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1. ABSTRACT
This paper describes a system for recognition of the

timbre of isolated instruments. This system implements a
discrete Hidden Markov Model for classification as well as
a k-means algorithm for clustering purposes. The system is
tested and results are reported.

2. INTRODUCTION
A Hidden Markov Model (HMM) is a stochastic model

consisting of a set of N states {S1, . . . , SN}, along with prob-
ability distributions that govern transition between states,
initial state, and observation probability from a defined gram-
mar at each given state. It is useful in the description of
time-series events. For more information the reader is di-
rected to [Rabiner 1989]. Rather than describe the mathe-
matics of the technique, this paper describes an implemen-
tation of HMMs for the purpose of automatic recognition of
musical instruments. The approach is to classify the timbre
of an instrument, where timbre is described by an appropri-
ate feature vector. Specifically, we look here at isolated in-
struments. Many similar examples exist in the case of speech
recognition, inlcuding those reported in [Rabiner 1989],[Os-
tendorf et al. 1996], [Kwong and Chau 1997] and [Selouani
and Shaughnessy 2001]. Not as much work has dealt with
the use of HMMs for instrument recognition, but some ex-
amples are discussed in [Herrera-Boyer et al. 2003] as well
as [Lee and Chun 2002]. However, more work has focused
on other methods of instrument recognition as well as on
HMMs for other audio tasks. For the former see [Herrera-
Boyer et al. 2003] and [Fraser and Fujinaga 1999] for differ-
ent approaches, and for examples of the latter see [Depalle
et al. 1993] and [Raphael 1999].

This work presented in [Lee and Chun 2002] is the most
similar to that which is presented here. However, there are
several major differences. The aforementioned uses continu-
ous observation densities via Gaussian Mixture Models, har-
monic partials as features and seemingly uses the entire au-
dio signal. In contrast, this approach uses a discrete obser-
vation density, the features come from both attack time and
cepstral coefficients and only the first .5 seconds of audio is
used.

3. THE SYSTEM
As stated in the introduction, this implementation uses

discrete HMMs, and the features used for classification are

attack time and cepstral coefficients as well as their first
order difference (delta cepstrum). The system was coded
in Matlab, and used the McGill University Master Samples
as test data. The steps in the process are as follows, and
will be discussed individually: 1. Digitize audio 2. Extract
features 3. Vector quantization/Clustering 4. Map features
of training data to codebook 5. Train HMMs 6. Classify
test data

3.1 Digitize Audio
The audio samples used were from the McGill University

Master Samples (MUMS). The samples used were of violin,
flute and trumpet. Each instrument was modeled by a sep-
arate HMM, and for training purposes 64, 54 and 48 sam-
ples were used for each respective instrument. This fairly
large number or samples was achieved by using the left and
right channels of the stereo files separately, a decision that
is justified by the fact that the instruments are recorded
with different mic placements for each channel. The belief
that this would cause a timbral difference is supported by
the fact that stereo pairs were classified differently by the
trained models in several instances.

3.2 Extract Features
Twenty-one features were used for describing timbre. They

were attack time, the first 10 cepstral coefficients and their
derivatives. Low order cepstral coefficients and their first
order difference are used to describe the slowly changing
qualities of a spectrum, and thus are frequency indepen-
dent. As we here use a range of pitches to train our models,
these are a logical choice for this system. See [Dubnov and
Rodet 1998] and [Eronen and Klapuri 2000] for more discus-
sion of the benefits of these particular features. Attack time
has been linked to a human’s perception of timbre, and so it
stands to reason that this will provide useful as a descriptor.
The algorithm that defines attack time looks for both the
point at which the signal rises above some minimal thresh-
old (signal beginning) and the maximum value over the first
quarter length of the audio signal (attack end). The dis-
tance in samples between these two points is our defined
attack time.

After finding attack time, 100 analysis frames of 256 sam-
ples with an overlap of 50% are used to extract cepstrum
coefficients. Thus, roughly the first .5 seconds of audio sam-
ples are used for extraction purposes.

3.3 Vector Quantization/Clustering



A discrete HMM system is utilized, and so the infinite
number of possible feature vectors in R21 need to be quan-
tized to some suitable discrete “codebook.” In [Rabiner 1989]
it is mentioned that a larger code book reduces quatization
error, but that the benefit is less after a certain point. Thus,
a tradeoff exists between computation of codebook and the
decrease in error that it gives you. Here we find a near
optimal codebook for our particular set of training observa-
tions, by use of a k-means clustering algorithm. As the total
number of observations exceeds 16,000 (100 observations per
sample), the relatively small number of 73 codebook entries
was used. Even with this number of entries, the algorithm
takes over 10 minutes to compute on a 1.25 Ghz G4 laptop.
The k-means algorithm returns a centroid for 73 different
clusters, and this collection becomes our discrete codebook
of possible observations.

3.4 Map Features to Codebook
In order to train the HMMs or to classify the test data, the

observed features vectors need to be mapped to “legal” en-
tries within the observation codebook. This is achieved by
first assigning numbers to the 73 entries of the codebook,
comparing the Euclidean distance of a given vector to all
of the entries and then mapping the input feature vector to
the number representing the nearest neighbor in the code-
book. After this point, each observation sequence consists
of 100 (one for each analysis frame) integers ranging from
1-73. These are the values that are used to actually train
the HMM.

3.5 Model Creation and Training
As said previously, a different HMM is used for violin, flute

and trumpet. A left-to-right model is used, and so the ini-
tial state distribution is trivially a probability of 1 for state 1
and zero for the other states. The initial transition and ob-
servation probabilites are chosen at random. We model each
analysis frame as a state, and so the observation probability
matrix is of size 100x73 while the transition probability ma-
trix is 100x100. The training set observations are used to
update model parameters (transition and observation prob-
ability matrices), using the Baum-Welch EM algorithm.

3.6 Classification
After the three models have been trained, observation se-

quences (mapped to the codebook) which were not used for
training are tested on the models. The probabilty of test ob-
servation O given model H, or P (O|H), is calculated for each
model by the “forward algorithm.” The model that returns
a maximum is then chosen as the correct instrument/class.
To test the system, 20 samples were used each for violin,
flute and trumpet for a total of 60 test samples. The proba-
bility (log-likelihood) was calculated for each HMM, and the
model that gave the highest likelihood value was returned
as the proper class.

As a variant on this approach, another test was conducted
in which each model possessed its own observation code-
book. Thus, the sequences were classified based on the rel-
ative nature of the transitions, as opposed to the absolute
classification of sequence values and transitions, as in the
main system. It was expected that this secondary experi-
ment would yield less successful results, which was the case.
The results of both experiments are reported in table 1.

Violin Flute Trumpet
Single Codebook 95% 85% 65%

Multiple Codebook 50% 75% 60%

Table 1: Success Rate of Timbre Classification Sys-
tem

4. CONCLUSION
The system presented here has given some promising re-

sults, including a correct classification rate of 95% in the
case of violin and 85% in the case of flute. If the system can
prove to be this successful on larger databases with more in-
struments, then it may be a viable option as it requires only
a discrete observation set, a simple feature set and only a
small portion of audio. Further, aside from the computation
of the k-means clustering of the large observation database,
all of the computations are relatively fast to compute.
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