
Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 1 9:25 PM

Max/MSP Externals Tutorial
Version 3.1 (October 2004) by Ichiro Fujinaga

This document is a tutorial for writing external objects for Max / MSP. It assumes
that the reader is familiar with the Max environment and the C Programming
Language. This document is intended to expand upon the material presented by
David Zicarelli in his Writing External Objects for Max and MSP 4.3 (2003) and is
based on a tutorial started by Dale Stammen while at McGill University. Several
examples are provided to demonstrate this process. On OS X machines, Max
externals (external objects) can be created using CodeWarrior and Xcode.

This version (3.1) describes the development of Max/MSP externals using Xcode
Tools version 1.5 on OS X. With Max/MSP 4.5, Mach-O objects can be created with
Code Warrior as well, but will not be discussed in this document. Version (3.0) deals
creating CFM (Code Fragment Manager)-based objets with CodeWarrior on
PowerPC running OS X. If you are using previous version of Mac OS, refer to
version 2.5 of this tutorial.

Developing Max External Object with Xcode

This tutorial will explain how to create PowerPC native Max externals using Xcode
1.5 or later. A very simple external object called bang will be created. Refer to
Figure 1 for the source code of bang.c. The explanation of how bang works and
writing Max external objects is provided later.

Installing Xcode

1. Go to connect.apple.com
2. Login as ADC (if not member, join)
3. Follow “Download Software” and “Developer Tools”
4. Download “Xcode Tools 1.5 - CD Image”
5. Double-click the XcodeTools.mpkg icon to install

Creating a PPC Max External Object (shared library) with Xcode

In the following, we assume that we will be creating an external object named bang
and store the necessary development files in a folder (also named bang) on the
user’s Desktop.

1. Locate or download (from cycling74.com) MaxMSP-SDK folder.
2. Make a soft link to MaxMSP-SDK/4.5 headers/c74support folder to Desktop.

e.g.: (from a Terminal) ln -s /Applications/MaxMSP-SDK/4.5\
headers/c74support/ ~/Desktop/c74support

3. Make a copy of buddy folder in MaxMSP-SDK/Mach-O Development/ and move
to the Desktop.

4. Rename the buddy folder to bang.

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 2 9:25 PM

5. Open that (bang) folder, rename buddy.pbproj to bang.pbproj.
6. Remove (trash) the folder build.
7. Rename the file buddy.c to bang.c.
8. Launch Xcode and open bang.pbproj.
9. Under Project menu, select Edit Active Target ‘buddy’ (command-option E).

Change Base product name to bang. Close the window.

10. Click on the triangle beside Targets, select buddy then GetInfo (command-I) and

change the name to bang. Close the Info window.

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 3 9:25 PM

11. Click on the triangle beside Source folder under Groups & Files. You should see
buddy.c. Select buddy.c then GetInfo (command-I) and Choose to find the bang.c.
Close the Info window. Modify bang.c by double clicking on the file name.

12. Build (command-B).
13. Launch Max/MSP.
14. If first time, select Options menu then File Preference… add your Desktop to

Other Folders, so that Max/MSP will be able to find the bang object (bang.mxo).
15. Create a new patcher and create a new object box. Type the object name (bang) into

the box and the external object will be created.
16. Note that if you make changes to the object by rebuilding, then Max/MSP must be

restarted. You do not have to do this if you change the name of the object, to say,
bang1. You can change the name by changing the Base Product Name (via
command-option E). An alternative to get to the Target window is to double-click on
the target name (bang).

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 4 9:25 PM

// bang.c -- A very simple Max external object.
// Outputs a bang when a bang is received.

#include "ext.h" // Required for all Max external objects

void *this_class; // Required. Global pointing to this class

typedef struct _bang // Data structure for this object
{
 t_object b_ob; // Must always be the first field; used by Max
 void *b_out; // Pointer to outlet, need one for each outlet
} t_bang;

// Prototypes for methods: need a method for each incoming message
void *bang_new(void); // object creation method
void bang_bang(t_bang *bang); // method for bang message

int main(void)
{
 // set up our class: create a class definition
 setup((t_messlist**) &this_class, (method)bang_new, 0L, (short)sizeof(t_bang), 0L, 0);

 addbang((method)bang_bang); // bind method "bang_bang" to the "bang" message
 return (0);
}

void *bang_new(void)
{
 t_bang *bang;

 // create the new instance and return a pointer to it
 bang = (t_bang *)newobject(this_class);

 bang->b_out = bangout(bang); // create a bang outlet

 return(bang); // must return a pointer to the new instance
}

void bang_bang(t_bang *bang)
{
 outlet_bang(bang->b_out); // send a bang to the outlet bang->b_out
}

Figure 1. Source code for bang.c

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 5 9:25 PM

Writing Max External Objects

To create an external Max object, you write a shared library. When you type the
name of your object into an empty box in a Max patcher window, its shared library
file is opened and its contents loaded into memory. The object is then created and
able to receive messages from the Max environment. How your object will respond
to the various messages is determined by the code you have written.

Your code for an external Max object will consist of a main function and functions
(methods) that respond to specific Max messages sent to your object by the Max
environment.

The sturcture of a minimal external object can be divided into four sections:
• intialization
• main()
• definition of the method to create a new object
• definition of methods that bind to other messages

The intializations consists of the necessary #include files, object structure definition,
global variable declarations, and function prototypes. The main function, which is
called only once when the user types the name of your object into a box in a Max
patcher window for the first time, will define your objects class via setup()
function and binds methods that will be used for incoming messges. The only
requisite method for any class definition is the method that creates new objects.
Within this method, memory for the new object is allocated and inlets and outlets are
defined. Finally, methods that respond to other messages and other functions are
defined. An explantion of each of these four sections is given below using a very
simple object called bang, which simply outputs a bang upon a bang input. (See
Figure 1 for the complete source code.)

The bang object: Initialization

The following lines are required for all objects:

#include "ext.h" // Required for all Max external objects
void *this_class; // Required. Global pointing to this class

The next step is to define a data structure for the bang Max object. This structure
must start with a field called a t_object. The t_object contains references to the
bang object’s class definition as well as some other information. It is used by Max to
communicate with the bang object. The following is the data structure for the bang
object:

typedef struct _bang // Data structure for this object
{
 t_object b_ob; // Must always be the first field; used by Max
 void *b_out; // Pointer to an outlet
} t_bang;

It is a Max convention to start the names of each field in the data structure with a
lower case letter followed by an underscore (e.g. b_out).

After the object’s data structure has been declared, the class methods that will
respond to Max messages need to be declared. Your object will do its work by
responding to messages from the Max environment. Objects commonly receive
integer and float messages in their inlets. Your object’s methods will process these
numbers in some way and then send out messages using the object’s outlets.

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 6 9:25 PM

Your code must include methods (functions) that can respond to each message your
Max object will receive. The bang object will receive a “new” message when
someone types its name into a box in a Max patcher window. Therefore it is
necessary to provide a method that will handle this message and create a new
instance of the bang object. The bang object is also expected to send out a “bang”
message on the outlet, upon a receipt of a “bang” in the left inlet. Methods will have
to be written to handle this message. The declaration (prototype) of these methods is
shown below.

// Prototypes for methods: need a method for each incoming message
void *bang_new(void); // object creation method
void bang_bang(t_bang *d); // method for bang message

The bang object: main()

When Max creates your object for the first time, Max will load your external object
into memory and create the first instance of your class. At this time, Max will call
your external’s main function once and only once. The main function specifies how
your object should be initialized. The main function needs to do the following:
1. Set up your class: allocate memory for the object and specify methods for the

creation of instances of your object.
2. Define messages that the object can respond to and bind each message to a

method.

Here is the main() function of the bang object:

int main(void)
{
 // set up our class: create a class definition
 setup((t_messlist **) &this_class, (method)bang_new, 0L, (short)sizeof(t_bang), 0L, 0);

 addbang((method)bang_bang); // bind method "bang_bang" to the "bang" message
 return (0);
}

The setup function creates a definition of the bang object class, which will be used
by the bang_new method to create new instances of the bang object. In the above
call to the setup function for the bang object, this_class is the global variable
declared at the beginning of the code. The second argument, bang_new, is a pointer
to the instance creation method bang_new. This is the method that will be called
when the object receives a “new” message from the Max environment. Since the
bang object does not require any special memory cleanup when it is removed from
the Max environment, 0L is used in place of a pointer to a bang_free method. The
memory occupied by the bang object and all of its inlets and outlets will be removed
automatically by Max.

The next argument to setup allocates memory for the class. In this example,
sizeof(t_bang) is used to determine the number of bytes of memory needed.
Since we are not creating a user interface object, the next argument to menufun will
be 0L. The final 0 indicates that there is no argument to this object.

As mentioned above, the code must provide a method for each message you want to
respond to. In the main function, each method should respond to the message with
the functions: addint, addinx, addbang, addmess, addft, or addftx.
Since the bang object only responds to the “bang” message, only one method,
bang_bang, is needed. In order to bind the bang_bang method, which will output
a “bang”, to a “bang” input message, we use the routine addbang(bang_bang).

