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Automated Evaluation of OCR Zoning

Junichi Kanai, Stephen V. Rice,
Thomas A. Nartker and George Nagy

Abstract— Many current optical character recognition (OCR) sys-
tems attempt to decompose printed pages into a set of zones, each con-
taining a single column of text, before converting the characters into
coded form. We present a methodology for automatically assessing the
accuracy of such decompositions, and demonstrate its use in evaluating
six OCR systems.

Index Items—Document image understanding, page segmentation,
layout analysis, performance evaluation metric.

I. INTRODUCTION

The first step in Optical Character Recognition (OCR) is to locate
and order the text to be recognized. Commercial OCR systems allow
the user to demarcate the text regions on a page image by drawing
boundaries around them. The order of these regions, or zones, is
significant. It normally corresponds to the reading order of the page.
This process is known as manual zoning.

Alternatively, the user can let the OCR system automatically
identify text regions and their order. The system finds columns of text
and, if they are not part of a table, defines a separate zone for each
column so that the generated text will be “de-columnized.” This is
also known as “galley format.” In addition, the system identifies
graphic regions in order to exclude them.

Zone representation schemes are not standardized. The following
methods are used by commercial OCR systems: bounding rectangles,
piecewise rectangles, polygons, and nested rectangles (see Fig. 1.). In
some rare instances, zones may overlap. Moreover, deskewing the
page alters the zoning. Therefore, geometric comparison of zones is
not feasible. A recently proposed alternative to our method is the
comparison of the configuration of black pixel sets, but this method
precludes testing “black-box™ commercial systems [1].

In order to evaluate the accuracy of automatic zoning, we intro-
duce a zoning metric based on the number of edit operations required
to transform an OCR output to the correct text. The string of charac-
ters generated by the system under evaluation on an unzoned page
image is compared to the correct text string. All mismatched sub-
strings are identified by a divide-and-conquer string matching algo-
rithm that finds the longest matches first. Then the number of editing
operations (deletions, insertions, and moves) required to correct the
system output is computed. Finally, the number of editing operations
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required to correct the output of the same OCR system operating on a
manually-zoned version of the page image is subtracted to yield the
cost of correcting only zoning errors. All of the above operations,
with the exception of producing the “true” string for each page, are
performed automatically.

Section II presents the move-counting and string-matching algo-
rithms in greater detail. Section III describes the test data and the ex-
perimental protocol. The results obtained by processing 460 printed
pages on six commercial systems are discussed in Section IV. Section
V points to future research.
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Fig. 1. Zone Representation Schemes. (a) bounding rectangle, (b) piecewise
rectangles, (c) nested rectangles, (d) polygon.
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Fig. 2. Example of Zoning Error. (a) incorrectly zoned page, (b) generated
text, (c) correct text.

1I. ZONING METRIC

A human editor utilizes three kinds of operations to correct OCR-
generated text: insertion, deletion, and move. If a zoning algorithm
misclassifies a text region as a graphic region or does not detect a text
region, the characters in the text region are not recognized by the
OCR algorithm. Thus, the editor must insert (type) the missing char-
acters into the OCR output.

On the other hand, if a graphic region is misclassified as a text re-
gion, characters in the graphic region are included in the OCR out-
put. Furthermore, graphic objects could be converted into a set of
characters. For example, the vertical axis of a graph might become
I's. Such phantom characters must be deleted from the OCR output.

When a multi-column page is incorrectly zoned as shown in Fig.
2., Text-Line-3 must be moved between Text-Line-2 and Text-Line-
4. Therefore, the cost of correcting the reading order of an OCR out-
put is an important part of measuring the performance of a zoning al-
gorithm.

A move operation can be performed by either cut and paste or
delete and re-type. The human editor will normally make use of a cut
and paste capability to move a string of n characters to its correct lo-
cation. But for n less than some threshold T, it is easier (and less
costly) to perform n deletions and » insertions to make the correction,
The value of T will vary depending on the skills of the human editor
and the editing tools at hand, but is most likely to be in the range of 5
to 100.

We propose a two-part algorithm for calculating the cost of cor-
recting the OCR-generated text. First, the minimum number of edit
operations is estimated (see Fig. 3.). Next, the total cost is calculated
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according to the cost of each operation.

