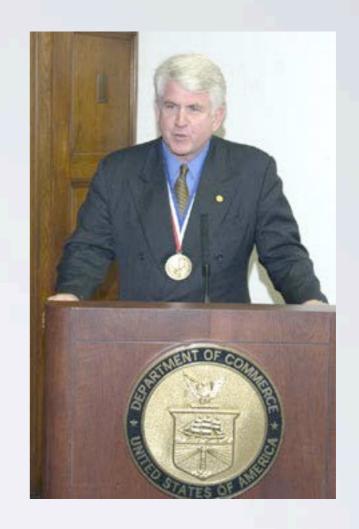
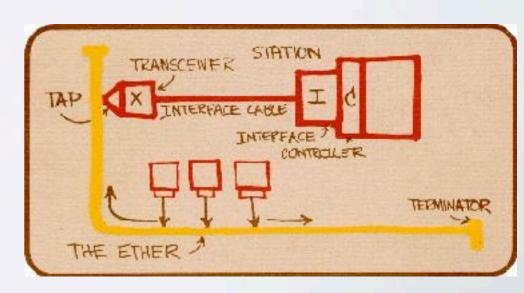
Music & the Internet MUMT 301

Ichiro Fujinaga
Schulich School of Music
McGill University

Plan


- Review of last class
- Internet technologies
- Review of HTML
 - Setup Komodo Editor
 - Create public_html/mumt301
 - Create basic.html
- CSS


Internet Technologies

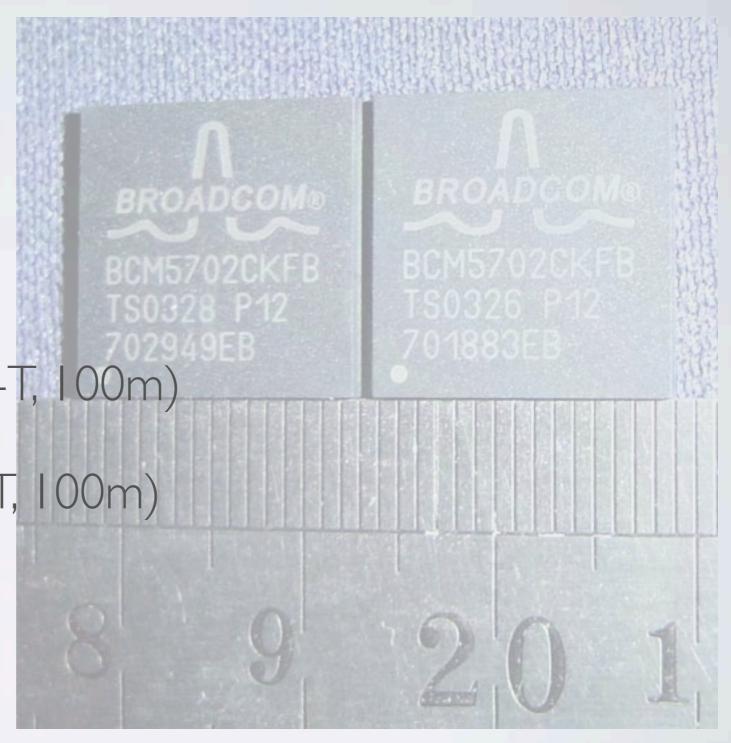
- Ethernet
- TCP/IP
- OSI Model
- IP Addresses
- DNS
- DHCP
- FTP
- HTTP
- · SSH

Ethernet

- Invented by Bob Metcalf (1972)
- Developed at Xerox PARC (1973–4)
- Competed with Token Ring
- Originally IOMb (IOBASE-T)
- Standardized 1985 as IEEE 802.3
- Each hardware given 48bit MAC address

Ethernet standards

Name	Connector	Speed	Distance	
10BASE-2	AUI	10 Mbps	500m	
10BASE-5	BNC	10 Mbps	200m	
10BASE-T	RJ-45	10 Mbps	100m	
100BASE-TX	RJ-45	100 Mbps	100m	
100BASE-FX	ST, SC, LC	100 Mbps	2000m	
1000BASE-T	RJ-45	1 Gbps	100m	
1000BASE-X	ST, SC, LC	1 Gbps	2000m	
10GBASE-X	ST, SC, LC	10 Gbps	2000m	


Ethernet cables and chips

Cables

• CAT 5 (up to 1000BASE-T, 100m)

• CAT-6 (up to 10GBASE-T, 100m)