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 7 9:25 PM

The bang object: The object creation function

When a user creates a new instance of your object by typing the name bang into a
box in a Max patcher window, opening a file with your object already in it, or by
cutting and pasting your object, your object will receive a “new” message. This is a
request to your creation method to create an object that is an instance of your class.
The creation function then handles any arguments that were typed in the box in the
Max patcher window, initializes data fields, and creates the object’s inlets and
outlets. Finally, the creation function returns a pointer to the new instance of the
object. These actions are shown in the method bang_new listed below.

void *bang_new(void)
{
 t_bang *bang;

 // create the new instance and return a pointer to it
 bang = (t_bang *)newobject(this_class);
 bang->b_out = bangout(bang); // create a bang outlet
 return(bang); // must return a pointer to the new instance
}

The function, newobject, is used to create a new instance of the class bang. The
argument, this_class, is the global variable that points to this class. This pointer
was set by the setup function in the main function.

When your object is created, Max automatically creates one inlet, but other inlets and
outlets must be explicitly defined. Using the bangout function, an outlet (that only
outputs “bang” messages) will be created and returns a pointer, which will be stored
in the object’s data field b_out.

Finally, bang, the pointer to the new instance of our object that was returned by
the call to newobject, must be returned from the function bang_new.

Now we have a new instance of our object represented as a “bang” box in a Max
patcher window. It is now waiting to receive “bang” messages that will cause its
method to do the specified operation, namely, ouput a “bang”. We will now examine
how this is done.

The bang object: Handling the “bang” message
void bang_bang(t_bang *bang)
{
 outlet_bang(bang->b_out); // send a bang to the outlet bang->b_out
}

When a “bang” message arrives at the object’s left inlet, the bang_bang function
(method) is called. This happens, because in the main() the “bang” message, was
bound to this function bang_bang() by the function:

addbang((method)bang_bang);

The bang_bang method simply sends a “bang” messages via the outlet. The method
calls the Max function outlet_bang to cause the “bang” to be output. In the object
creation function, bang_new (see above), an outlet was created for this object with
the statement:

bang->b_out = bangout(bang);

This function returned a pointer to the object’s outlet which we stored in the struct
field bang->b_out.

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 8 9:25 PM

The diff object: Inlets and arguments

A simple object diff will be used to introduce how to add inlets and arguments to
your object. This object basically functions as the Max built-in “-” object. It outputs
the difference of two integers: the number coming in on the left inlet minus the
number stored in the object which can be either specified via the right inlet or in the
argument inside the object’s box. The source code is shown in Figure 2.

/* diff.c -- 97/03/24 IF (based on Dale Stammen's diff)
** 98/01/14 for PowerPC only
** This external defines an object similar to the standard "-" Max object.
** The diff object has 2 inlets and 1 outlet. Left inlet accepts bang and integers,
** right inlet accepts integers, and outlet outputs the difference of the 2 inputs.
*/

#include "ext.h" // Required for all Max external objects
void *this_class; // Required. Global pointing to this class

typedef struct _diff // Data structure for this object
{
 t_object d_ob; // Must always be the first field; used by Max
 long d_valleft; // Last value from left outlet
 long d_valright; // Last value from right outlet
 long d_valtotal; // Value to be sent to outlet
 void *d_out; // Pointer to outlet, need one for each outlet
} t_diff;

// Prototypes for methods: you need a method for each message you want to respond to
void *diff_new(long value); // Object creation method
void diff_int(t_diff *diff, long value); // Method for message "int" in left inlet
void diff_in1(t_diff *diff, long value); // Method for message "int" in right inlet
void diff_bang(t_diff *diff); // Method for bang message

int main(void) // main receives a copy of the Max function macros table
{
 // set up our class: create a class definition
 setup((t_messlist **) &this_class, (method)diff_new, 0L, (short)sizeof(t_diff),
 0L, A_DEFLONG, 0);

 addbang((method)diff_bang); // bind method "diff_bang" to the "bang" message

 addint((method)diff_int); // bind method "diff_int" to int's received in the left inlet

 addinx((method)diff_in1,1); // bind method "diff_in1" to int's received in the right inlet
 return (0);
}

/**
diff_new(long value)

inputs: value -- the integer from the typed argument in the object box
description: creates a new instance of our class diff. Called once when the external
 object is loaded.
returns: pointer to new instance
***/

void *diff_new(long value)
{
 t_diff *diff;

 diff = (t_diff *)newobject(this_class); // Create new instance and return a pointer to it

 diff->d_valright = value; // Initialize the difference value
 diff->d_valleft = 0;
 diff->d_valtotal = -value;

 diff->d_out = intout(diff); // Create our outlet

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 9 9:25 PM

 intin(diff, 1); // Create the right inlet

 return(diff); // Must return a pointer to the new instance
}
/**
diff_int(t_diff *a, long value)

inputs: diff - pointer to t_diff object
 value - value received in the inlet
description: substracts the right value with the incoming value. Stores the new left inlet
 value as well as the total and outputs the total.
returns: nothing
***/

void diff_int(t_diff *diff, long value)
{
 diff->d_valleft = value; // Store the value received in the left inlet

 diff->d_valtotal = diff->d_valleft - diff->d_valright; // Subtracts the right inlet
 // value from the left

 diff_bang(diff); // Call bang method right away since it's the left inlet
}

/***
diff_in1(t_diff *diff, long value)

inputs: diff - pointer to our object
 value - value received in the inlet
description: stores the new right value, calculates and stores the new difference between
 the left and right value
returns: nothing
***/

void diff_in1(t_diff *diff,long value)
{
 diff->d_valright = value; // Store the value

 diff->d_valtotal = diff->d_valleft - value; // Update new difference
}

/***
diff_bang(t_diff *a)

inputs: diff - pointer to our object
description: method called when bang is received: it outputs the current difference
 of the left and right values
returns: nothing
***/

void diff_bang(t_diff *diff)
{
 outlet_int(diff->d_out, diff->d_valtotal); // put out the current total
}

Figure 2. Source code for the diff object

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 10 9:25 PM

The diff object: Initialization

The data structure for the diff object is shown below. Note that three values are
stored within the object.

typedef struct _diff // Data structure for this object
{
 t_object d_ob; // Must always be the first field; used by Max
 long d_valleft; // Last value sent to left outlet
 long d_valright; // Last value sent to right outlet
 long d_valtotal; // Value to be sent to outlet
 void *d_out; // Pointer to outlet, need one for each outlet
} t_diff;

In the setup function in main() now has A_DEFLONG argument indicating that the
object accept one integer argument in the object box.

setup((t_messlist **) &this_class, diff_new, 0L, (short)sizeof(t_diff), 0L, A_DEFLONG, 0);

Three methods are bound with the three types of messages: “bang” in the left inlet,
integer entered in the left inlet, and integer entered in the right inlet.

addbang((method)diff_bang); // bind "diff_bang" to the "bang" message
addint((method)diff_int); // bind "diff_int" to int received in the left inlet
addinx((method)diff_in1,1); // bind "diff_in1" to int received in the right inlet

The diff object: The object creation function

Unlike the bang object above, the diff_new function is passed an integer argument
from the object box that the user may type. The object’s variables are initialized, an
outlet that output integer is created, and the right inlet, which accepts integers is also
created:

void *diff_new(long value)
{
 t_diff *diff;

 diff = (t_diff *)newobject(this_class); // Create new instance and return a pointer to it

 diff->d_valright = value; // Initialize the diff values
 diff->d_valleft = 0;
 diff->d_valtotal = value;

 diff->d_out = intout(diff); // Create our outlet

 intin(diff,1); // Create the right inlet

 return(diff); // Must return a pointer to the new instance
}

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 11 9:25 PM

The diff object: Methods

The diff_int method is called when an integer comes in on the left inlet. It stores
the value in d_valleft, subtracts that value with d_valright, storing the result in
d_valtotal, then calls the diff_bang method to output the result.

void *diff_int(t_diff *diff, long value)
{
 diff->d_valleft = value; // Store the value received in the left inlet
 diff->d_valtotal = diff->d_valleft + diff->d_valright; // Subtract right inlet value
 // from the left
 diff_bang(diff); // Call bang method right away since it's the left inlet
}

The diff_in1 method is called when an integer comes in on the right inlet. It stores
the new value in d_valright then updates the val_total.

void *diff_in1(t_diff *diff, long value)
{
 diff->d_valright = value; // Store the value
 diff->d_valtotal = diff->d_valleft + value; // Update new total
}

The diff_bang method is called when a “bang” comes in the left inlet or,
indirectly via diff_int method, when an integer comes in the left inlet.

void *diff_bang(t_diff *diff)
{
 outlet_int(diff->d_out, diff->d_valtotal); // simply put out the current total
}

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 12 9:25 PM

The diff_assist object: Adding to the Max’s New Object list and assistance messages

Two enhancements will be added to the diff object: the object (diff_assist) will be
included in the Patcher’s New Object list and the assistance messages, which
appears when the mouse is pointed at object’s inlets and outlets. The complete listing
of diff_assist object is in Figure 3.

