is used to change the center frequency. Such 
an effect is called an auto-wah  filter. If the effect is combined  with  a low-frequency 
amplitude  variation, which produces a tremolo,  the effect is denoted a tremolo-wah 
filter.  Replacing the  unit delay in the  bandpass filter by an M tap delay leads to  the 
M-fold  wah-wah  filter [Dis99], which is shown  in  Fig. 2.25. M bandpass filters are 
spread over the entire  spectrum  and simultaneously  change  their  center frequency. 
When a white noise input signal is applied to  an M-fold wah-wah filter, a spectro- 
gram of the  output signal shown in Fig. 2.26 illustrates the periodic  enhancement 
of the  output  spectrum. Table 2.5 contains  several  parameter  settings for different 
effects. 

Figure 2.25 M-fold wah-wah filter. 

Table 2.5 Effects with M-fold wah-wah filter [Dis99]. 

Wah-Wah i 1 i -/3kHz i 200Hz 1 ~ , _... 

1 M-fold Wah-Wah I 5-20 I 0.51- I 200-500Hz \ l I ,  l 

Bell effect I 100 I 0.5/- I lOOHz 1 

2.4.2 Phaser 

The previous effect relies on  varying the center  frequency of a bandpass filter. An- 
other effect uses notch filters: phasing. A set of notch  filters, that can  be realized 
as a cascade of second-order IIR sections, is used to process the  input signal. The 
output of the notch  filters is then combined with the direct  sound. The frequen- 
cies of the notches are slowly varied using a low-frequency oscillator  (Figure 2.27) 
[Smi84]. “The  strong  phase  shifts  that exist around  the  notch frequencies combine 
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Figure 2.26 Spectrogram of output signal of a time-varying M-fold wah-wah  filter [DisSS]. 

with the phases of the direct  signal  and  cause  phase  cancellations or enhancements 
that sweep up  and down the frequency  axis" [Orf96]. Although  this effect does  not 
rely  on a delay  line,  it is often  considered to go along  with  delay-line  based  effects 
because the sound effect is  similar to  that of flanging. An extensive  discussion  on this 
topic is found  in  [Str83]. A different  phasing  approach is shown in  Figure 2.28. The 
notch  filters  have  been  replaced by second-order  allpass  filters  with  time-varying 
center  frequencies. The  cascade of allpass  filters  produces  time-varying  phase  shifts 
which lead to cancellations  and  amplifications of different  frequency  bands when 
used in  the feedforward and feedback  configuration. 

Figure 2.27 Phasing. 
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Figure 2.28 Phasing with time-varying  allpass  filters. 

2.4.3 Time-varying  Equalizers 

0 Time-varying  octave bandpass filters, as shown in Fig. 2.29, offer the possi- 
bility of achieving wah-wah-like effects. The spectrogram of the  output signal 
in Fig. 2.30 demonstrates  the  octave spaced  enhancement of this  approach. 

Figure 2.29 Time-varying  octave filters. 

0 Time-varying  shelving and  peak filters: the special  allpass  realization of shelv- 
ing and  peak filters has shown that a  combination of lowpass,  bandpass and 
allpass  filters gives access to several  frequency bands inside such a filter struc- 
ture.  Integrating level measurement  or envelope followers (see Chapter 5) into 
these  frequency bands  can  be used for adaptively  changing the filter param- 
eters  gain, cut-off/center  frequency and  bandwidth or Q factor.  The com- 
bination of dynamics  processing, which will be discussed in Chapter 5, and 
parametric filter structures allows the  creation of signal  dependent  filtering 
effects with  a  variety of applications. 
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Time 

Figure 2.30 Spectrogram of output  signal for time-varying  octave  filters. 

Feedback  cancellers, which are  based on  time-varying  notch  filters,  play an 
important role in sound  reinforcement  systems. The  spectrum is continuously 
monitored  for  spectral  peaks  and a very  narrow-band  notch  filter is applied 
to  the signal  path. 

2.5 Conclusion 

Filtering  is  still  one of the most  commonly  used effect tools for sound  recording 
and  production. Nevertheless, its successful  application is heavily  dependent  on the 
specialized skills of the  operator.  In  this  chapter we have  described  basic  filter  al- 
gorithms  for  time-domain  audio  processing.  These  algorithms  perform the filtering 
operations by the computation of difference  equations. The coefficients for the dif- 
ference  equations  are  given  for  several  filter  functions  such as lowpass,  highpass, 
bandpass,  shelving  and  peak  filters. Simple  design  formulas  for  various  equalizers 
lead to  efficient implementations  for  time-varying  filter  applications.  The combi- 
nation of these  basic  filters  together  with the signal  processing  algorithms of the 
following chapters allows the building of more  sophisticated effects. 



60 2 Filters 

Sound and Music 

[m-chu5sna]  chu5sna:  vocoder  speech  convolved  with snare-drum  strokes. Demo 
Sound.  DAFX  Sound  Library. 

[m-gendsna]  gendsna: snare-drum  rhythm  pattern is mapped  onto  a gender  sound. 
Demo  Sound.  DAFX  Sound Library. 

[m-Mai97] M. Maiguashca:  Reading  Castaiieda.  CD.  Wergo2053-2, zkm 3 edition, 
1997. 

[m-Pie99] F.  Pieper:  Das Effekte Praxisbuch.  GC  Carstensen, 1999. CD. Tr. 1, 
35, 36. 

[m-quasthal]  quasthal:  convolution of speech  with  impulse  responses.  Demo  Sound. 
DAFX  Sound  Library. 

[m-Vag96] H. Vaggione: MYR-S,  Composition for cello, electroacoustic  set-up  and 
tape. Festival Synthhse,  Bourges  1996. 

[m-Vas93] P. Vasseur: PURPLE  FRAME, in Le sens cachi. 100 mystkres, CD 
FREE WAY MUSIQUE, No. 869193, 1993. 

[m-tubg5sna]  tubg5sna:: tuba glissando convolved  by a series of snare-drum  strokes. 
Demo  Sound.  DAFX  Sound Library. 
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