
Fourier Transforms 1

Peter Elsea University of California, Santa Cruz

Notes on Fourier transforms
The Fourier transform is something we all toss around like we understand it, but
it is often discussed in an offhand way that leads to confusion for those just
learning their way around DSP. I'm not ready to write a comprehensive manual
on the thing (Smith devotes 14 chapters to it), but here are some assorted bits of
trivia that may clear the air some.

Buzzwords, or fftspeak:
Time domain representation means a graph with time along the bottom.
Waveforms are usually represented this way.

Frequency domain representation means a graph with frequency along the
bottom. Spectral plots are like this.

Polar representation means graphing in terms of an angle and radius. Since sine
waves are inherently angular this can be useful. To map the frequency domain
onto a polar plot, the angle π radians represents 1/2 the sampling rate. The
region on the bottom of the circle represents negative frequency plotted from 0 to
-π. Points on a polar plot can also be indicated by their rectangular (Cartesian)
coordinates.

The unit means one. The unit circle on a polar plot is a circle of radius 1. Setting
things to equal 1 often makes math clearer.

The letter j is the imaginary square root of -1. Some mathematicians use i for this,
but i means something else in electronics. We aren't interested in roots of
negative numbers per se, but complex numbers are handy.

Complex numbers are the sum of a real and imaginary part  such as (a + bj). The
math works as if the imaginary  part were at right angles to the real part, which
is the way a lot of audio phenomena behave. Some authors indicate variables
that represent complex numbers with a capital letter. Numbers whose imaginary
parts are zero are called real numbers.

The letter   (Greek lower case omega) is often used to refer to angles. You will
see ω=2πf as a way to convert a frequency f to an angle. When derived this way,
ω may be called angular frequency.

The letter e means Euler's constant, a number like π that is one of the
fundamental features of the universe. It is used to calculate interest, and is the
base of natural logarithms. The interesting item here is that you can represent a
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sine wave as ejω . The j makes this a complex number, the ω makes it polar

notation. ejω =  cos(ω) + jsin(ω).

A function is the mathematical representation of any sort of curve. A sine wave
is a function that could be written  f(t) = ksin(ωt). Functions are always functions
of some thing,  in this case t. Some texts make the distinction that f(x) is a
continuous function (i.e. an unbroken curve) and f[x] is a discreet function, made
up of a lot of points. (Like a sampled waveform.) f(x) is pronounced "f of x".

A coefficient is a value that adjusts the overall value of a term in a function. For
ksin(ωt), k is a coefficient. Most of the hard part of DSP design is finding the
coefficients that make a function work the way you want it to.

The delta function is a 1 followed by as many 0s as you want. It’s the
mathematical equivalent of hitting something with a stick to see what it will do.
When you apply a delta function to digital filter, you get its impulse response.
The Fourier transform of the impulse response is the frequency response.

A transform is a method for converting a function of time into a function of
frequency (or back). In audio, it converts a chunk of waveform into a spectral
representation.

You multiply two functions by multiplying the value of each point on one curve
by the value of the equivalent point of the other curve.

Correlation of functions is performed by multiplying each point on one curve by
all of the other curve. This gives one complete curve per point. You then add all
of these together.

Convolution of functions is performed by multiplying each point on one curve
by the reverse of the other curve (that's the other curve backwards) and adding
all the results. Convolution of two time domain functions is equivalent to
multiplying the frequency domain versions, and vice versa.

Transforms
There are several transforms out there - Laplace, Z-transform, and Fourier  being
the big names.

The Laplace transform converts a waveform into a series of exponentially
changing sinusoids. This results in a whole family of curves of amplitude vs.
frequency (one curve for each possible exponent) These are represented by
parallel curves in a three dimensional space called the s domain. This is very
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useful for designing analog filters, whose response is a combination of
exponential shapes.

The Z transform converts waveforms into something similar to the s plane, but
in a polar scheme known as the Z plane. The frequency is represented by the
angle, and the exponent by the radius, so the amplitude vs. frequency curves are
wrapped in circles. This is needed for designing digital filters.

The Fourier transform converts waveforms into a series of sinusoids. A sinusoid
is a waveform shaped like a sine wave, but not necessarily starting at 0.0. The
Fourier transform actually results in two curves, one that represents the
amplitude of the sinusoids and another that shows the phases.

Types of Fourier transform
There are four types of signal encountered in audio. These signal types are:
• Non-periodic analog signal
• Periodic analog signal
• Non-periodic digitized  (discrete) signal
• Periodic digitized  (discrete) signal

Different variants of the Fourier transform are appropriate to each. Some of these
are referred to with initials.