Let S, be a string of characters corresponding to the correct text of
a page and S, be an OCR output using the automatic zoning option.
S, and S, are compared, and matches (common substrings), including
transposed matches, are identified (see Section II A for details). The
number of unmatched characters D in S, corresponds to the number
of unnecessary characters generated by the OCR system. Therefore,
D is the number of deletion operations needed.

Using an algorithm described in Section II B, the minimum num-
ber of moves M required to rearrange the matches of S, in the proper
order is calculated.

begin
compare S, with S, and identify matches using the
algorithm described in Section Il A (Fig. 4.)
D « number of unmatched characters in S,
M « number of moves computed by the algorithm
described in Section Il B (Fig. 5)
I « number of unmatched characters in S,
for each move of length L < T do
Te<I+L
D«D+L
MeM-1
end for
end

Fig. 3. Algorithm for Counting Edit Operations. Given strings S.and S, and
threshold 7, the algorithm yields the number of insertions, I, the number of
deletions, D, and the number of move operations, M.

The number of unmatched characters 7 in S, corresponds to the
number of characters that were dropped by the OCR system. Thus,
is the number of insertion operations needed.

Given strings S.[1: n.] and S,[1: n,]
begin
D(S,) « {[1: nc]}
D(S,)  {[1: n]}
loop
find [a.: @] € D(S), [, 0] € DAS,),
and Otc’, (Dcl, a,,', 0),,', where o, < (xc' < (Dc‘ <o,
and o, < a,,' < (n,,' < ®,, such that
Sc[uc': wc'] = S,,[ot,,': m,,'] is the longest substring
common to an unmatched substring of Sc and S,
if not found then
exit
output the match described by otc‘, (Dc', OL,,', and 0),,'
D(S) « D(S) U {[o: o -11o+1: of}={loe: o)
D(S,) & D(S,) U {[0t 5 0t —11,[60, +1:00,]}-{[@: @]}
end loop
end

Fig. 4. String-Matching Algorithm.

Each move operation of length L less than the threshold T is con-
verted to L insertions and L deletions so that the short moves are
performed by deleting and re-typing. Thus, the number of moves M is
reduced. The total number of insertions and deletions which result
from this conversion are determined.

In the second step, the following cost model is used to calculate
the total editing cost. We assume that the cost of a move operation is
independent of the distance moved and that all moves of strings of
length L greater than T have the same cost. Let W;, W, and W, be the
costs associated with an insertion, a deletion, and a move, respec-
tively. Since the user moves rather than deletes and re-types a charac-

ter string when it is cheaper, T should be equal to
W,, | (W; + W,). The total cost of correcting the OCR-generated string
is calculated by the following formula:

Cos(S,, Se, Wi, Wy, Wi, T)
=Wl + WgptD + W, M
= Wil + WD + (W, + WpxT*M
= Cost(Sy, Sc, Wi, Wy, T)

This cost model charges a cost W; for each insertion, and W, for
each deletion made by the OCR process. A substitution error is cor-
rected by deleting an incorrect character and inserting the correct
character; therefore, it costs W; + W,.

OCR output could contain errors made not only by the automatic
zoning process but also by the character recognition process. Cost is
the total cost for correcting all types of errors. To eliminate the ef-
fects of recognition errors, a calibrated cost must be calculated. We
assume that OCR systems make the same recognition errors when a
page is manually zoned and automatically zoned. Let S, be the char-
acter string generated from a manually zoned page. The cost of
transforming S,, into the correct text S, results from correcting rec-
ognition errors. The calibrated cost is defined by:

Calibrated_Cost(S,, Sy Se; Wi, Wa, T)
= Cost(S,, ¢y Wis Wa, T) — Cost(Sp, Scs Wi, W, T)

This calibrated cost effectively isolates the cost of zoning the page
automatically. It should be compared with the cost of zoning the
same page manually.

A. String Matching

String matching has been studied in detail, and some applications
in OCR were described in [2). In our algorithm (shown in Fig. 4.),
the correct string, S,, is matched with the generated string, S,. This
algorithm is similar to one presented in [3], but since S, may contain
blocks of text in the wrong order, this algorithm must detect trans-
posed matches.

Let S be a string of n characters (n > 0). Let S[a. : ] denote the
substring of S containing the o through ©”* characters inclusive.
Normally ¢ < o, but if & > o, then S{ot : @) represents the null (zero-
length) string. S is equivalently represented by S{1 : n].

Let ®(S) denote the set of unmatched substrings of S. That is,

O(S) = {[a: 0] | S[at: @] is an unmatched substring}.

