Max and Math

We don't all have a strong background in math, so here's a review of the math
operations available in Max. This isn't how to do math, just a note of where
things are.

Basics

Number Types

Remember, math done with floats can give different answers than math done
with integers. In most cases you put an object into float mode by entering a float
as the argument. Also, remember that certain values will be displayed strangely
when they are floats. 16.2 becomes 16.200001, for instance. When floats are
converted to ints, the fractional part is truncated off.

Addition

The [+] function adds whatever has been received in the right to whatever
comes in the left. In the following notes I'm going to call the right input (or
written argument) the stored value, and the left input the input value.

Subtraction

The [-] function subtracts the stored value from the input. When you write an
argument, be certain there is a space between the minus and the number. If you
leave the space out, you won't get an error, you will get an integer object (exactly
like[int -1]) and input will be passed through unchanged.

Complement

The [!-] function subtracts the input from the stored value. This is often called
taking the "2s compliment” (if subtracting from 2). The 12s compliment of an
interval gives the interval's inversion. !- is not a standard notation, only Max
refers to it this way. The Lcomp object does the same on lists.

Multiplication
The [*] function multiplies the input by the stored value.

Division

The [/] function divides the input by the stored value. Dividing integers gives
truncated results, with any fractional part discarded. If you divide by 0, an error
message appears in the Max window. It's always faster to multiply than divide,
so [* 0.5] is preferred to [/ 2], at least when the computer is working hard.

Inversion
The [/] function divides the stored value by the input. Linvert does this with
lists.

Modulo
The [%] function divides the input by the stored value and returns the
remainder. This works only on integers. Lrem does this on lists.

Comparisons

All Max comparison operators return 1 if the comparison is true and 0 if the
comparison is false. A string of false attempts will give a string of Os. If you need
a function that only gives output in the true cases, use select. If you only want to
detect the change from true to false, use a change object on the output. Here's a
list of the operators:

< input less than stored value
> greater than

== equal to (there is no = object)
I= not equal

<= less than or equal

>= greater than or equal

Logic

The logic operators consider 0 to be false and any integer (including negatives) to
be true. A float input is truncated, so it has to be 1.0 or more to be true. Note the
difference between integer logic and bitwise logic, in the next section.

&& AND: OANDO=0,1AND0=0,1AND1=1

11 OR : OORO0=0, 0OR1=1,10R1=1

! NOT : NOT0=1, NOT anything else = 0. (This is an Lobject;
Max does not have a not function except in expr.)

(~ XOR : O0XOR0=0,1XOR0=1,1X0OR1=0)

There is no XOR operator, except in expr and the Lobject Llogic. The Max logic
operators are just like all other math objects in that only left inlet triggers the
output. The Llogic functions are gates, giving output for any change in input.

Bitwise Logic
Bitwise logic follows the rules given above, but works on the individual bits of
the numbers. Thus 1 & 4 =0 because binary one and binary 4 have no bits in
common.
& Dbitwise AND
| Dbitwise OR
<< shift left. The stored value sets how many positions the bits are shifted.
>> shift right.

Max does not have a bitwise NOT function except in expr ([expr ~$il]). There is a
Bitnot~ function for processing audio signals.

The most useful bit operation is the AND. [& 127] will clip all values to 7 bits,
which is often needed for MIDI messages. This use of 7 is called masking.

Hardware Logic

The logic chips used in circuit design follow the rules of bitwise logic, but
feature multiple inputs, and a change at any input will change the output state.
The Llogic object takes an argument to determine its function and another to set
the number of inputs. Some operations just seem clearer with a hardware
approach.

C library functions
Trig functions and the like used to require expr, but in Max 4 some are available
as objects.

abs gives absolute value of input.

pow raises input to the power of the stored value. The result is always float.
Negative powers are roots, of course.

sqrt gives square roots.

sin, tan, cos find sine, tangent or cosine of angles. The input is in radians.
(You will remember that there are 2p radians in a full circle. To convert from
degrees to radians, multiply by 0.01745.)

asin, tan, acos give arcsine, arctangent or arccosine. The results are in
radians.

If you have trouble remembering exactly which ratio is the cosine anyway, just
recite. SOH, CAH, TOA until you feel better about it. The important thing to
remember is that the cosine is the one that starts on 0.

Hyperbolic versions are available as sinh, asinh and so on.

Expr

The expr object allows you to enter complex expressions. This can save a lot of
space, and provides access to even more functions. To define an inlet, include $il
or $f1 in the expression. The $i version is treated as an integer, the $f version is
treated like a float. The numeral indicates which inlet, up to 9. Given these rules,
the expression

[expr $f1 + $f2 * $f3]

will return the input plus the product of stored values 2 and 3. (The brackets
represent the object box -- they aren't what you type!) There are rules of
precedence when operations are mixed like this. From highest to lowest:

~ bitwise not

I logical not

- negation

* /,% multiplication, division, remainder
+, - addition and subtraction

<<, >> left and right shift

< > <= >= comparisons (which will be 1 or 0)
& bitwise AND

N bitwise XOR

| bitwise OR

&& logical AND

| | logical OR

Precedence can be altered by parentheses, so [expr ($f1 + $f2) * $f3] multiplies
the sum of input 1 and 2 by input 3. Be careful when you type parentheses -- if
they don't balance out, you'll get an error message and all connections will be
broken. Occasionally you'll get an "expression too complicated"” error. If so, break
the work into two exprs.

Functions in expr

C library functions are available. Many C functions take two arguments, such as
pow(a,b). Since Max is skittish about commas, you have to write this as

[expr pow($f1\,$f2)]

The functions implemented as objects (listed above) are all in there. The extra
functions are:

exp($fl) gives e to the $f1

log($f1) and In($f1) both give natural logarithm of $f1
log10($f1) gives the base 10 logarithm

fact($f1) gives factorial

Expr is supposed to be able to do some operations with tables, but frankly, it's
easier to get what you want from the table and apply it to an expr inlet.