To make an entry in the New Object list is very simple. All you need to do is to
include the following function in your main():

finder_addclass("All Objects", "diff_assist"); // add class to the New object list

If you want to add the object to the "Math" list, you could add the following:

finder_addclass("Math", "diff_assist");

In order to add the assistance messages, a method must be defined, which must be
bound to the Max message “assist”. The binding is done in the main() as follows:

addmess((method)diff_assist, "assist", A_CANT, 0); // bind method diff_assist to the
 // assistance message

The diff_assist object: diff_assist method
void diff_assist(t_diff *diff, Object *b, long msg, long arg, char *s) // copy the appropriate
message to the destination string
{
 if (msg == ASSIST_INLET) //#define ASSIST_INLET (1)
 {
 switch (arg)
 {
 case 0: sprintf(s, “%s”, "Left Operand");
 break;
 case 1: sprintf(s, “%s”, "Right Operand");
 }
 }
 else if (msg == ASSIST_OUTLET) //#define ASSIST_OUTLET (2)
 sprintf(s, "Result");
}

In the argument list for diff_assist, diff is a pointer to our object, b is a pointer to
the object’s box in the Max patcher window. msg will be one of two values: 1 if the
cursor is over an inlet or 2 if it is over an outlet. arg is the inlet or outlet number
starting at 0 for the left inlet. s is where you will copy a C string containing your
assistance information.

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 13 9:25 PM

/* diff_assist.c -- 97/03/24 IF (based on Dale Stammen's diff)
** 98/01/14 for PowerPC only IF
** 03/09/15 removed the usage of the resource file
** This external object defines an object similar to the standard "-" max object.
** The diff object has 2 inlets and 1 outlet. Left inlet accepts bang and integers,
** right inlet accepts integers, and outlet outputs the difference of the 2 inputs.
*/

#include "ext.h" // Required for all Max external objects

void *this_class; // Required. Global pointing to this class

typedef struct _diff // Data structure for this object
{
 t_obj d_ob; // Must always be the first field; used by Max
 long d_valleft; // Last value sent to left outlet
 long d_valright; // Last value sent to right outlet
 long d_valtotal; // Value to be sent to outlet
 void *d_out; // Pointer to outlet, need one for each outlet
} t_diff;

// Prototypes for methods: you need a method for each message you want to respond to
void *diff_new(long value); // Object creation method
void diff_int(t_diff *diff, long value); // Method for message "int" in left inlet
void diff_in1(t_diff *diff, long value); // Method for message "int" in right inlet
void diff_bang(t_diff *diff); // Method for bang message
void diff_assist(t_diff *diff, Object *b, long msg, long arg, char *s); // Assistance method

int main(void)
{
 // set up our class: create a class definition
 setup((t_messlist **) &this_class, (method)diff_new, 0L, (short) sizeof(t_diff), 0L,
 A_DEFLONG, 0);
 addbang((method)diff_bang); // bind method "diff_bang" to the "bang" message
 addint((method)diff_int); // bind method "diff_int" to int's received in the
 // left inlet
 addinx((method)diff_in1,1); // bind method "diff_in1" to int's received in the
 // right inlet
 addmess((method)diff_assist, "assist",A_CANT,0); // bind method "diff_assist" to
 // the assistance message
 finder_addclass("All Objects", "diff_assist"); // add class to the New object list
 return(0);
}

/**
diff_new(long value)

inputs: value -- the integer from the typed argument in the object box
description: creates a new instance of our class diff.
 Called once when the external object is loaded.
returns: pointer to new instance
***/

void *diff_new(long value)
{
 t_diff *diff;

 diff = (t_diff *)newobject(this_class); // Create the new instance
 diff->d_valright = value; // Initialize the values
 diff->d_valleft = 0;
 diff->d_valtotal = -value;
 diff->d_out = intout(diff); // Create our outlet
 intin(diff,1); // Create the right inlet
 return(diff); // Must return a pointer to the new instance
}

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 14 9:25 PM

/**
diff_int(t_diff *a, long value)

inputs: diff - pointer to t_diff object
 value - value received in the inlet
description: subtracts the right value with the incoming value. Stores the new left inlet
 value as well as the difference and outputs the difference.
***/
void diff_int(t_diff *diff, long value)
{
 diff->d_valleft = value; // Store the value received in the left inlet
 diff->d_valtotal = diff->d_valleft - diff->d_valright; // Subtracts right from the left
 diff_bang(diff); // Call bang method right away since it's the left inlet
}

/***
diff_in1(t_diff *diff, long value)

inputs: diff -- pointer to our object
 value -- value received in the inlet
description: stores the new right value, calculates and stores the
 new difference between the left and right value
***/
void diff_in1(t_diff *diff, long value)
{
 diff->d_valright = value; // Store the value
 diff->d_valtotal = diff->d_valleft - value; // Update new difference
}

/***
diff_bang(t_diff *a)

inputs: diff -- pointer to our object
description: method called when bang is received: it outputs the current
 sum of the left and right values
***/
void diff_bang(t_diff *diff)
{
 outlet_int(diff->d_out, diff->d_valtotal); // simply put out the current total
}

/***
void diff_assist(a, b, msg, arg, s)

inputs: diff - pointer to t_diff object
 b - pointer to the t_diff object's box
 msg - specifies whether request for inlet or outlet info
 arg - selected inlet or outlet number
 s - destination for assistance string
description: method called when assist message is received: it outputs the correct
 assistance message string to the patcher window
***/
void diff_assist(t_diff *diff, Object *b, long msg, long arg, char *s)
{ // copy the appropriate message to the destination string
 if (msg == ASSIST_INLET)
 {
 switch (arg)
 {
 case 0: sprintf(s, “%s”, "Left Operand");
 break;
 case 1: sprintf(s, “%s”, "Right Operand");
 }
 } else if (msg == ASSIST_OUTLET)
 sprintf(s, “%s”, "Result");
}

Figure 3 Source code for diff_assist object

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 15 9:25 PM

The absolut object: Float, Atom, and list

Thus far, the only data type we have been using is an integer type, namely long. In
this section, we’ll introduce the float data type, the Atom data type, and the list,
which is an array of Atoms.

The float data type is similar to long except that it involves floating-point numbers.
Max provides macros and functions to handle floats very similar to longs, e.g., to add
left inlets you would use:

addint(long_method);

for inlet that accepts long and use:

addfloat(float_method);

for inlet that accepts float.

An Atom is a special data type (a structure) that allows any of the four data types
(long, float, Symbol, Object) used in Max to be stored. Here is how it is defined:

union word /* union for packing any data type */
{
 long w_long;
 float w_float;
 t_symbol *w_sym;
 t_object *w_obj;
};

typedef struct atom // and an atom which is a typed datum
{
 short a_type; // from the defs below
 union word a_w;
} t_atom;

The struct member a_type specifies what type of data is stored in a_w, and it could
be any of the following:

#define A_NOTHING 0 // ends the type list
#define A_LONG 1 // Type-checked integer argument
#define A_FLOAT 2 // Type-checked float argument
#define A_SYM 3 // Type-checked symbol argument
#define A_OBJ 4 // for argtype lists; passes the value of sym (obsolete)
#define A_DEFLONG 5 // long but defaults to zero
#define A_DEFFLOAT 6 // float, defaults to zero
#define A_DEFSYM 7 // symbol, defaults to ""
#define A_GIMME 8 // request that args be passed as an array
 // the routine will check the types itself
#define A_CANT 9 // cannot typecheck args

One common place where Atom is used is when an argument of an object could be
of different data type, e.g. long or float. In the setup() function arguments are passed
as an array of Atoms (which is the list in Max). The A_GIMME is specified in the
type argument of the setup() function:

setup((t_messlist **) &this_class, (method)abs_new, 0L, (short)sizeof(t_abs), 0L,
 A_GIMME, 0);

When the instance creation function is called (in this case, abs_new), the number of
arguments (ac) entered and the array of Atoms (*av) are passed:

void *abs_new(Symbol *s, short ac, t_atom *av)

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 16 9:25 PM

/* absolut.c -- 02/10/01 IF
**
** Accepts either integers or floats depending on the argument
** provides assist messages without Resource
*/

#include "ext.h" // Required for all Max external objects
void *this_class; // Required. Global pointing to this class

typedef struct _abs // Data structure for this object
{
 t_object a_ob; // Must always be the first field; used by Max
 short a_mode; // Integer or float mode
 void *a_out; // Pointer to outlet, need one for each outlet
} t_abs;

// Prototypes for methods: you need a method for each message you want to respond to
void *abs_new(Symbol *s, short ac, Atom *av); // Object creation method
void abs_int(t_abs *abs, long value); // Method for message "int" in left inlet
void abs_flt(t_abs *abs, float value); // Method for message "float" in left inlet

int main(void)
{
 // set up our class: create a class definition
 setup((t_messlist **) &this_class, (method)abs_new, 0L, (short)sizeof(t_abs), 0L,
 A_GIMME, 0);
 addint((method)abs_int); // bind method "abs_int" to int received in the left inlet
 addfloat((method)abs_flt); // bind method "abs_flt" to float received in the left inlet
 return(0);
}

void *abs_new(Symbol *s, short ac, t_atom *av)
{
 t_abs *abs = (t_abs *)newobject(this_class); // Create the new instance
 abs->a_mode = A_LONG; // Initialize the values

 if (ac && av[0].a_type == A_FLOAT)
 {
 abs->a_out = floatout(abs); // Create float outlet
 abs->a_mode = A_FLOAT;
 }
 else
 abs->a_out = intout(abs); // Create int outlet
 return(abs); // Must return a pointer to the new instance
}

void abs_int(t_abs *abs, long value)
{
 if (abs->a_mode == A_LONG)
 outlet_int(abs->a_out, (value >= 0) ? value: -value);
 else
 outlet_float(abs->a_out, (float)((value >= 0) ? value: -value));
}

void abs_flt(t_abs *abs, float value)
{
 if (abs->a_mode == A_LONG)
 outlet_int(abs->a_out, (long)((value >= 0) ? value: -value));
 else
 outlet_float(abs->a_out, (value >= 0) ? value: -value);

}

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 17 9:25 PM

The minium object: List

A list in Max is simply an array of Atoms. A list will be used if you declare a method
that responds to the “list” message and receive its arguments with A_GIMME:

addmess((method)minimum_list, "list", A_GIMME, A_NOTHING);

Then your method, minimum_list in the example above, will be passed a list.
This is done by argc (short) and argv (t_atom *). argc is the number of
Atoms and argv points to the first Atom in the array. Here is an example:

void minimum_list(Minimum *x, Symbol *s, short argc, t_atom *argv)

The Symbol *s contains the message itself (in this case, “list”). The object minimum
illustrates use of these data types (see Figure 4).