Initially, all characters are considered unmatched. The longest
substring common to S, and S, is found and constitutes the first
match. ®(S,) and ®(S,) are then updated to exclude this substring.
This results in two unmatched substrings for each string: the charac-
ters preceding the match, and the characters following it.

The second match is determined by finding the longest substring
common to an unmatched substring of S, and S,. When this match is
excluded, there are three unmatched substrings for each string. This
process of examining the unmatched substrings continues until no
common substring can be found, i.e., S; and S, have no unmatched
characters in common.

B. Move-Counting

Fig. 5. shows the algorithm used for counting move operations
based on Latifi’s method [4]. The N matched substrings of the gen-
erated text are represented by a permutation of the integers 1 to N.
For example, given the correct string,
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1 4 5

——

—_—— A
the quick red fox jumped overthe lazydog ,
and the generated string,

432 2

=
the quick jumped overthe fox lazydog red ,

there are five matches and the permutationis (14 3 5 2).

Adjacent substrings are combined so that the permutation has no
two consecutive integers, (--+ x [x+1] ---). For example, the permuta-
tion (523 1 4)is re-written as (4 2 1 3).

This algorithm determines the number of move operations re-
quired to correct the generated text by counting the number of moves
needed to transform this permutation into the identity permutation,
i.e., (12 --- N), or re-written as (1).

At each step, the algorithm attempts to find a move operation that
yields the greatest reduction in the size of the permutation (after re-
writing). Latifi has shown that the largest such reduction is three; this
occurs when the permutation contains a sequence of the form, (--- y x
[y+1] --), and a sequence of the form, (--- [x-1] [x+1] ---), and x is
moved between [x—1] and [x+1]. For example, given the permutation
(51 3 2 4), a reduction of three is achieved by moving 3 after 2; the
permutation becomes (5 1 2 3 4), or re-written as (2 1).

If there is no move available that yields a reduction of three, the
algorithm looks for a move that results in a reduction of two. If the
permutation contains either a sequence of the form, (--- y x [y+1] --+),
or a sequence of the form, (--- [x—1] [x+1] ---), then x can be moved
after [x—1], and/or before [x+1], to achieve a reduction of two.

Finally, if there is no move available that yields a reduction of two
or three, then any x can be moved after [x—1], or before [x+1], to ob-
tain a reduction of one.

Whenever there is more than one move operation available yield-
ing the same reduction, the one moving the fewest number of charac-
ters is chosen. This models the behavior of the human editor more
accurately, and results in more move operations falling below the
threshold T.

Given permutation P:
begin
count < 0
while P is not the identity permutation do
if P can be reduced by three then
reduce P by three
else if P can be reduced by two then
reduce P by two
else
reduce P by one
count < count + 1
end while
end

Fig. 5. Move-Counting Algorithm.

The number of move operations is tightly bounded by N/3 and N
[4]; on average, the algorithm finds N/2 moves. In general, humans
have difficulty determining the minimum number of move opera-
tions, and since we are modeling human editors, an optimal move-
counting algorithm is not necessary. Furthermore, an optimal algo-
rithm will likely be computationally expensive.

Empirical data show that N can be as high as 750. On average, for
a typical page of 1,800 characters, N is 47, and the number of moves

counted by this algorithm is 27, where 10 are reductions of one, 15
are reductions of two, and 2 are reductions of three.

III. EXPERIMENTS

The automatic zoning capabilities of commercial OCR systems
were studied using this zoning metric. Each system was treated as a
black box and operated entirely automatically using the software
tools described in [5]. Every system processed the same set of digit-
ized pages.

A. Test Data and Systems

A set of 460 pages randomly selected from a set of 2,500 docu-
ments containing a total of 100,000 pages was used in this experi-
ment. (See [6] for details.) Sample pages were digitized at 300 dpi
using a Fujitsu M3096E+ scanner. The default threshold setting was
used to produce the binary image of a page. Each page was manually
zoned, and correct text was keyed in and verified corresponding to
each zone. We excluded equations and text in graphic objects.

Although most pages have unique reading orders, for some pages,
the reading order is not clear. There may be several equally-correct
reading orders. Consider a figure placed in the middle of a page.
Readers may or may not read the figure caption until they finish
reading the main body text on the page.

There are two ways to deal with this problem. The first approach
uses m character strings corresponding to the m equally-correct
reading orders and calculates the minimum cost.

