
Max and Chaos

Random Numbers
In common usage, random numbers are numbers which cannot be predicted. In
mathematical terms, a random series is one in which the probability of any
number occurring at any point is 1/n, where n is the number of allowed values.
Over a long set of numbers, you would expect to find equal quantities of each
value. Random series are fairly common in nature (many noise waveforms are
random, for instance) but they are surprisingly difficult to produce on
computers.

In Max, random numbers are generated by the random object. In versions before
4.0, the random object would produce the same random number series every
time you started Max. This is actually the usual behavior of random number
generators. Each number is generated by applying a complex formula to the
previous numbers in the series. Naturally it has to start somewhere, with a value
called the seed. Any calculation done from the same seed will give the same
results.

In version 4, the random object starts calculating with a number based on how
long the computer has been on, so random is unpredictable as well as evenly
distributed. To return to predictability, the random object accepts the seed
message, which forces it to start calculation from the number you give it. The
drunk object, which produces numbers that differ from the previous number by
a random amount, also accepts seeding.

Monte Carlo
Sometimes you want to play the odds. In cards, we shuffle a deck and then
examine it to see what order the cards are. As we get to the end of the deck, we
begin to expect to see particular cards, just because we know we won’t see the
same one twice. This procedure is often applied to music, for example in the
generation of tone rows. The urn object (Unique Random Number) is designed
for this. Urn produces each possible number once, then bangs out the right. (Urn
also can be seeded for predictable output.)

Probability
More likely than wanting each note exactly once, you just want a tendency for
certain notes to follow others. Suppose we’d like to see mostly intervals of a fifth,
some thirds, and very seldom hear tritones. We can make up a preference chart
that looks like this:

interval Out of 100
7 25
5 25
4 10
9 10
3 5
8 5
2 5
10 5
1 4
11 4
6 1
0 1

This sets up desired probabilities of each interval occurring. We can get values
weighted by a probability out of the table object simply by entering the curve we
want, and then banging the table. Here's what the table looks like:

When it is banged, the addresses (numbers across the bottom) pop out with the
likelihood determined by the number at each address. Here's a sample run:

5 7 4 1 7 7 5 4 7 7 2 5 2 7 8 9 8 2 5 10 2 2 4 10 5 2 7 5 5 5 7 5 7 9 4 9 4 5 5 7 2 1 5 7 4 7 5

There are a lot of fives and sevens, and not a single six.

The histo object makes an interesting companion to the table used for
probabilities. It keeps track of data coming in, and counts the occurrence of

values. This data can be transferred to the table so the proportion of pitches
generated sort of matches the proportion of pitches received.

Markov
The next step is to make the probabilities depend on the current note. To do that,
we can use a coll with 12 different probability tables. When a note is chosen, it
pops a new set of probabilities out of the coll and they are loaded into the table.
The LtoTab object makes that easy. A system where the most recent value
determines the probabilities for the next value is called a Markov chain of the
first order. If the last two values determine the probabilities, it's a second order
Markov chain. That can be done with pitches, but requires 144 tables. Generally
you would use high order Markov processes in operations with fewer choices,
such as choosing direction or rhythm.

The prob object does first order Markov processes. You program it by feeding in
a series of lists of type A B P. This sets the chances of B following A as P.
(Actually P/T, where T is the total of all Ps you have assigned a particular A. If
the prob object happens to get into a state for which there is no programmed
choice, it will bang the right outlet.

Fractals
Fractal geometry is the study of objects that have a property known as self-
similarity – They are made up of smaller copies of the overall shape. There are
many such forms, and although they are visually appealing, it is often difficult to
translate their properties into musical context. One that does work is called the
Sierpinski triangle:

It is traditionally made by starting with a solid triangle and removing smaller
and smaller triangles. This is a rather boring musical process, but there's another
way to generate them that is interesting.

The process goes like this:
1. Plot the three corners of the triangle.
2. Pick an arbitrary starting point (not one of the above)

3. Randomly choose one of the corners.
4. Plot a new point halfway before the previous point and the corner.
5. Repeat steps 3 and 4 a couple of thousand times.

To do this in Max, we'll draw in the LCD object. For every point we plot, we'll
draw a square one pixel on a side. The command to do this is paintrect 0 0 1 1 .
The numbers represent left edge, top edge, right edge, bottom edge, in that
order, measured from the upper left of the space. To put a square at a desired
location, we add the horizontal value (X) to left and right, and the vertical value
(Y) to the top and bottom. So paintrect 20 20 21 21 will put a square at X = 20, Y =
20.

Here's a patcher to do it:

The bottom lines go to the LCD. You can see how the three corners and the
starting point are entered. The metro will make the plotting fast enough to watch
the process. Here's how new points are calculated:

Remember, everything in the LCD is placed by counting pixels from the upper
left of the display area. Therefore, a line from A to B can be thought of as the
hypotenuse of a right triangle with the right angle (call it point O) at the x of A
and the y of B.

