
MAX :INTRODUCTION page 1

INTRODUCTION TO MAX

MAX is a programming language designed to look familiar to composers who have
worked with patchable synthesizers. What you see on the screen is a lot of boxes with
lines connecting them. The boxes are called objects and the lines are patch cords. What
happens is that each object represents a process. The results of the process are passed
along the patch cord to the next object. Ultimately, there is an object that generates
output from the MIDI port.

Each windowfull of objects is called a patcher. Several patchers may be open at once and
they can all be active, even if their window is hidden.

MAX :INTRODUCTION page 2

OBJECTS
The basic object looks like this:

The name of the the object determines what it does. There are a couple of hundred objects
supplied on the disk, ranging in complexity from simple math to full featured sequencers.
Arguments, if present, specify initial values for the object to work with. Data comes into
the object via the inlets, and results are put out the outlets. Each inlet or outlet on an
object has a specific meaning. This will be displayed in the lower left of the window as
the mouse passes by (further details are in the manual). Usually, input to the left inlet
triggers the operation of the object. For instance, the delay object (as shown) will send a
bang (see below) out the outlet 500 milliseconds after a bang is received in the left inlet.
Data applied to the right inlet will change the delay time.

MESSAGES
Data bytes sent down the patch cords are called messages, which fall into one of the
following types:

int A number without a decimal point.

float A number with a decimal point.

symbol A character string1 such as “stop” that may be understood by certain objects.

list Several of the above, separated by spaces. The first element of a list must be a
number.

bang A message that triggers the action of an object.

1String is computerese for a group of letters.

MAX :INTRODUCTION page 3

EDITING PATCHES
There is a padlock icon in the title bar of a patcher. If the padlock is opened (with a
mouse click) the patcher may be edited.

The palette across the top of the window contains object icons. Click on your choice
(usually the left one) and move it into position and click again. You will get a dialog that
allows you to select the name, or you may type the name directly (pay attention to
capitol letters). If you option-click on an object, a help screen will come up that explains
how it works. Enter patch cords by clicking on an outlet. You then drag a line to the inlet
you want.2 Many connections may be made to a single inlet or outlet.

2Max won’t let you make inappropriate connections.

MAX :INTRODUCTION page 4

INTERFACE AND DISPLAY OBJECTS
Most of the objects in the edit pallette are there to allow the user to control the patch.
There are sliders and dials, even a cute little keyboard.
The most useful are the simple ones. For instance:

The message box will contain a symbol (up to 255 characters long) or a list.
Usually these are entered when the box is created. When the user clicks on the box, the
message is sent out. The message will also be sent if anything is received at the inlet. The
symbol “set” at the inlet will cause the message to be changed to whatever follows.

Number boxes are used a lot. (There are two kinds, for ints and
floats.) A number that comes in the inlet will be displayed. A bang at the inlet will send
the number out. If the user clicks on the box and drags up or down, he can change the
number, which is sent out in the process. If you select the box during editing and click on
Get Info in the menu, you can customize the behavior of the box, such as setting limits on
the values, or making it display pitch names instead of the number.

Buttons send a bang when the user clicks on them. If any message is received at the
inlet a bang is sent.

When the user clicks on the toggle the X disappears and a 0 is sent. If he does it
again, the X comes back and a 1 is sent. A 0 at the inlet will clear the toggle, and any other
number will set it. A bang will flip the toggle to the other state. (1 or 0 is sent only when
the toggle changes.)

The preset object allows the user to store the state of all controls. To
make this happen, you just put the preset in the patcher somewhere. If the user shift
clicks on a button, all current values will be stored. Later, a click on the button will bring
them back. The dot on a button indicates it contains data, the triangle indicates the most
recently selected preset. A preset object with patchcords attached only affects the
connected items.

MAX :INTRODUCTION page 5

HOW TO GET MUSIC IN AND OUT OF MAX
Max is a number cruncher with timing features. Max knows nothing about music. As long
as you keep this in mind you should have no trouble getting interesting things to happen.

In MIDI, as you may remember, there are six numbers associated with each note: the note
number, velocity and channel number for the note on, and the same three for the note off.
If the note off channel number and note number do not match the ones for the note on, the
note will play forever. Also remember that a note on with a velocity of 0 counts as an off.

Down toward the bottom of almost every patch, you will find a makenote object. When a
note number (an int between 0 and 127) hits the left inlet, a velocity (as set by the middle
inlet or the first argument) goes out the right outlet, folowed by the note number out the
left outlet. A few milliseconds later, as set by the right inlet or the second argument, the
note number comes out again, but this time with a 0 velocity. These values are just what
the next object needs:

Noteout uses the channel, velocity and note numbers provided to send a note message out
the MIDI port. This works very reliably with makenote, with one warning: BE SURE
MAKENOTE IS EMPTY IF YOU CHANGE MIDI CHANNELS. Else any pending
note offs will be steered to the wrong channel and the note will hang.

Getting MIDI into MAX is duck soup. There’s a notein object that provides note
numbers, velocities and channel numbers. Usually we are only interested in which note
was played and not how long it was. The stripnote object will filter out noteoffs in that
situation.