Notice that we use the struct notation argv[i].a_type to access the a_type field. It is
also possible to use the pointer argv to access the field, i.e.,
(argv + i)->a_type. You may choose whatever style suits you best.

In the above example, if the Atom contains a long (i.e., a_type == A_LONG), we
want to store the argument into our internal Atom list, a_list as a long. Likewise, if
(a_type == A_FLOAT) we would store it as a float, and if (a_type == A_SYM) we
would store the argument as a symbol. Max provides several macros for storing an
item into an atom. These are:

SETLONG(Atom *a, long number);
SETFLOAT(Atom *a, float number);
SETSYM(Atom *a, Symbol *s);

Here are the current macro definitions as they appear in Max #include file
“ext_mess.h”.

#define SETSYM(ap, x) ((ap)->a_type = A_SYM, (ap)->a_w.w_sym = (x))
#define SETLONG(ap, x) ((ap)->a_type = A_LONG, (ap)->a_w.w_long = (x))
#define SETFLOAT(ap, x) ((ap)->a_type = A_FLOAT, (ap)->a_w.w_float = (x))

These macros accomplish two things. First the macro sets the a_type field of the
Atom to the correct type. This means that SETLONG will set the a_type field of the
Atom to A_LONG, SETFLOAT sets it to A_FLOAT, and SETSYM sets it to
A_SYM. The macro then puts the long, float, or the pointer to the symbol into the
union a_w. Remember that a pointer to the symbol is stored in the union, and not the
actual symbol.

In the above example we used the following line of code to call SETLONG:

SETLONG(a->a_list + i, argv[i].a_w.w_long);

In this call, a is a pointer to our Object. We use it to access the array of Atoms called
a_list that is in our object’s data structure. Since SETLONG requires a pointer to an
Atom, we must give it a pointer to the i th Atom in the array. When i == 0, a->a_list
+ i is a pointer to the first Atom in the array a_list. Likewise, if i == 5, a->a_list +
i is a pointer to the 6th Atom in the array.

Notice how we access the long field of the union a_w in the argv Atom list. We write
argv[i] to access the i th Atom in the argv list. argv[i].a_w accesses the union a_w
field of the struct atom. Finally, argv[i].a_w.w_long accesses the long value stored in
the union a_w. We first access the atom, then the union, and finally the data.

Another way of putting a long value into an Atom is:

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 18 9:25 PM

a->a_list[i].a_type = A_LONG;
a->a_list[i].a_w.w_long = 100;

Using this method you are responsible for setting the a_type field yourself.

You can use SETFLOAT the same way as SETLONG. SETFLOAT will set the
a_type field to A_FLOAT, and place the float value in the float field of the union
a_w (i.e., a_w.w_float). To access a float field of an Atom in the argv list in the
above example, we write:

argv[i].a_w.w_float or (argv + i)->a_w.w_float

Likewise, to access this value in our internal array of Atoms we write:

a->a_list[i].a_w.w_float or (a->a_list + i)->a_w.w_float

/* minimum.c -- output the minimum of a group of numbers ------- */
// The type of output (long or float) is determined by the first number in the argument
// If no argument, it defaults to long
// From the Max 3.5 distribution. Slightly modified by IF 97/04/02
// For PowerPC only 98/01/14 IF
// Minor cleanup 02/09/29 IF
// Topics covered: floats, Atoms, lists

#include "ext.h"
void *class;

#define MAXSIZE 32

typedef struct minimum
{
 t_object m_ob;
 Atom m_args[MAXSIZE];
 long m_count;
 short m_incount;
 short m_outtype;
 void *m_out;
} Minimum;

void DoAtomMin(Atom *min, Atom *new);
void minimum_bang(Minimum *x);
void minimum_int(Minimum *x, long n);
void minimum_in1(Minimum *x, long n);
void minimum_float(Minimum *x, double f);
void minimum_ft1(Minimum *x, double f);
void minimum_list(Minimum *x, Symbol *s, short ac, Atom *av);
void minimum_assist(Minimum *x, void *b, long m, long a, char *s);
void *minimum_new(Symbol *s, short ac, Atom *av);

int main(void)
{
 setup((t_messlist **)&class, (method)minimum_new,0L, (short)sizeof(Minimum),
 0L, A_GIMME, 0);
 addbang((method)minimum_bang);
 addint((method)minimum_int);
 addinx((method)minimum_in1, 1);
 addfloat((method)minimum_float);
 addftx((method)minimum_ft1, 1);
 addmess((method)minimum_list, "list", A_GIMME, 0);
 addmess((method)minimum_assist, "assist", A_CANT, 0);
 finder_addclass("Arith/Logic/Bitwise", "minimum");
 reutnr(0);
}

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 19 9:25 PM

void DoAtomMin(Atom *min, Atom *new) // check to see if new minimum,
 // depending on the data types
{
 if (min->a_type == A_NOTHING) // At startup set minimum
 {
 *min = *new;
 return;
 }
 if (min->a_type == A_FLOAT) // old is FLOAT
 {
 if (new->a_type == A_FLOAT) // new is FLOAT
 {
 if (new->a_w.w_float < min->a_w.w_float)
 min->a_w.w_float = new->a_w.w_float;
 }
 else //new is LONG, old is FLOAT
 {
 if ((float)new->a_w.w_long < min->a_w.w_float)
 min->a_w.w_float = (float)new->a_w.w_long;
 }
 }
 else // old is LONG
 {
 if (new->a_type == A_LONG) // new is LONG
 {
 if (new->a_w.w_long < min->a_w.w_long)
 min->a_w.w_long = new->a_w.w_long;
 }
 else // new is float, old is LONG
 {
 if ((long)new->a_w.w_float < min->a_w.w_long)
 min->a_w.w_long = (long)new->a_w.w_float;
 }
 }
}

void minimum_bang(Minimum *x)
{
 short i;
 Atom themin;
 long res;
 double fres;

 themin.a_type = A_NOTHING;
 for (I = 0; i < x->m_count; i++) // check if any of the input is a new minimum
 DoAtomMin(&themin, x->m_args + i);
 if (x->m_outtype == A_LONG)
 {
 if (themin.a_type == A_LONG)
 res = themin.a_w.w_long;
 else
 res = (long)themin.a_w.w_float;
 outlet_int(x->m_out,res);
 }
 else
 {
 if (themin.a_type == A_FLOAT)
 fres = themin.a_w.w_float;
 else
 fres = (float)themin.a_w.w_long;
 outlet_float(x->m_out,fres);
 }
}

void minimum_int(Minimum *x, long n)
{
 SETLONG(x->m_args,n);
 minimum_bang(x);
}

void minimum_in1(Minimum *x, long n)
{

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 20 9:25 PM

 SETLONG(x->m_args+1,n);
 x->m_count = 2;
}

void minimum_float(Minimum *x, double f)
{
 SETFLOAT(x->m_args,f);
 minimum_bang(x);
}

void minimum_ft1(Minimum *x, double f)
{
 SETFLOAT(x->m_args+1,f);
 x->m_count = 2;
}

void minimum_list(Minimum *x, Symbol *s, short ac, Atom *av)
{
 short i;

 if (ac >= MAXSIZE)
 ac = MAXSIZE - 1;
 for (i = 0; i < ac; i++, av++)
 {
 if (av->a_type == A_LONG)
 SETLONG(x->m_args + i, av->a_w.w_long);
 else if (av->a_type == A_FLOAT)
 SETFLOAT(x->m_args + i, av->a_w.w_float);
 }
 x->m_count = ac;
 minimum_bang(x);
}

void minimum_assist(Minimum *x, void *b, long m, long a, char *s)
{
 // assist_string(ResourceID, m, a, 1, 3, s);
}

void *minimum_new(Symbol *s, short ac, t_atom *av)
{
 Minimum *x;

 x = (Minimum *)newobject(class);
 x->m_count = 2;
 if (ac)
 {
 x->m_args[1] = *av; // initialize with the first argument
 if (av->a_type == A_LONG)
 {
 x->m_args[0].a_type = x->m_outtype = A_LONG;
 x->m_out = intout(x);
 x->m_args[0].a_w.w_long = 0;
 intin(x, 1);
 }
 else if (av->a_type == A_FLOAT)
 {
 x->m_args[0].a_type = x->m_outtype = A_FLOAT;
 x->m_out = floatout(x);
 x->m_args[0].a_w.w_float = 0;
 floatin(x, 1);
 }
 }
 else // if no argument, set to a default
 {
 x->m_outtype = A_LONG;
 intin(x,1);
 x->m_out = intout(x);
 SETLONG(x->m_args + 1, 0L);
 SETLONG(x->m_args, 0L);
 }
 return (x);

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 21 9:25 PM

}

Figure 4. Source code for the minimum object

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 22 9:25 PM

More Atoms and list

Max uses Atoms when passing messages between objects. If your object is going to
be able to send a list out of its outlet, it will have to use a list of Atoms. Likewise, if
you wish to receive lists, or more than 7 typed data in arguments from your object’s
box in the Max patcher, you will again have to deal with Atoms. Remember, Atoms
are simply a struct that have a field of type union that allows them to contain
different types of data.