The second approach uses only a single correct reading order to
calculate the cost. When zoning errors are made, many character
strings corresponding to text-lines must be moved to correct the
reading order. On the other hand, when an equally-correct reading
order is selected, only a few long character strings corresponding to
zones must be moved. In practice, choosing a different, but equally-
correct, reading order has a negligible effect on the overall cost.

TABLEI
SUMMARY OF TEST DATA

Pages
278
107

75
460

Characters
416,638
144,106
257,202
817,946

Class
Single column
Table
Multi-column
Total

In this experiment, the second approach was taken. The single cor-
rect reading order was chosen according to the following rules.

1) No sentence on a page is divided by other text objects.
2) If a figure caption, table, or footnote interrupts the flow of main
body text, it is placed after the main body text.

To study the behavior of these zoning algorithms in detail, the
sample pages were divided into the following three classes according
to their layout characteristics: single column pages, table pages, and
multi-column pages. Single column pages consist of one column in
which text flows. These pages may contain figures, indented blocks,
or lists but do not contain any tables. Table pages contain at least one
table and may also contain single column text. Multi-column pages
have at least two columns and could contain a variety of objects; ten
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pages contained small tables. Table I shows the number of pages and
the number of characters in each class.

Six OCR systems (some not yet commercially available) from six
different vendors were used in the experiment. Two of the systems
run on Sun SPARCstations; the other systems run on PC’s.

B. Modified Cost Model

The current generation of commercial OCR systems attempts to
recognize all characters, including those in figures. In this experi-
ment, the weight W, is set to zero, so that OCR systems are not penal-
ized for trying to recognize these characters.

Cost(S,, Ser Wi, Wy, T)
= Wil + WD + (W, + W)*T*M
= Wil + WAT«M
= Wa(l + T*M)

Now the cost depends only on moves and insertions. Each move,
however, is equivalent in cost to T insertions. Therefore, the overall
cost of correcting zoning errors can be stated in terms of equivalent
insertion operations.

IV. RESULTS

The calibrated cost of correcting automatic zoning errors was cal-
culated for each of the six systems (see [7] for details). Fig. 6. shows
the cost of correcting automatic zoning errors as a function of 7, i.e.,
the cost of a move in insertions. As the cost of a move operation in-
creases, more character strings are deleted and re-typed rather than
moved.

If moves are inexpensive relative to insertions, then the cost of
correcting the 460 pages processed by the worst system is almost ten
times higher than for the best system. However, as the relative cost of
moves increases, the overall cost curves saturate because it pays to
delete and retype, rather than move, even the longest strings. At an
operator cost of $10 per hour, and a rate of 2,000 insertions, or
equivalently, 100 moves per hour (i.e., T = 20), correcting all the data
processed by the best system would cost $10 x 25,000 / 2,000 =
$125. This is the cost of correcting only the automatic zoning errors,
which can be compared to the cost of manual zoning. Assuming it
takes an average of two minutes to manually zone a page, then at the
same labor rate, the 460 pages can be manually zoned for
$10 x 460 x 2/ 60 = $153.

Fig. 7. shows the total costs for processing each class of pages by
the best, middle, and worst OCR system; note that these costs are not
normalized by the number of characters or pages in each class. The
cost of correcting zoning errors on multi-column pages is higher than
for single-column pages but not as high as the cost for table pages.

We examined pages to determine possible causes of zoning errors.
As intuition suggests, these systems process single column pages
well. We observed two types of errors that were made on these pages:

1) one or more missing paragraphs
2) moving some text to a wrong (usually adjacent) line.

It seems that this last type of error was made by a text-line extrac-
tion process. When text-lines are skewed or curved, some text near
either end of a text-line may be incorrectly moved to an adjacent line.
The zoning metric measures the cost of correcting this type of error
and includes it in the total correction cost.

We observed two kinds of problems in de-columnizing mulri-
column pages. The first kind is related to the complexity of page lay-
outs. Although these systems partition simple Manhattan page lay-

outs well, they have problems with complex Manhattan page layouts,
such as title pages in multi-column formats. The second kind of
problem is related to inter-column spacing. When the space between
columns is narrow and/or a page is skewed, some systems fail to de-
columnize the page.

