Max and Pitch

Representation of Pitches in Max

In the Max environment, pitches and durations are necessarily represented as numbers,
typically by the MIDI code required to produce that pitch on a synthesizer. We must
begin with and return to this representation, but for the actual manipulation of pitch data
other methods are desirable, methods that are reflective of the phenomena of octave and
key.

A common first step is to translate the midi pitch number (mpn) into two numbers,
representing Pitch Class (pc) and octave (oct) this is done with the formulas:

oct=mpn/ 12
pc = mpn % 12

The eventual reconstruction of the mpn is done by
mpn = 12*oct + pc

In this system pc can take the values 0 - 11, in which O represents a C. Oct typically
ranges from 0 to 10. Middle C, which is called C3 in the MIDI literature and C4 by most
musicians, is octave 5 under this convention.
Once the pc is split from its octave, a variety of manipulations can be undertaken. For
instance, to transpose, you add the appropriate number of half steps. To go up a fifth (7
steps) from D(pc=2)

new pitch = (old pitch + steps) % 12

gives 9 (A) as the answer. The modulus 12 is necessary to keep the answer within the
range of 0 to 11.

To transpose down, you add the 12's complement (12-n) of the number. Down a fifth
starts with the complement of 7 (5) but is otherwise the same as above. A fifth below D
comes out (2+5)%12 or 7 (G).

=[0:@:E== Pitch Class and Octave FE
ufs
Get note from keyboard
Rermove note offs
Find PC Find Qctave
Tranzpose L+ W] Change Octawve
keep PC
in Bange
o-11
Rermake Octave
E+ Rernake MICT walue
[makenote 90 200 | Set vel and duration
of note
|nn:-te-:-ut |
<
o] (o[

This patcher illustrates the principles of extracting and manipulating pitch classes.

Generating Pitches

The notein object is not the only way to create notes in Max. Here are some strategies to
play with:

The random object will create apparently random numbers. This is gaussian or "white
noise" type of randomness. This is a good starting point for further processing, but
random pitches taken straight are not very interesting. Actually, the random object will
produce exactly the same series of "random" values every time you open the patcher.
This is because it is impossible to calculate truly random numbers. (Think about it.) if
you give random the message "seed X", you will produce a different pattern for each

value of X. The date object triggered by a loadbang can give you an X that will probably
be different each time the patcher opens, so you can insure that the patterns are different.

The urn object selects from a series of numbers in a random order. When all have been
output, the right outlet bangs to tell you.

The drunk object executes the "random walk™ procedure. In this, the output is a random
distance from the last output. The noise is "Brownian", and is sometimes interesting, but

pitches repeat a lot.

There are a lot of ways to generate fractal note patterns. There's no object per se, but
expr allows you to use any of the classic fractal formulas. Here's a patcher using one:

O & &

rmetro Z00

H

float 0.6

[expr 3.59 = $11 % (1§11 |

L""c 1000,

L

45

ERE

[rmakenote 100 290 |

noteout

chaotic == [0 B

;

This will always play the same
pattern of notes, but that pattern
defies description. The pattern you
get depends on the contents of the
float object. If you "seed" it with a
random number between 0 and 1 each
time the patch is loaded the results
will always come out different.

We multiply by 1000. (note the
decimal) because the interesting
patterns are in the right end of the
fraction. The %48 reduces the range to
4 octaves.

Generating Scales

You can make chromatic scales [&l [¢] = chromatic BB

with the counter object. It has
inlets for direction as well as

beginning and ending values so

you can make very complex

arabesques. The patcher shown

just gives the basics, a scale up or rmetro 300

down. The select objects are there
because a long standing bug in counter 012
counter makes it difficult to Hl_l |

detect the end of the count. sel O IT:I]
Instead of using the overflow and
underflow outlets, you have to LT-i'

detect the last number of the makenote 100 230 |

count series and use that to turn
the metro off. noteout

!

e

Leddozd457211] [*1z2 |
|

prepend et

[64 66 6263 71 7275 |

A major scale is represented by the numbers 024 57 9 11. If we call this a set in the
mathematical sense, a number of useful manipulations suggest themselves. For instance, we can
shift the scale to any octave just by adding a multiple of 12. We can transpose it to any key by
adding the pitch class that represents the key desired:

Processing Random Pitches

Randomness is most effective when tamed by some musical rules. A very powerful rule
type is the "sieve", which lets some notes through, but rejects others. The Lsieve! object
does this handily;

l Lsieve 02457911 |

will only allow the notes of C major through. In this patcher:

O & &

:metrn:- 300 |

[Lzieve 024579 11|
|

sieve=—i—=[0H

E+ ET

makenote 100 290 |

|nu:ute-:nut |

Kl [

w

Any note that fails the test will cause the random object to try again, because failed values
fall out the right outlet. You need to be very careful when using this type of feedback
process. If Lsieve were to reject everything random puts out (for instance if it had all
values higher than the range of the random object) the patcher would go into an endless
loop and a stack overflow would occur. A safer approach would be to omit the feedback
(leaving holes in the stream of notes) or to trigger some other process to create a note.