A

B
O

Xa, Ya

Xb, Yb

Xa, Yb

P Xp = 0.5 * (Xb - Xa) + Xa

Yp = 0.5 * (Ya - Yb) + Yb

X

Y

A new point P on the line gives a similar triangle, so the sides will all be in
proportion. If P is halfway between A and B, the X value for P can be found with
the formula above: half the distance OB, plus the X value at O. Y is similar, but
slightly different to get the sign right. If A or B wind up above O or to the left, the
math still works because you will have negative distances to add to Xa and Yb.
For different proportions, the fraction in Xp becomes the proportion and the
fraction in Yp is the compliment - so to find points a quarter of the way along the
line, the fractions become 0.25 and 0.75.

Anyway, with the patcher working right, the figure drawn looks something like
this:

What's going on? Well, we are finding points halfway between the last point and
random corners of the triangle. So if you start outside the triangle, the points will
be inexorably pulled into the triangle, and once inside, can't get out. If you start
from a point inside the triangle, you will never land in the central hole, because
all points in there would have to be derived from a point outside the triangle. If
you look at the process backwards for a moment, you'll see what I mean. If there
can be no points in the central hole, well, anywhere halfway between the hole
and the corners is excluded as well. You can see where I'm going with this.
With other divisions of the line, you get related but different pictures, like this
one:

The triangle begins to break apart because the exclusion zone is larger. These
figures can also be drawn with more points:

What is the area of something like this? Well, in the ideal version, unlimited by
printing resolution, every pentagon is missing a pentagon of 1/6th its area, in an
infinitely diminishing series. That means its area approaches zero. It's really a
very complicated line. What is the length of the line? Following all infinitely
small twists and turns, the length approaches infinity. Since it has no area, it is
not a two dimensional object, but it has length, so it is more than one dimension.
It's dimension is some fraction between one and two, which is called a fractal.

Sonification
How do we get music out of these things? One approach is to tap into the
drawing process. For each point, an x and y value is calculated as it is drawn. We
can remap these to notes by adjusting the range of possible values to fit a desired

scale. On the pentagon shown, x values could run from 0 to 300. There are
several ways to adjust, each with different results. They are all done with an
expression:

• Expr $f1/2.36 will convert the x dimension directly to pitches. Some will be
very low and some will be very high. What you actually hear will depend on
the synthesizer used.

• Expr $f1 / 4.41 + 24 will map the x value from a low C of 24 to a high C at 92.
Incidentally, division is a slower process than multiplication, so it is slightly
better to do expr $f1 * 0.22667 + 24

• Expr abs($f1 - 150) * 0.453 + 24 will create a mapping symmetrical around
the center. This makes sense for this type of figure.

This particular figure is made up of thousands of dots. To make it visually
interesting you'd probably want to draw it pretty fast, most likely too fast to
actually play. You can slow down the notes by playing every 10th value or so,
generating rhythm somewhere else and playing the most recent x, or using the y
values and an if then to select notes to play.

Another approach is to poll specific locations in the LCD to see if a pixel has been
drawn there. The message [getpixel x y] will return a message [pixel r g b x y]
with the rgb color values in it. If r g and b are all 255 (white), there's no dot. All
you need to do to make this work is use a counter to choose locations to test. If
you just take the x values, the motion will tend to be scalewise, but it's not hard
to break it up into chords or other patterns.

What does it sound like? Well, fractal patterns sound somewhat random, but at
the same time vaguely familiar, as patterns seem to reappear from time to time.

Chaos
There are other ways to generate complex patterns. Chaos is the study of systems
that are determinate (not random), but dependent on initial states in a
complicated way. For instance the formula

f(x) = 1-cx2

is evaluated by repeating the calculation using the last answer as x. Of course
you need to start with something, so we pick a seed value for x. c is a constant
whose choice also profoundly affects the outcome. Here is a graph of what
happens as the constant is increased from 0 to 2 in steps of 0.01, with 100
iterations on each step.

As long as c is smaller than about 0.75, the result follows a curve from near 1.0
down to 0.66 or so (exact numbers depend on initial x). At a magic value of c, the
results start jumping back and forth, always landing near one of the two forks of
the curve. At another magic value, the curves fork again, and results cluster
around four values. Eventually, as c nears 2.0, the results are jumping in wildly
unpredictable patterns. The values the formula favors for any given c are called
attractors. Look at the pattern you get with a c of 0.76 and initial x of 0.5:

This is plotted as result vs. iteration number. The values basically alternate,
converging on the attractors (which are 0.52 and 0.79). Here's what happens with
c of 1.26:

There are now 4 attractors: –0.23, -0.10, 93, 99. But notice, in getting to the
attractors the output hits some other values. When c is 1.5, the chaos begins to
show:

If these values are mapped to notes, the results are pretty interesting. Here's a
patcher for it:

The main calculation takes place in [expr 1-$f2 * $f1*$f1]. The other two
expressions scale the input and output to appropriate values. Deriving the seed
from note in gives a nice performance feature. Each key produces a unique
pattern, some of which go on for quite a while before settling on the attractors.
See what happens when you change the constants.