It is now necessary to examine the structure of a message in Max. Consider the
following message box:

This message box contains 5 items, the symbol “play”, the long integers 100 and
200, the float 2.5, and finally the symbol “stop”. If this message is sent to your
object, your object will actually receive the message “play”, followed by a list of 4
atoms containing 100, 200, 2.5 and “stop”. In other words, “play” is the message and
the remaining items are its arguments. One way to make your object understand this
message is to use addmess() in its main function.

addmess(max_play, “play”, A_LONG, A_LONG, A_FLOAT, A_SYM, 0); // bind method max-play to the
“play” message”

or with optional arguments, so that if some of the arguments are not specified by the
user, the object will set them to a default values:

addmess(max_play, “play”, A_DEFLONG, A_DEFLONG, A_DEFFLOAT, A_DEFSYM, 0);

But this approach requires that you always have two longs, a float and a symbol in
the right order. You are also limited to a total of seven arguments using this
declaration method.

There is another way for your object to receive messages and their arguments. When
you declare a method to receive its arguments with A_GIMME, the arguments will
be passed to your object in an argc, argv list. More about this argc, argv stuff later.

In order to tell Max to give you all of the arguments in a message, you bind your
method to the message in your main function with the Max function addmess. For
example, to bind the method atoms_play with the above message you would write in
your main function:

addmess(atoms_play, “play”, A_GIMME, 0); // bind method “atoms_play” to the “play” message”

This call binds the method atoms_play to the message “play”. Whenever the object
receives the message “play”, Max will call the method atoms_play and pass it the
message and a list of arguments.

A_GIMME tells Max to pass the message and its arguments without typechecking
them. You are now responsible for typechecking them yourself.

You now need to write a method that will be able to receive this message and its
arguments. The method atoms_play would be declared as:

void *atoms_play(Example *a, Symbol *mess, int argc, Atom *argv)

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 23 9:25 PM

In this function declaration, a is a pointer to your object, mess is pointer to the
message that called this method (in this example the, “play” message). The integer
argc is the number of arguments contained in the atom list and argv is a pointer to an
array of atoms containing the actual arguments. Up to 65,536 arguments can be
received by a method.

If your object receives the message “play 100 200 2.5 stop”, Max will call your play
function. Your atoms_play function will receive a pointer to the symbol “play” in
mess, the integer 4 in argc, and finally a pointer to a list of atoms containing the
values 100 200 2.5 “stop”. The code in Figure 5 shows you how to typecheck and
access the data in the atom list.

#define MAX_ARGS 20

typedef struct example // data structure for this object
{
 Object a_ob;
 Atom a_list[MAX_ARGS]; // array of Atoms: list
 int a_size; // number of Atoms in the list
} Example;

void *atoms_play(Example *a,int argc, Atom *argv)
{
 int i;

 a->a_size = argc;
 if (a->a_size > MAX_ARGS)
 a->a_size = MAX_ARGS;

 for(i = 0; i < a->a_size; i++)
 switch(argv[i].a_type) // type check each argument
 {
 case A_LONG:
 SETLONG(a->a_list + i, argv[i].a_w.w_long);
 post(“argument %ld is a long: %ld”, (long)i, argv[i].a_w.w_long);
 break;
 case A_FLOAT:
 SETFLOAT(a->a_list + i, argv[i].a_w.w_float);
 post(“argument %ld is a float: %f”, (long)i, argv[i].a_w.w_float);
 break;
 case A_SYM:
 SETSYM(a->a_list + i, argv[i].a_w.w_sym);
 post(“argument %ld is a symbol: %s”,(long)i, argv[i].a_w.w_sym->s_name);
 break;
 }
}

Figure 5. Type checking an argc, argv list of atoms

This example receives a list of arguments from Max whenever the object receives the
“play” message. It then checks the type of each Atom in the argv list and stores it
into an internal array of Atoms. Finally, it reports to the Max window the type and
value of the argument.

When working an Atom, you must be able to correctly access its various fields. In
Figure 5, we examine the a_type field of an Atom to determine the type of data
contained in the union. As mentioned above a_type will be either A_LONG,
A_FLOAT, or A_SYM. These constants are declared in the Max #include file
“ext_mess.h”.

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 24 9:25 PM

When you want to store a symbol into an Atom, or access a symbol already in an
Atom, you must remember that a pointer to the symbol is stored in the Symbol field
of the union a_w. The field in the union a_w is defined as Symbol *w_sym.
Therefore, in order to store a symbol into an Atom you store the pointer to the
symbol and not the symbol itself. Likewise, when you access a symbol, you need to
access what the pointer in the Symbol field points to. In other words, to get at a
symbol, there is yet another stage of indirection.

In the above example, we use SETSYM to set the pointer to the symbol contained in
the argv list into our internal Atom list a_list. Therefore, SETSYM wants a pointer to
the symbol as its second argument.

SETSYM(a->a_list + i, argv[i].a_w.w_sym);

Notice how we post the actual symbol to the Max window. We use the following
post function:

post(“argument %ld is a symbol: %s”, (long) i, argv[i].a_w.w_sym->s_name);

Note that in order to access our actual symbol, we must access what the symbol
pointer points to:

argv[i].a_w.w_sym->s_name

In the Max #include file “ext_mess.h” a symbol is defined as the following struct:

struct symbol
{
 char *s_name; /* name */
 struct object *s_thing; /* possible binding to an object */
} Symbol;

Therefore, in order to access a symbol in an Atom, first access the Atom, then the
union a_w, then the w_sym field and finally the s_name field of the Symbol, i.e.,
argv[i].a_w.w_sym->s_name.

Now that you have a list of Atoms in your object you can send it to an outlet. To do
this you need to create a list outlet using the Max function:

Outlet *listout (void *owner)

In our example we would create the list outlet in the object’s creation function
example_new.

a->a_list_outlet = listout(Example *x);

To send the internal list a_list out this outlet, one would use the Max function:

void *outlet_list(Outlet *x, Symbol *msg, int argc, Atom *argv);

We would call this function with the following arguments:

outlet_list(a->a_list_outlet, “list”, a->a_size, &(a->a_list));

where a->a_list_outlet is a pointer to the outlet we created with listout, “list” is the
message to be sent, a->a_size is the number of Atoms in the internal Atom list, and
&(a->a_list) is a pointer to the first Atom in this list.

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 25 9:25 PM

The mymetro object: Clock routines

This example uses the Clock object (Zicarelli 2003, 55–8), which allows scheduling
in Max. The routines associated with the Clock objects allow events to happen in the
future. This is accomplished by assigning a function to be executed when the clock
goes off and indicate when the clock is to go off. More specifically:
1. Use clock_new() to create a Clock object and assign the function to be

executed when it goes off.
2. Use clock_delay() to schedule the execution of the clock function in the

future relative to current time. Use clock_fdelay() for floating point version.
Use clock_unset() to stop the Clock.

3. When the Clock is no longer needed, it should be removed with freeobject
function.

/* Defines the object "mymetro" which is similar to the standard
 "metro" Max object. The metro object has 2 inlets and 2 outlets.