The secret to generating an interesting piece with sieves is to make the sieves change in
some way. The values accepted by Lsieve can be changed by sending a list in the right
inlet.

1You won't find Lsieve in the main Max documentation. That's because | wrote it myself. It is
documented in the Lobjects folder along with all the other L(somethings), banger, and unlist.

The Lfilt object has a complimentary action. It will reject whatever is in its argument list.
The values to reject can be changed by sending a list to the right inlet. What does this
patch do?

[& # noRepeat = E1 H

e

rmetro I00

d

I

e
n

+ 45

unk 12 4

]

[rmakenote 100 320 |

[4] [» =

The Lsieve and Lfilt objects work by throwing data away. Another approach to the
constraint problem is to change unwanted data somehow. A simple way to do this is with
the funbuff object. The funbuff stores a series of pairs (that is two member lists). Once
the pair has been input, the first value in the pair will be replaced by the second. If an
input value is not in the funbuff, the next lower input value that is in there will be used.
This patcher will keep everything in C major:

: rmetro 300 |I|:|a|:lb.ang |
|

drunk 1z4] [00,22,44,55,77,9%9,11 11

Chords

Playing block chords is easy in Max, all you have to do is send the individual notes to
makenote at the same time. Of course, all actions in max are really carried out one at at
time, but this can occur so fast that chords sound simultaneous to our ears. The main
difficultly is figuring out whether to send a major or minor chord for some scale degree.
Here is a basic approach:

IE|
i

=[Ji@:sI=— CmajChords

[

Lzieve OS5 7
Lzieve 24 9

L=ieve 11

[(3dd0 47 |[ladd0z7||Ladd 03 E |

rmakenote 20 300

noteout —
E =

@] BE

The Lsieve objects sort the scale notes according to the chords they should have in
Cmajor. A "wrong" note is played, but doesn't get a chord.

The Ladd objects create the chord as a list. The pitch class input is added to each member
of the initialized list. The iter object turns this list into three individual pitches.

All else is as described earlier.

For more sophisticated ways to handle chords, see the essay on Max & Chords

Serial manipulations

]:] E] E —— sprialiver cSsSEesSeSeaa————iar0—0—— El E
m Row length
7
[uzi 12 |J.-1cle-ar' |

Reftrograde-3 |:| |:| |:|
Inversion- |:| L‘—_l I_{—_| I]__| I? I___|
Tragnposition-» o | gE| B0 | o | [0 |
Lr'etr'-:-p-:-se | Lr'etr'-:-p-:-sell Lr'etr'-:-pn:-Ee | Lr'etr'-:-pn:-Ee |Lr'etr'-:-|:u:-5e- |
[Fietra 200 | 4 z 2 1 o

akenote 99 90

&

-

|>.|

F |

Here is a patcher that demonstrates how to do traditional row manipulations. In this case,
the row is generated randomly by the uzi and urn at the top. Thresh gathers the row into
a list. The list is processed five times by the retropose subpatcher, and all five versions of
the list are combined by Link (right to left, remember). The final list is fed to unlist and
played at the rate determined by metro. (The gate prevents the first two notes from

playing at once. That would happen because unlist sends the first member of a list out
immediately, and metro bangs immediately when it is started.)

The real action is in the retropose subpatcher:

[E F = [retropose] ="=— 01 EH

4 [3

(| B

|L5wa|:-III * -1 | @D |

chnmp 12 |

Ladd 0 k

[4] D7

Retropose depends on Lswap for the reordering of pitches. Lswap rearranges input lists
according to its template. A template is a list of the desired output order. The positions in
a list are numbered 0, 1, 2 and so forth, and a template that started with 2 would put the
third member of the list first in the output. Negative numbers mean count back from the
end, so -1 is the last member of the list, -2 the next to last and so on. A symbol means
"all the members between", so 0 * 4 would give the first 5 members of the list. 0 * -1
gives them all, and -1 * O gives them all backwards. Lswap templates can be very
complex (you can repeat positions and get a member more than once), so you could
produce every possible permutation of the list.

Lcomp 12 will provide the optional inversion of the row. There is an Linvert object, but
the math definition of inversion is not the same as that in music. Musical inversions are

produced by subtracting the pitch class from a constant (12), which is really the
complement opeartion.

Ladd provides any desired transposition.