MAX :INTRODUCTION page 6

Representation Of Pitches In Max
In the Max environment, pitches and durations are necessarily represented as numbers,
typically by the MIDI code required to produce that pitch on a synthesizer. We must
begin with and return to this representation, but for the actual manipulation of pitch data
other methods are desirable, methods that are reflective of the phenomena of octave and
key.

A common first step is to translate the midi pitch number (mpn) into two numbers,
representing Pitch Class (pc) and octave (oct) this is done with the formulas:

oct = mpn / 12
pc = mpn % 12

The eventual reconstruction of the mpn is done by

mpn = 12*oct + pc

In this system pc can take the values 0 - 11, in which 0 represents a C. Oct typically
ranges from 0 to 10. Middle C, which is called C3 in the MIDI literature, and C4 by most
musicians, is octave 5 under this convention.

Once the pc is split from its octave, a variety of manipulations can be undertaken. For
instance, to transpose, you add the appropriate number of half steps. To go up a fifth (7
steps) from D(pc=2)

new pitch = (old pitch + steps) % 12

gives 9 (A) as the answer. The modulus 12 is necessary to keep the answer within the
range of 0 to 11.

To transpose down, you add the 12's complement (12-n) of the number. Down a fifth
starts with the complement of 7 (5) but is otherwise the same as above. A fifth below D
comes out (2+5)%12 or 7 (G).

MAX :INTRODUCTION page 7

This patcher illustrates the principles of extracting and manipulating pitch classes.

Generating Pitches
The notein object is not the only way to create notes in Max. Here are some strategies to
play with:

The random object will create apparently random numbers. This is gaussian or "white
noise" type of randomness. This is a good starting point for further processing, but
random pitches taken straight are not very interesting. (Actually, the random object will
produce exactly the same series of "random" values every time you open the patcher.
This is because it is impossible to calculate truly random numbers. Think about it.)

MAX :INTRODUCTION page 8

The drunk object executes the "random walk" procedure. In this, the output is a random
distance from the last output. The noise is "Brownian", and is sometimes interesting, but
pitches repeat a lot.

There are a lot of ways to generate fractal note patterns. There's no object per se, but
expr allows you to use any of the classic fractal formulas. Here's a patcher using one:

This will always play the same
pattern of notes, but that pattern
defies description. The pattern you
get depends on the contents of the
float object. If you "seed" it with a
random number each time the patch
is loaded the results will always
come out different.

Processing Random Pitches
Randomness is most effective when tamed by some musical rules. A very powerful rule
type is the "sieve", which lets some notes through, but rejects others. The Lsieve3 object
does this handily;

3 You won't find Lsieve in the main Max documentation. That's because I wrote it myself. It is
documented in the Lobjects folder along with all the other L(somethings), banger, and unlist.

MAX :INTRODUCTION page 9

Lsieve 0 2 4 5 7 9 11

will only allow the notes of C major through. In this patcher:

Any note that fails the test will cause the random object to try again, because failed values
fall out the right outlet. You need to be very careful when using this type of feedback
process. If Lsieve were to reject everything random puts out (for instance if it had all
values higher than the range of the random object) the patcher would go into an endless
loop and a stack overflow would occur. A safer approach would be to omit the feedback
(leaving holes in the stream of notes) or to trigger some other process to create a note.

The secret to generating an interesting piece with sieves is to make the sieves change in
some way. The values accepted by Lsieve can be changed by sending a list in the right
inlet.

MAX :INTRODUCTION page 10

The Lfilt object has a complimentary
action. It will reject whatever is in its
argument list. The values to reject can be
changed by sending a list to the right inlet.
What does this patch do?

The Lsieve and Lfilt objects work by throwing data away. Another approach to the
constraint problem is to change unwanted data somehow. A simple way to do this is with
the funbuff object. The funbuff stores a series of pairs (that is two member lists). Once
the pair has been input, the first value in the pair will be replaced by the second. If an
input value is not in the funbuff, the next lower input value that is in there will be used.
This patcher will keep everything in C major:

MAX :INTRODUCTION page 11

Generating Rhythms
The motive force in Max is the metro object. This is an object that simply emits bangs at
a steady rate. Metro can easily be turned on or off by sending a 1 or 0 into the left inlet.

The way to control rhythms in Max is to control the argument to the metro object. To do
this properly, we must first understand the relationships between Period, Tempo, Note
Value, and Note Duration.

The argument in the metro object is a period4, the number of milliseconds between bangs
at the metro outlet. Tempo is the number of beats per minute.

Note Value is the kind of note: half, whole, thirtysecond triplet, whatever. In Max, these
must be represented by a number of some sort. There are two approaches:

In Denominator Notation, a whole is 1, a half note is 2, a half triplet is 3, and so
forth (a 32nd triplet is 48, and a dotted half is 0.75.)

In Tickcount notation, the smallest value you want to represent is assigned two
ticks, and all the others are represented by the number of ticks they contain. In
this system, a 32nd triplet would be a 2, a plain 32nd a 3, a quarter note 24, and a
whole 96.