• Broadcom BCM5701

Ethernet frame

802.3 Ethernet frame structure

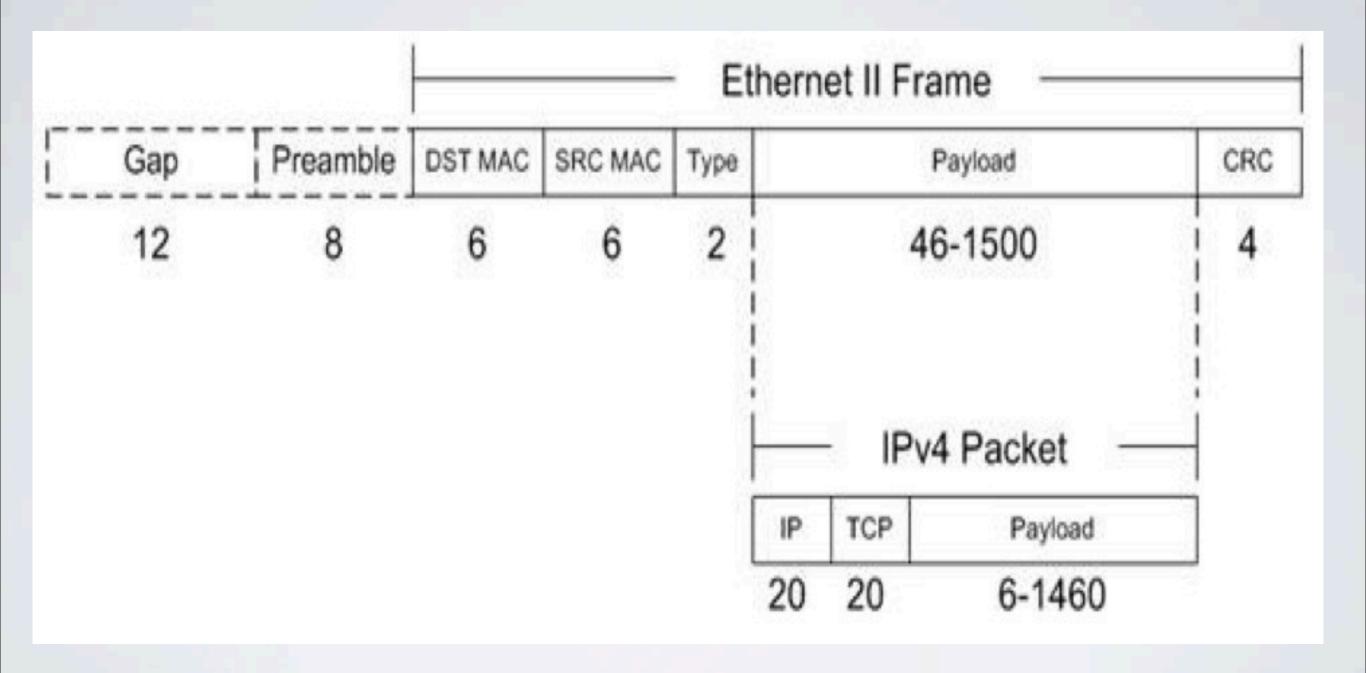
Preamble	Start of frame delimiter	MAC destination	MAC source	802.1Q tag (optional)	Ethertype or length	Payload	Frame check sequence (32-bit CRC)	Interframe gap
7 octets of 10101010	1 octet of 10101011	6 octets	6 octets	(4 octets)	2 octets	46-1500 octets	4 octets	12 octets
					64-1522 octet	s		
			-	72-1530 octets	•			
				84-1542	octets			

TCP/IP

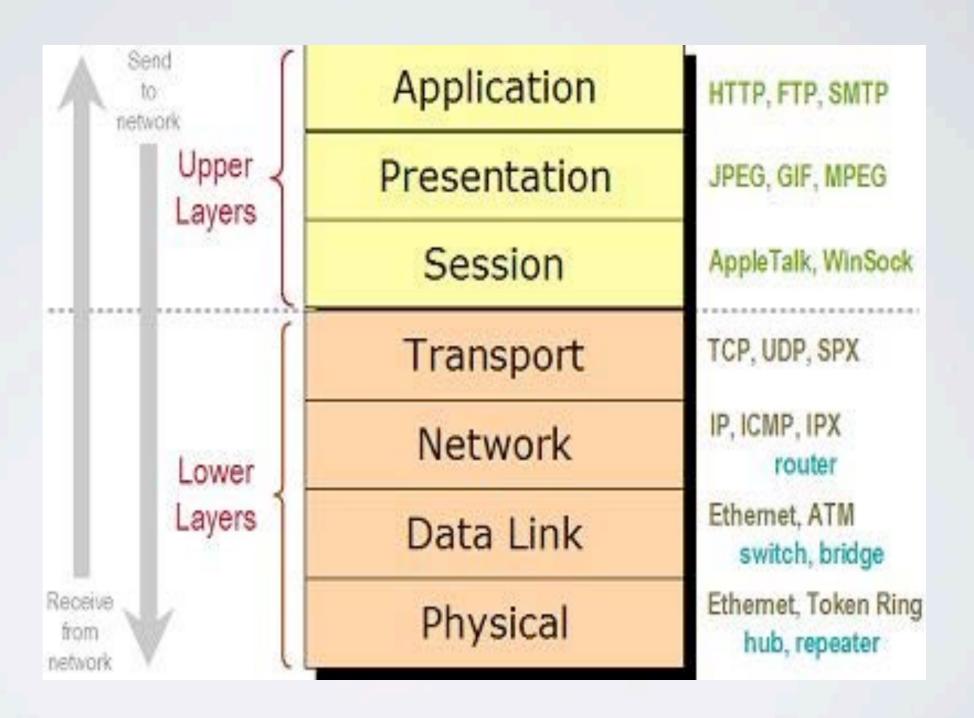
- Transmission Control Protocol
- Internet Protocol
- Basic communication protocols of the Internet
 - Developed in the 1970's
 - Standardized in 1983
- IP: best effort; unreliable
- UDP (User Datagram Protocol) : data integrity via checksum
- TCP: delivery guarantee via acknowledgement and data ordering