 "bang" in left inlet starts metronome
 "stop" in left inlet stops metronome
 integer in right inlet sets tempo in ms

 left output sends bangs at each metronome interval
 right outlet outputs current time

 The object also posts messages to the Max window indicating the current state of
 mymetro.
*/

#include "ext.h" // Required for all Max external objects
void *class; // Required. Global pointing to this class

#define DEFAULT_TEMPO 1000
#define MIN_TEMPO 40

typedef struct _metro /* data structure for this object */
{
 t_object m_ob; /* must always be the first field; used by Max */
 void *m_clock; /* pointer to clock object */
 long m_interval; /* tempo in milliseconds */
 void *m_bang_outlet; /* pointers to bang outlet */
 void *m_time_outlet; /* pointers to time outlet */
} t_metro;

void *metro_new(long value);
void metro_in1(t_metro *m, long value);
void metro_bang(t_metro *m);
void metro_assist(t_metro *m, t_object *b, long msg, long arg, char *s);
void metro_free(t_metro *m);
void metro_stop(t_metro *m);
void clock_function(t_metro *m);

int main(void)
{
 /* set up our class: create a class definition */
 setup((t_messlist **) &class, (method)metro_new, (method)metro_free,
 (short)sizeof(t_metro), 0L, A_DEFLONG, 0);

 /* bind method "metro_bang" to the "bang" message */

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 26 9:25 PM

 addbang((method)metro_bang);
 /* bind method "metro_in1" to int's received in the right inlet */
 addinx((method)metro_in1,1);
 /* bind method "metro_stop" to the "stop" message" */
 addmess((method)metro_stop,"stop",0);
 /* bind method "metro_assist" to the assistance message" */
 // addmess((method)metro_assist,"assist",A_CANT,0);
 /* add class to the New object list */
 finder_addclass("All Objects","mymetro");
 return (0);
}

/**
metro_new(long value)

inputs: value - the integer from the typed in argument in the object box
description: creates a new instance of this class metro.
returns: pointer to new instance
***/
void *metro_new(long value)
{
 t_metro *m;

 m = (t_metro *)newobject(class); // create the new instance and return a pointer to it

 if (value > MIN_TEMPO) // initialize
 {
 m->m_interval = value; // save tempo argument from box
 post("mymetro tempo set to %ld", value);
 }
 else
 {
 m->m_interval = DEFAULT_TEMPO; // set to default tempo
 post("mymetro set to default tempo of %ld ms", DEFAULT_TEMPO);
 }
 m->m_clock = clock_new(m, (method)clock_function); // create the metronome clock

 intin(m, 1); // create the right inlet
 m->m_time_outlet = intout(m); // create right outlet for time
 m->m_bang_outlet = bangout(m); // create left outlet for ticks
 return(m);
}

/***
metro_in1(t_metro *m, long value)

inputs: m -- pointer to our object
 value -- value received in the inlet
description: stores the new metronome tempo value
***/
void metro_in1(t_metro *m, long value)
{
 m->m_interval = value; // store the new metronome interval
 post("metronome tempo changed to %ld", value);
}

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 27 9:25 PM

/***
void metro_bang(t_metro *m)

inputs: m -- pointer to our object
description: method called when bang is received: it starts the metronome
***/
void metro_bang(t_metro *m)
{
 long time;

 time = gettime(); // get current time
 clock_delay(m->m_clock, 0L); // set clock to go off now
 post("clock started at %ld", time);
}

/***
void metro_stop(t_metro *m)

inputs: m -- pointer to our object
description: method called when myMetro receives "stop" message. Stops the metronome
***/
void metro_stop(t_metro *m)
{
 long time;

 time = gettime(); // get current time
 clock_unset(m->m_clock); // remove the clock routine from the scheduler
 outlet_int(m->m_time_outlet, time);
 post("metronome stopped at %ld", time);
}

/***
void clock_function(t_metro *m)

inputs: m -- pointer to our object
description: method called when clock goes off: it outputs a bang to be sent to the
 outlet and resets the clock to go off after the next interval.
***/
void clock_function(t_metro *m)
{
 long time;

 time = gettime(); // get current time
 clock_delay(m->m_clock, m->m_interval); // schedule another metronome click
 outlet_bang(m->m_bang_outlet); // send out a bang
 outlet_int(m->m_time_outlet, time); // send current time to right outlet
 post("clock_function %ld", time);
}

/***
metro_free(t_metro *m)

inputs: m -- pointer to our object
description: method called when t_metro objects is destroyed. It is used to free memory
 allocated to the clock.
***/
void metro_free(t_metro *m)
{
 clock_unset(m->m_clock); // remove the clock routine from the scheduler
 clock_free(m->m_clock); // free the clock memory
}

Figure 6. Source code for mymetro.c

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 28 9:25 PM

Writing MSP External Objects

Creating a MSP external object is very similar to creating a Max externals. There are
two additional methods you need to create: perform method and dsp method. To
create a Xcode project, copy an existing Xcode project then make two
modifications.With the project open, go to Add to Project… under the Project then
choose MaxAudioAPI.framework (in /Library/Frameworks).

Open the target panel by double-clicking on the target, then choose Search Paths
under Settings, click on Headers then click on the + (plus) button to add
MaxMSP-SDK/4.5 hearders/c74support/msp-includes as shown below.

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 29 9:25 PM

An explanation of how to setup an MSP external is given below using a very simple
object called thru~, which simply outputs the input. (See Figure 7 for the complete
source code.)

/# thru~.c
** one channel thru object (a minimal MSP object)
** 99/04/05 IF
** 00/02/21 IF mono only, see thru2~ for the stereo version
*/
#include "ext.h" // Required for all Max external objects
#include "z_dsp.h" // Required for all MSP external objects

void *thru_class;

typedef struct _thru // Data structure for this object
{
 t_pxobject x_obj;
} t_thru;

void *thru_new(void);
t_int *thru_perform(t_int *w);
void thru_dsp(t_thru *x, t_signal **sp, short *count);

void main(void)
{
 setup((t_messlist **)&thru_class, (method)thru_new, (method)dsp_free,
 (short)sizeof(t_thru), 0L, 0);
 addmess((method)thru_dsp, "dsp", A_CANT, 0);
 dsp_initclass();
}

void *thru_new(void)
{
 t_thru *x = (t_thru *)newobject(thru_class);
 dsp_setup((t_pxobject *)x, 1); // left inlet
 outlet_new((t_pxobject *)x, "signal"); // left outlet
 return (x);
}

void thru_dsp(t_thru *x, t_signal **sp, short *count)
{
 post("thru~ inlet: %d outlet: %d", sp[0]->s_vec, sp[1]->s_vec);
 post("thru~ size of buffer: %d", sp[0]->s_n);
 dsp_add(thru_perform, 3, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n);
}

t_int *thru_perform(t_int *w)
{
 t_float *inL = (t_float *)(w[1]);
 t_float *outL = (t_float *)(w[2]);
 int n = (int)(w[3]);

 while (n--)
 *outL++ = *inL++;
 return (w + 4); // always add one more than the 2nd argument in dsp_add()
}

Figure 7. Source code for thru~.c

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 30 9:25 PM

The thru~ object: Initialization

In addition to the required “ext.h,” “z_dsp.h” must be included. z_dsp.h and other
MSP-specific header files can be found in the MSP #includes folder.

#include "ext.h" // Required for all Max external objects
#include "z_dsp.h" // Required for all MSP external objects

The data structure to define a data structure for the MSP object is different from Max
objects. The first field in the struct is the t_pxobject instead of the t_object.
The following is the data structure for the thru~ object:

typedef struct _thru // Data structure for this object
{
 t_pxobject x_obj;
} t_thru;

A minimum of three functions must be called in the main(). The first is the
setup(), which is same as the call in the Max objects, except that dsp_free must
be passed as parameter to free memory. The message binding function, addmess()
is called to bind the system message “dsp” to your dsp method, which will add your
perform method to the DSP chain. The message “dsp” is sent to your object
whenever the user starts DAC or ADC. Finally, dsp_initclass() is called to
transparently add other methods to your object. As in Max objects, if there are other
messages to be bound, it should be done here.

void main(void)
{
 setup((t_messlist **)&thru_class, (method)thru_new, (method)dsp_free,
 (short)sizeof(t_thru), 0L, 0);
 addmess((method)thru_dsp, "dsp", A_CANT, 0);
 dsp_initclass();
}

The thru~ object: New instance creation

In the instance creation function, thru_new(), a new object is created via the
newobject() function. Inlet that accepts signal data is created by the
dsp_setup() function. This function must be called even if your object does not
have any signal inlet, in which case 0 should be passed as the second parameter. The
signal outlets are created using the outlet_new() function. Use multiple call to
outlet_new() to create additional outlets. Non-signal inlets, when there are no
signal inlets, can be created using the standard functions (e.g. intin, floatin,
inlet_new).

void *thru_new(void)
{
 t_thru *x = (t_thru *)newobject(thru_class);
 dsp_setup((t_pxobject *)x, 1); // left inlet
 outlet_new((t_pxobject *)x, "signal"); // left outlet
 return (x);
}

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 31 9:25 PM

The thru~ object: The dsp method

The dsp method will be called via the “dsp” message from MSP when it is building
the DSP call chain (when audio is turned on). Your task is to add your perform
method to the chain using the dsp_add(). When MSP calls this function, it is
passed the object, an array containing buffers to inlets and outlets defined, and
another array that indicates the number of connections to the inlets and outlets. Note
that you must add a perform method even if no inlets and outlets are connected.

void thru_dsp(t_thru *x, t_signal **sp, short *count)
{
 dsp_add(thru_perform, 3, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n);
}

The first parameter in dsp_add() is the name of your perform method, the second
number indicates the number of arguments in the perform method, followed by the
arguments, all of which must be the size of a pointer or a long and appears in your
perform method as an array of t_int. The second parameter passed to the dsp
method, t_signal **sp, is an array of pointers to struct t_signal (defined in
z_dsp.h).

typedef struct _signal
{
 int s_n; // number of samples: Signal Vector Size
 t_sample *s_vec; // pointer to inlet/outlet buffer
 float s_sr; // sample rate
 struct _signal *s_next;
 struct _signal *s_nextused;
 short s_refcount;
 short s_zero;
} t_signal;

The array is ordered left to right for inlets then left to right for outlets.