The most common error in table pages was de-columnization of
tables. When tables are partially or completely de-columnized, many
move operations are needed to reconstruct them. This observation
suggests that most systems have difficulty distinguishing tables from
multi-column text. Another problem was the dropping of some col-
umns or parts of columns.
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Fig. 6. Cost of Correcting Automatic Zoning Errors for six OCR systems.

V. CONCLUSIONS

We introduced an automated method for measuring the perform-
ance of zoning algorithms. This metric is based on an approximation
of the cost of human editing to correct OCR-generated text. We pre-
sented two cost functions. The first function, Cost, calculates the cost
of correcting all types of errors generated from automatically zoned
pages. The second function, Calibrated_Cost, calculates only the cost
of correcting the zoning errors.

Currently, this is the only known automated way to measure the
performance of zoning algorithms that is independent of the zone
representations used. This metric can be used to study the effects of
image enhancement algorithms, such as deskewing algorithms, on
automatic zoning.

Our preliminary results show that the current generation of zoning
algorithms can process single column pages well. Yet, these algo-
rithms have difficulties in processing pages containing tables. This
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study suggests that the recognition of tables is an important research
topic.

Finally, we note that the editing model could be extended to in-
corporate other edit operations, such as block deletion. In the ex-
periment, we assigned the pages to one of three classes and studied
the behavior of the automatic zoning algorithms. We plan to analyze
further what kind of layout features make automatic zoning difficult
and to study the skew sensitivity of these algorithms.
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Fig. 7. Cost of Correcting Automatic Zoning Errors for the best, middle, and
worst OCR system:(a)single column pages, (b) multi-column pages, (c) table
pages.
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A Method of Combining Multiple Experts for the
Recognition of Unconstrained Handwritten Numerals

Y. S. Huang and C. Y. Suen

Abstract—For pattern recognition, when a single classifier cannot
provide a decision which is 100 percent correct, multiple classifiers
should be able to achieve higher accuracy. This is because group deci-
sions are generally better than any individual’s. Based on this concept, a
method called the “Behavior-Knowledge Space Method” was developed,
which can aggregate the decisions obtained from individual classifiers
and derive the best final decisions from the statistical point of view. Ex-
periments on 46,451 samples of unconstrained handwritten numerals
have shown that this method achieves very promising performances and
outperforms voting, Bayesian, and Dempster-Shafer approaches.

Index Items—Unconstrained handwriting recognition, combination of
multiple classifiers, evidence aggregation, behavior-knowledge space,
knowledge modeling.

I. INTRODUCTION

The recognition of handwritten numerals has been studied for
more than three decades; during this period, many classifiers with
high recognition rates have been developed [1]. However, none of
them can achieve satisfactory performance when dealing with charac-
ters of degraded quality. A new trend [2], [3], [4], [5], [6] called
“Combination of multiple experts” (CME) has emerged to solve this
problem. It is based on the idea that classifiers with different meth-
odologies or different features can complement each other. Hence if
different classifiers cooperate with each other, group decisions may
reduce errors drastically and achieve a higher performance.

In general, based on output information, classifiers can be derived
into two types: type-1 outputs a unique class label indicating that this
class has the highest probability to which the input pattern belongs;
and type-2 assigns each class label a measurement vaiue which indi-
cates the degree that the corresponding class pertains to the input
pattern. In fact, type-2 classifiers can be transformed into type-1 ones
by outputting only the class with the highest degree. This is an in-
formation reduction or abstraction process. In this sense, all classi-
fiers are type-1 classifiers. Therefore, the research on methods of
combining type-1 classifiers becomes most important.

Previous studies have developed many CME approaches of type-1
classifiers, among which the voting [7], Bayesian [5], [8], and
Dempster-Shafer (D-S) [5], [9] approaches are the most representa-
tive. Simply speaking, voting is a democracy-behavior approach
based on “the opinion of the majority wins”. It treats classifiers
equally without considering their differences in performance. The
Bayesian approach uses the Bayesian formula to integrate classifiers’
decisions; usually, it requires an independence assumption in order to
tackle the computation of the joint probability. The D-S formula,
which has frequently been applied to deal with uncertainty manage-
ment and incomplete reasoning, can aggregate committed, uncommit-
ted and ignorant beliefs. It allows one to attribute belief to subsets, as
well as to individual elements of the hypothesis set. Both Bayesian
and D-S approaches make use of probability to describe the different
qualities of classifiers’ decisions. However, in the Bayesian ap-
proach, the sum of P(C) and P(~ C) is equal to one; this is not nec-
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