• In the case of the non-periodic analog signal, the sinusoids may have any
frequency, and there may be an infinite number of them. The original Fourier
transform deals with this.

• In the case of the periodic analog signal, the sinusoids take frequencies that
are multiples of the fundamental established by the period (The Fourier
series). There still may be an infinite number. (You need an infinite number
of sinusoids to represent a corner in a waveform, so square waves and
triangles have infinite Fourier representations.)

• In the case of the non-periodic digitized signal, the sinusoids are discrete
themselves, and are limited in frequency to the range of one half of the
sampling rate. The Discrete Time Fourier Transform is used here.

• In the case of the periodic digitized signal, the sinusoids are discrete
themselves, and limited in frequency to one half of the sampling rate. This
can be analyzed by the Discrete Fourier Transform, or the Fast Fourier
Transform.

All of these transforms have inverse transforms, which take us back to the
original waveform.
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The transforms for analog signals are the theoretical basis for all of the math, but
you can't actually do any of them in a computer. Computers deal with discrete
signals only, because all they know is lists of numbers. These are processed by
the DFT. The waveform goes in as a list of numbers, and two lists come out.
What numbers do we need in the lists?

Details of the output
A sinusoid has frequency, amplitude and phase. These three parameters must be
included for each of the components of a waveform. When we are dealing with
periodic waveforms, the frequency of a component can be implied by its position
in the list. The first component is DC, the next the fundamental, then the second
harmonic, and so on. So lists with values for each component will be sufficient.
What do the two values mean?

Amplitude and phase are one possibility. In that case each pair of numbers is a
polar representation of the component (phase is an angle, and a number and an
angle define a point on a polar plot.) This is very nice, because the list of
amplitudes can be charted as a graph of the frequency response. This is what a
spectral plot actually is. We generally ignore phase when we are just looking,
since phase has no audible effect.1 For mathematical convenience, the amplitude
range is normalized from 0 to 1.0, and the phase is from -π to π.2

Phase is hard to do math with. The fact that the phase wraps around from -π to π,
and that math leads to division by 0 make the code awkward. For computation, a
rectangular representation of amplitude and phase is handier. This can be done
by specifying each component as a sum of a cosine wave and a sine wave. This is
the most common definition of the Fourier series:

1/2a0 + (a1cos(x) + b1sin(x)) + (a2cos(2x) + b2sin(2x)) + ….

This is usually output as two lists, one with the a values and the other with the b
values. To keep the lists the same length, a b0 of value 0 is included in the b list.
The lists are called the cosine and sine parts or sometimes the real and imaginary
parts. (Even if there are no complex numbers around).  If there are N points in
the input sample, there will be  N/2 + 1 points in each list. The frequency x is the
sample rate divided by N. A 512 point DFT with a sample rate of 44.1 khz gives a
fundamental frequency of 86.13 hz. The highest frequency represented is half the
sample rate.

                                                
1 The inaudible effects of phase are significant, and forgetting about phase when you are
processing audio and not just listening is a serious mistake.
2 We usually do angles in radians. It's nicer for the computers. And yes, negative phase is as
likely as positive.
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This is called the real DFT. The algorithm that does this is rather inefficient
(there's a correlation with every potential sinusoid), so a streamlined version
called the Fast Fourier Transform is preferred. The FFT also outputs two lists,
real and imaginary, which actually are complex numbers.

(a0cos(0) - b0jsin(0)) + (a1cos(x) - b1jsin(x)) +(a2cos(2x) - b2jsin(2x))

These can be changed to amplitude and phase pairs with a simple Cartesian to
polar conversion.

There are N components in each list from the FFT . They still represent  multiples
of   x = SR/N. The values beyond half the sampling rate represent negative
frequency components running from - (N/2 -1)x to -x.3

The FFT takes complex numbers as it input4. If the input is a not a complex
signal, the imaginary parts of the input are zero and the output curves will be
symmetrical about the N/2 point. This implies a lot of wasted computation. This
can be skipped, giving the real FFT. The output looks just like the complex FFT.

At this point, many may be worrying about how waveforms that  are harmonic
series on other fundamentals can be accurately represented by components based
on the arbitrary frequency SR/N. Consider an example: a 100 hz tone. This falls
between the 86.13 hz and the 166.32 hz components of the transform, so would
show as an increase in each. These, plus the phase information are enough for the
iFFT to give a 100 hz tone back. Of course, the more points in the analysis, the
more accurate the reconstructed signal.