The thru~ object: The perform method

The perform method is where the actual signal processing take place. The method is
added to the DSP signal chain by the dsp method (see above) and will be repeatedly
called as long as the audio is on.

t_int *thru_perform(t_int *w)
{
 t_float *inL = (t_float *)(w[1]);
 t_float *outL = (t_float *)(w[2]);
 int n = (int)(w[3]);

 while (n--)
 *outL++ = *inL++;
 return(w + 4); // always add one more than the 2nd argument in dsp_add()
}

The parameters passed to the perform method are typically pointers to buffers
representing the inlets and outlets, and the size of the buffer, which is usually the
Signal Vector Size (DSP Status).

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 32 9:25 PM

The MSP objects: Summary of events and related functions

As with Max objects, when the user creates the object for the first time, the main() is
called once. The object_new() function is called every time the object is created. The
object_dsp() function is called every time the DAC/ADC is started or sometimes
when connection to object is changed, which initiates the building of the DSP chain.
Finally, the object_perform() function is called at every audio interrupt.

The thru2~ object: Stereo version of thru~

Figure 8 is the source code for the thru2~ object, which is the stereo version of the
thru~ object with two inlets and two outlets. Note that in the thru2_new(), a flag
(x->x_obj.z_misc) is set so that inlet and outlet points to two different memory
locations. This, in most cases, is not needed or even desired but used here as an
illustration. Among the standard MSP object only fft~/ifft~ and tapout` set this flag.
When this flag is not set, which is the default, the input and output buffer maybe the
same.

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 33 9:25 PM

/* thru2~.c -- two channel thru object
** 99/04/05 IF
** 00/02/21 IF set x->x_obj.z_misc
*/
#include "ext.h" // Required for all Max external objects
#include "z_dsp.h" // Required for all MSP external objects

void *thru2_class;

typedef struct _thru2 // Data structure for this object
{
 t_pxobject x_obj;
} t_thru2;

void *thru2_new(void);
t_int *thru2_perform(t_int *w);
void thru2_dsp(t_thru2 *x, t_signal **sp, short *count);

void main(void)
{
 setup((t_messclass **)&thru2_class, (method)thru2_new, (method)dsp_free,
 (short)sizeof(t_thru2), 0L, 0);
 addmess((method)thru2_dsp, "dsp", A_CANT, 0);
 dsp_initclass();
}

void *thru2_new(void)
{
 t_thru2 *x = (t_thru2 *)newobject(thru2_class);
 dsp_setup((t_pxobject *)x, 2); // two inlets
 outlet_new((t_pxobject *)x, "signal"); // left outlet
 outlet_new((t_pxobject *)x, "signal"); // right outlet
 x->x_obj.z_misc = Z_NO_INPLACE;
 return (x);
}

void thru2_dsp(t_thru2 *x, t_signal **sp, short *count)
{
 dsp_add(thru2_perform, 5, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec,
 sp[3]->s_vec, sp[0]->s_n);
}

t_int *thru2_perform(t_int *w)
{
 t_float *inL = (t_float *)(w[1]);
 t_float *inR = (t_float *)(w[2]);
 t_float *outL = (t_float *)(w[3]);
 t_float *outR = (t_float *)(w[4]);
 int n = (int)(w[5]);
 while (n--)
 {
 *outL++ = *inL++;
 *outR++ = *inR++;
 }
 return (w + 6); // always add one more than the 2nd argument in dsp_add()
}

Figure 8. Source code for thru2~.c

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 34 9:25 PM

The thru2~ object: New instance creation

In the instance creation function, thru2_new(), a new object is created with two
signal inlets by specifying 2 as the second argument of dsp_setup(). Two outlets
are created by calling outlet_new() twice. As mentioned before the flag x-
>x_obj.z_misc is set (via Z_NO_INPLACE, which is defined in z_proxy.h) to
guarantee that the input buffer and output buffer point to different memory locations.

void *thru2_new(void)
{
 t_thru2 *x = (t_thru2 *)newobject(thru2_class);
 dsp_setup((t_pxobject *)x, 2); // two inlets
 outlet_new((t_pxobject *)x, "signal"); // left outlet
 outlet_new((t_pxobject *)x, "signal"); // right outlet
 x->x_obj.z_misc = Z_NO_INPLACE;
 return (x);
}

The thru2~ object: The dsp method

Because there are two inlets and two outlets five arguments must be passed to the
perform method. The ordering of sp[] array is inlets left to right then outlets left to
right. So that sp[0] points to the left inlet, sp[1] to the right inlet, sp[2] to the
right outlet, and sp[3] to the right outlet.

void thru2_dsp(t_thru2 *x, t_signal **sp, short *count)
{
 dsp_add(thru2_perform, 5, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec,
 sp[3]->s_vec, sp[0]->s_n);
}

The thru2~ object: The perform method

This perform method has two inputs and two outpus.

t_int *thru2_perform(t_int *w)
{
 t_float *inL = (t_float *)(w[1]);
 t_float *inR = (t_float *)(w[2]);
 t_float *outL = (t_float *)(w[3]);
 t_float *outR = (t_float *)(w[4]);
 int n = (int)(w[5]);
 while (n--)
 {
 *outL++ = *inL++;
 *outR++ = *inR++;
 }
 return (w + 6); // always add one more than the 2nd argument in dsp_add()
}

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 35 9:25 PM

The thru0~ object: No op version of thru2~

Depending on how you connect objects it may be that the input and output buffers
are the same, so you don’t actually have to do “anything” to have signals go through
an object (see Figure 9). Do not assume that this will always be the case, however.

/* thru0~.c
** two channel thru object (absolute minimal MSP object)
** 99/04/05 IF
** 00/02/21 IF see thru2~ for the not-in-place version
*/
#include "ext.h"
#include "z_dsp.h"

void *thru_class;

typedef struct _thru
{
 t_pxobject x_obj;
} t_thru;

void *thru_new(double val);
t_int *thru_perform(t_int *w);
void thru_dsp(t_thru *x, t_signal **sp, short *count);

void main(void)
{
 setup(&thru_class, thru_new, (method)dsp_free, (short)sizeof(t_thru), 0L, 0);
 addmess((method)thru_dsp, "dsp", A_CANT, 0);
 dsp_initclass();
}

void *thru_new(double val)
{
 t_thru *x = (t_thru *)newobject(thru_class);
 dsp_setup((t_pxobject *)x, 2); // two inlets
 outlet_new((t_pxobject *)x, "signal"); // right outlet
 outlet_new((t_pxobject *)x, "signal"); // left outlet
 return (x);
}

void thru_dsp(t_thru *x, t_signal **sp, short *count)
{
 dsp_add(thru_perform, 0);
}

t_int *thru_perform(t_int *w)
{
 return (w + 1);
}

Figure 9. Source code for thru0~.c

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 36 9:25 PM

The thrugain~ object: signal and non-signal inlets and outlets

The thrugain~ object demonstrates how to combine signal inlets and outlets with
non-signal inlets and outlets. The non-signal (bang, int, float, messages) inlets and
outlets must appear to the right of signal inlets and outlets. Therefore the order in
which the inlets and outlets are created in the new function is strictly obeyed. The
non-signal inlet creation methods (initin, floatin) must precede dsp_setup() and non-
signal outlet creation methods (bangout, intout, floatout, etc.) must precede signal’s
outlet_new() methods.

/* thrugain~.c one signal inlet, one float inlet, one signal outlet, one float outlet
**
** 02/11/04 IF
*/
#include "ext.h" // Required for all Max external objects
#include "z_dsp.h" // Required for all MSP external objects

void *thrugain_class;

typedef struct _thrugain // Data structure for this object
{
 t_pxobject t_obj;
 t_float t_gain;
 void *t_out; // float outlet
} t_thrugain;

void *thrugain_new(void);
t_int *thrugain_perform(t_int *w);
void thrugain_dsp(t_thrugain *x, t_signal **sp, short *count);
void thrugain_float(t_thrugain *x, t_float val);

void main(void)
{
 setup((t_messlist **)&thrugain_class, (method)thrugain_new, (method)dsp_free,
 (short)sizeof(t_thrugain), 0L, 0);
 addmess((method)thrugain_dsp, "dsp", A_CANT, 0);
 addftx((method)thrugain_float, 9); // 9 is the maximum, it has to match the number
 dsp_initclass(); // in floatin()
}

void *thrugain_new(void)
{
 t_thrugain *x = (t_thrugain *)newobject(thrugain_class);
 x->t_gain = 1.0;
 floatin((t_pxobject *)x, 9); // right float inlet
 dsp_setup((t_pxobject *)x, 1); // left signal inlet, must come after floatin
 x->t_out = floatout((t_pxobject *)x); // right float outlet
 outlet_new((t_pxobject *)x, "signal"); // left signal outlet, must come after floatout
 return (x);
}

void thrugain_float(t_thrugain *x, t_float val)
{
 post("Float in: %f", val);
 x->t_gain = val;
 outlet_float(x->t_out, x->t_gain);
}

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 37 9:25 PM

void thrugain_dsp(t_thrugain *x, t_signal **sp, short *count)
{
 dsp_add(thrugain_perform, 4, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n, x);
}

t_int *thrugain_perform(t_int *w)
{
 t_float *inL = (t_float *)(w[1]);
 t_float *outL = (t_float *)(w[2]);
 int n = (int)(w[3]);
 t_thrugain *x = (t_thrugain *)w[4];
 while (n--)
 *outL++ = x->t_gain * *inL++;

 return (w + 5); // always add one more than the 2nd argument in dsp_add()
}

Figure 10. Source code for thrugain~.c

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 38 9:25 PM

The thrugain1~ object: using left inlet for both signal and non-signal input

The thrugain1~ object demonstrates how to use the left inlet for both signal and non-
signal input. The following example also accepts bangs.