IP Header (20 bytes)

00 01 02 03	04 05 06 07	08 09 10 11 12 13 14 15	16 17 18	8 19 20 21 22 23 24 25 26 27 28 29 30 31	
Version	<u>IHL</u>	Differentiated Services		Total length	
Identification		Flags	Fragment offset		
T	<u>rl</u>	<u>Protocol</u>	Header checksum		
Source IP address					
Destination IP address					
Options and padding :::					


TCP Header (20 bytes)

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	
Source Port	Destination Port	
Sequence Number		
Acknowledgment Number		
Data Offset reserved ECN Control Bits	Window	
<u>Checksum</u>	<u>Urgent Pointer</u>	
Options and padding :::		
Data :::		


IP Addresses

- IPv4 (32 bits = 4 bytes)
 - 4,294,967,296 possible IP addresses
- IPv6 (128 bits)
 - - 340 trillion trillion trillion = 3.4×10^{38}
 - Bacterial cells on Earth = 5×10^{30}
- MAC (Media Access Control):
 - MAC-48: $2^{48} = 281,474,976,710,656$ addresses (281 x 10^{12} , trillion)
 - All the fish in the ocean = 3.5×10^{12}
 - EUI-64: $2^{64} = 1.8 \times 10^{19}$
 - Insect population = 10^{19}
- Large numbers: http://www.vendian.org/envelope/dir0/grain_feel.html

Complete Ethernet Packet

OSI Model

DNS

- Domain Name System
- Domain Names: alias for IP addresses
- Domain name servers translates domain names to IP addresses
- Domain names are registered with corresponding IP addresses and updated throughout the world via network of domain name servers.

Routers

- Traffic control manager for the Internet
- It is a computer with built-in table (routing table)
- Finds the next router/hosts towards packet's destination
- Rewrites the destination MAC address of a packet

How a packet finds its way

- · Given a domain name address on a source computer
- Domain name server is queried to find the IP address
- The packet with the destination IP address is sent to the nearest router
- Given the IP address, a router finds, using a routing table, next router to send the packet to. This step is repeated until it reaches the final destination
- If this is an TCP packet, another packet is sent back to the source computer to acknowledges its arrival

DHCP

- Q: "But I move around with my laptop, how does the Internet find me?"
- A: Dynamic Host Configuration Protocol
- Standardized 1993
- DHCP servers assigns IP addresses and default gateway (a router)

FTP

- File Transfer Protocol
- To copy files over the Internet (TCP/IP)
- FTPS (Secure File Transfer Protocol) used at music.mcgill.ca
- The server uses ports 20/21
- Anonymous FTP access (precursor to WWW)

HTTP

- Hypertext Transfer Protocol (~1991)
- Hypertext (1963:Ted Nelson)
- "The first version of the protocol had only one method, namely GET, which would request a page from a server. The response from the server was always an HTML page."
- Try "lynx google.ca" on music ssh account

SSH

- Secure Shell
- Remote login over TCP/IP network via port 22
- · A shell is an interface to an operating system, e.g.:
 - bash (CLI)
 - Finder (GUI)
- What is an operating system?

Review

- Ethernet
- TCP
- IP
- OSI Model
- DNS
- Router
- DHCP
- FTP
- HTTP
- SSH

HTML / CSS

- Review of HTML
 - Setup Komodo Editor
 - Create public_html/mumt301
 - Create basic.html
- CSS