Transforming continuous signals
The FFT works with a chunk of signal N points long. The algorithm requires that
N be a power of two. If a recording is too short, we can just add zeros, but more
likely, we are interested in recordings much longer than N samples. We are also
interested in how the transform changes over time, not just the overall average
frequency content.

This problem is overcome with a system of windowing, which is similar to the
practice  of showing moving pictures by projecting a series of still pictures. In
essence, the incoming signal is broken into chunks of N points and analyzed as a
series of frames. To smooth out the errors caused by this arbitrary chopping,
                                                
3 This makes the outputs symmetrical curves. For many purposes the negative frequencies can be
ignored, but the iFFT uses them when converting back to waveforms, so the result would be a
loss in amplitude.
4 Most waveforms are real, not complex. Where would you find a complex waveform? As the
output of an inverse FFT.
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overlapping chunks are processed-- when the signal is reconstituted, the
overlapped frames are mixed together. For further smoothing, the frames are
faded in and out before the analysis. There are several schemes for doing this.
Luckily for Max users, all of this is hidden in the pfft~ object.

Putting the FFT to work.
So, whats the point? Well, there are several pretty neat tricks we can do with
Fourier transforms of signals. In MSP the output of fft~ is a pair of synchronized
signals, one with the coefficients of the real terms and the other with the
coefficients of the imaginary terms. These can be routed and processed just like
any other signal. (But you wouldn't want to listen to them!)

Viewing Spectra.
The patch in figure 1 will show the spectrum of a sound

Fig 1. The magnitude spectrum of fft~

Note the magic settings for fft~ and scope~ to get a stable image. The scope max
is set to 16.

Cartopol~ is used to convert the rectangular output of fft~ into magnitude and
phase format. The spectrum is mirrored because fft~ produces the full complex
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spectrum-- those are the negative frequencies at the right. It's hard to see much
detail because of the limitations of scope~. Perhaps the future will see a display
optimized for this.

Filtering by Convolution
When the fft signal has been converted into magnitude and phase format, it
should be clear that you can change the amplitude of the reconstructed signal
just by changing the magnitude part of the fft signal. You can also do this by
changing both the real and imaginary signals in rectangular notation. If you
could isolate particular bands in the fft output, you could change just that part of
the spectrum. A method for doing this is shown in the demonstration patch
"forbidden planet".

First a work about pfft~5. This is a wrapper for fft operations. To use it you
specify a subpatch to process the fft data, a frame size, and the number of
overlap windows to use. Pfft~ will perform the fft and pass the data to the
subpatch, and will reconstruct whatever the subpatch gives back.

In the sub patch, the fft ouputs come from an fftin~ object. This specifies the inlet
number on pfft~ this will be connected to, and a window shape if you like to
tweak things. fftin~ has three outlets: one for the real fft signal, one for the
imaginary fft signal, and one for synchronization - this output is an index to the
bin6 number in the frame. Likewise, what is sent to fftout~ will be reconstructed
at the outlet of pfft~.

In "Forbidden Planet"  a table containing a shaped spectrum is converted into a
signal by loading it into a buffer~. This signal is played in sync with the fft via
the index~ object connect to the third output of fftin~. The signal is multiplied by
both the real and imaginary parts of the fft and the results sent to fftout~. This
will superimpose the shape of the table contents (i.e. the filter curves drawn by
the user) on the spectrum of the reconstructed signal.

This is convolution in the time domain by multiplication in the frequency
domain.

Signal morphing
The next step is to use an input signal for the modification source. This is
illustrated by the convolution workshop patch. In the supatcher, the signal from
fftin~ 2 is converted to magnitude and phase, and the magnitude is multiplied by
the fftin~1 signal. This superimposes the spectrum of input 2 onto input 1. The

                                                
5 Poly fft~. It's like the Poly~ object, running multiple copies of the same subpatcher.
6 The something of the Asomething  terms.
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result is something of both. A gradual transition from one to the other creates a
smooth change of timbre.

Cross synthesis
The generalized cross synthesis patch shows the effects of adding spectra. It lets
you choose the amplitudes and/or phase signal from either of the two sources or
combine the two. You can hear that the amplitude has the most effect, panning
from the noise to the rhythm sound. Swapping phase is more subtle, but is
noticeable in the case of noise phase and rhythm amplitude. The blue fader
brings in a layer of magnitude convolution so you can compare the effects.

To learn more about the Fourier transforms, I suggest you brush up on your
math, then study

Smith, Steven; The Scientist and Engineer's Guide to Digital Signal Processing,
1997. (download in pdf or order from www.DSPguide.com)

Roads, Curtis; The Computer Music Tutorial 1996. MIT Press