/* thrugai1n~.c one signal/float inlet, one signal outlet, one float outlet
**
** 02/11/05 IF
*/
#include "ext.h" // Required for all Max external objects
#include "z_dsp.h" // Required for all MSP external objects

void *thrugain_class;

typedef struct _thrugain // Data structure for this object
{
 t_pxobject t_obj;
 t_float t_gain;
 void *t_out; // float outlet
} t_thrugain;

void *thrugain_new(void);
t_int *thrugain_perform(t_int *w);
void thrugain_dsp(t_thrugain *x, t_signal **sp, short *count);
void thrugain_float(t_thrugain *x, t_float val);
void thrugain_bang(t_thrugain *x);

int main(void)
{
 setup((t_messlist **)&thrugain_class, (method)thrugain_new, (method)dsp_free,
 (short)sizeof(t_thrugain), 0L, 0);
 addmess((method)thrugain_dsp, "dsp", A_CANT, 0);
 addfloat((method)thrugain_float);
 addbang((method)thrugain_bang);
 dsp_initclass();
 return(0);
}

void *thrugain_new(void)
{
 t_thrugain *x = (t_thrugain *)newobject(thrugain_class);
 x->t_gain = 1.0;
 dsp_setup((t_pxobject *)x, 1); // left signal inlet
 x->t_out = floatout((t_pxobject *)x); // right float outlet
 outlet_new((t_pxobject *)x, "signal"); // left signal outlet, must come after floatout
 return (x);
}

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 39 9:25 PM

void thrugain_float(t_thrugain *x, t_float val)
{
 post("Float in: %f", val);
 x->t_gain = val;
 outlet_float(x->t_out, x->t_gain);
}

void thrugain_bang(t_thrugain *x)
{
 post("Bang");
 outlet_float(x->t_out, x->t_gain);
}

void thrugain_dsp(t_thrugain *x, t_signal **sp, short *count)
{
 dsp_add(thrugain_perform, 4, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n, x);
}

t_int *thrugain_perform(t_int *w)
{
 t_float *inL = (t_float *)(w[1]);
 t_float *outL = (t_float *)(w[2]);
 int n = (int)(w[3]);
 t_thrugain *x = (t_thrugain *)w[4];
 while (n--)
 *outL++ = x->t_gain * *inL++;

 return (w + 5); // always add one more than the 2nd argument in dsp_add()
}

Figure 11. Source code for thrugain1~.c

The thrugain2~ object: inlets for both signal and non-signal input

The thrugain2~ object is a stereo thru object that accepts float (and bang) input on
both inlets.

/* thrugain2~.c two signal/float inlet, two signal outlets, one float outlet
**
** 02/11/05 IF
*/
#include "ext.h" // Required for all Max external objects
#include "z_dsp.h" // Required for all MSP external objects

void *thrugain_class;

typedef struct _thrugain // Data structure for this object
{
 t_pxobject t_obj;
 t_float t_gain;
 void *t_out; // float outlet
} t_thrugain;

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 40 9:25 PM

void *thrugain_new(void);
t_int *thrugain_perform(t_int *w);
void thrugain_dsp(t_thrugain *x, t_signal **sp, short *count);
void thrugain_float(t_thrugain *x, t_float val);
void thrugain_bang(t_thrugain *x);

int main(void)
{
 setup((t_messlist **)&thrugain_class, (method)thrugain_new, (method)dsp_free,
 (short)sizeof(t_thrugain), 0L, 0);
 addmess((method)thrugain_dsp, "dsp", A_CANT, 0);
 addfloat((method)thrugain_float);
 addbang((method)thrugain_bang);
 dsp_initclass();
 return(0);
}

void *thrugain_new(void)
{
 t_thrugain *x = (t_thrugain *)newobject(thrugain_class);
 x->t_gain = 1.0;
 dsp_setup((t_pxobject *)x, 2); // left signal inlet
 x->t_out = floatout((t_pxobject *)x); // right float outlet
 outlet_new((t_pxobject *)x, "signal"); // middle signal outlet, must come after floatout
 outlet_new((t_pxobject *)x, "signal"); // left signal outlet, must come after floatout
 return (x);
}

void thrugain_float(t_thrugain *x, t_float val)
{
 post("Float in: %f", val);
 x->t_gain = val;
 outlet_float(x->t_out, x->t_gain);
}

void thrugain_bang(t_thrugain *x)
{
 post("Bang");
 outlet_float(x->t_out, x->t_gain);
}

void thrugain_dsp(t_thrugain *x, t_signal **sp, short *count)
{
 dsp_add(thrugain_perform, 6, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[3]->s_vec
 sp[0]->s_n, x);
}

t_int *thrugain_perform(t_int *w)
{
 t_float *inL = (t_float *)(w[1]);
 t_float *inR = (t_float *)(w[2]);
 t_float *outL = (t_float *)(w[3]);
 t_float *outR = (t_float *)(w[4]);
 int n = (int)(w[5]);
 t_thrugain *x = (t_thrugain *)w[6];

 while (n--)
 {
 *outL++ = x->t_gain * *inL++;
 *outR++ = x->t_gain * *inR++;
 }

 return (w + 7); // always add one more than the 2nd argument in dsp_add()
}

 Figure 12. Source code for thrugain2~.c

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 41 9:25 PM

The thrugain3~ object: inlets for both signal and non-signal input

The thrugain3~ object is a stereo thru object that accepts float (and bang) input on
both inlets. It has two signal outlets and two float outlets. It exploits the proxy nature
of the signal inlets.

/* thrugain3~.c two signal/float inlet, two signal outlets, two float outlets
** separeate gain
** 02/11/05 IF
** 04/10/19 IF use of proxy_getinlet()
*/
#include "ext.h" // Required for all Max external objects
#include "z_dsp.h" // Required for all MSP external objects

void *thrugain_class;

typedef struct _thrugain // Data structure for this object
{
 t_pxobject t_obj;
 t_float t_gainL;
 t_float t_gainR;
 void *t_outL; // float outlet
 void *t_outR; // float outlet
} t_thrugain;

void *thrugain_new(void);
t_int *thrugain_perform(t_int *w);
void thrugain_dsp(t_thrugain *x, t_signal **sp, short *count);
void thrugain_float(t_thrugain *x, t_float val);
void thrugain_bang(t_thrugain *x);

int main(void)
{
 setup((t_messlist **)&thrugain_class, (method)thrugain_new, (method)dsp_free,
(short)sizeof(t_thrugain), 0L, 0);
 addmess((method)thrugain_dsp, "dsp", A_CANT, 0);
 addfloat((method)thrugain_float);
 addbang((method)thrugain_bang);
 dsp_initclass();
 return(0);
}

void *thrugain_new(void)
{
 t_thrugain *x = (t_thrugain *)newobject(thrugain_class);
 x->t_gainR = x->t_gainL = 1.0;
 dsp_setup((t_pxobject *)x, 2); // left signal inlet
 x->t_outR = floatout((t_pxobject *)x); // right float outlet
 x->t_outL = floatout((t_pxobject *)x); // left float outlet
 outlet_new((t_pxobject *)x, "signal"); // middle signal outlet, must come after floatout
 outlet_new((t_pxobject *)x, "signal"); // left signal outlet, must come after floatout
 return (x);
}

Max/MSP Externals Tutorial (v. 3.1) Fujinaga

October 19, 2004 42 9:25 PM

void thrugain_float(t_thrugain *x, t_float val)
{
 post("Float message on inlet %d: %f ", proxy_getinlet((t_object *)x), val);
 if (proxy_getinlet((t_object *)x) == 1)
 {
 x->t_gainR = val;
 outlet_float(x->t_outR, x->t_gainR);
 }
 else
 {
 x->t_gainL = val;
 outlet_float(x->t_outL, x->t_gainL);
 }
}

void thrugain_bang(t_thrugain *x)
{
 post("Bang on inlet %d %d", proxy_getinlet((t_object *)x));
 outlet_float(x->t_outR, x->t_gainR);
 outlet_float(x->t_outL, x->t_gainL);
}

void thrugain_dsp(t_thrugain *x, t_signal **sp, short *count)
{
 dsp_add(thrugain_perform, 6, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[3]->s_vec, sp[0]-
>s_n, x);
}

t_int *thrugain_perform(t_int *w)
{
 t_float *inL = (t_float *)(w[1]);
 t_float *inR = (t_float *)(w[2]);
 t_float *outL = (t_float *)(w[3]);
 t_float *outR = (t_float *)(w[4]);
 int n = (int)(w[5]);
 t_thrugain *x = (t_thrugain *)w[6];

 while (n--)
 {
 *outL++ = x->t_gainL * *inL++;
 *outR++ = x->t_gainR * *inR++;
 }

 return (w + 7); // always add one more than the 2nd argument in dsp_add()
}

 Figure 13. Source code for thrugain3~.c