Each system has its advantages- a list of values in denominator notation is easy to read,
but tickcount calculations are usually simpler.

Duration is the amount of time the note will actually last. We have to combine Note Value
and tempo to find it. If you are using denominator notation, you first find the duration of
a whole note

WholeDur = 60 * 1000 * number of beats in a whole / Tempo

This only has to be done when the tempo changes. For instance, a tempo of 90 would
have a WholeDur of:

240000/90 = 2666.6 ms

To find the duration of a note, you divide WholeDur by the denominator value. A quarter
note at a tempo of 90 will have a duration of 666 ms.

When using the tickcount system, the first step is to find the duration of one tick in
milliseconds. The formula is

4Of course you remember that period is the inverse of frequency. A 500 hz signal has a period of 2
milliseconds.

MAX :INTRODUCTION page 12

TickDur = 60* 1000/ (Tempo * tickcount of a beat)

For example, again at tempo = 90, if the quarter note gets the beat

TickDur = 60* 1000/ (90 * 24) = 27.7

TickDur will be multiplied by the tickcount for each note. Again, a quarter note comes
out as 666 ms.

These durations can be accurately calculated, but there may be errors in timing when the
results are put to use. That's because the metro object is only accurate to the millsecond.
If you use 666 as the argument to a metro object, hoping to get a tempo of 90, it will run a
mite fast. (The period of a quarter note is really 666.6 ms.) This usually not important,
but it can cause occasional problems.

Here is a patcher to illustrate these calculations:

MAX :INTRODUCTION page 13

This just plays Middle C at the tempo and value chosen. Turn on the metro object to
hear, then click on the Q,E,et or 16 boxes to test various durations.

Notice that the operations are carried out as floats to maintain accuracy.

There are a couple of things I should point out about generating rhythms in general. First,
the duration has to be sent to the metro and makenote before the note is played.

Second, the duration at makenote does not have to be the same as the duration at metro.
However, when you play repeated notes like this, if makenote has a longer duration than
metro, what is heard with many synthesizers will be the difference between the two
durations, because of the way the note ons and offs will overlap. The messages will come
out as on, on, off, on, off, on, off, on, off, off. So, it's a good idea to subtract a bit from
the duration on the way into makenote. (Or use Lnote, which doesn't suffer from this
problem.)

Third, in complex patchers, you may find yourself trying to generate a lot of notes at
once for big fat chords. The system (both Max and MIDI) will tend to clog up if you
send the noteoffs for the old chord at the same time as the new notes. Again, it's a good
idea to shorten the durations sent to makenote.

MAX :INTRODUCTION page 14

Patterns
Steady streams of notes eventually become boring. Most music includes a variety of
durations, often in recognizable groups or patterns. Many composers generate a duration
with each pitch, and then handle their notes as lists of pitch, velocity, duration. Here is
how a series of note lists (stored in a coll) might be played. Notice that the duration is
sent to metro before the note is triggered. That's because a change in the period of metro
cannot take effect until after the next bang is output.

Another approach is to think of rhythm patterns as basic units that get filled up with
pitches.
The problem presented to Max is to choose patterns at appropriate times. To facilitate
this, I wrote an object called unlist.

The rhythm patterns, in either denominator or TickDur notation, are kept in lists: this
patcher illustrates using unlist to manage them

MAX :INTRODUCTION page 15

When used with an argument list, unlist steps through the list over and over as the inlet is
banged. If a new list is received, it replaces the stored list.With no arguments, unlist
behaves differently. When you send a list into the inlet, the first member of the list is sent
out immediately. Bangs then step you through the list. When the list is used up, a bang is
sent out the right outlet. If this bang triggers some process that applies a new list to the
inlet, the first member is sent out and the cycle begins again, with no real break in the
output stream. This patcher illustrates the process:

MAX :INTRODUCTION page 16

Synchronizing Pitch and Rhythm
The previous two examples don't address the issue of synchronizing pitch and rhythm.
There are many approaches to this. The core of the problem is get things loaded in the
right order: period for metro and duration for makenote before the metro ticks, then the
metro tick should send a pitch to makenote to actually play the note. So when you look
at it, the output of metro really really has to:

•Play this note
•Set up period for next note.
•Set up duration of next note.

It's a good idea to use a trigger object to parcel these tasks out. (The order of the last two
is not important, but they both must be in place before the next note is played.)

MAX :INTRODUCTION page 17

Chords
Playing block chords is easy in Max, all you have to do is send the individual notes to
makenote at the same time. Of course, all actions in max are really carried out one at at
time, but this can occur so fast that chords sound simultaneous to our ears. The main
difficultly is figuring out whether to send a major or minor chord for some scale degree.
Here is the basic approach:

The Lseive objects sort the scale notes according to the chords they should have in
Cmajor. A "wrong" note is played, but doesn't get a chord.

The Ladd objects create the chord as a list. The pitch class input is added to each member
of the initialized list. The iter object turns this list into three individual pitches.

All else is as described earlier.

