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ABSTRACT
The goal of this short paper is to present the polyphonic
automatic transcription system of Kunio Kashino and Hide-
hiko Tanaka of Tokyo University, as presented in the pro-
ceedings of the 1993 International Computer Music Confer-
ence.

1. INTRODUCTION
The ability to automatically transcribe polyphonic mu-

sic has long been a goal for many researchers in the field
of computer music. The process of separating an audio sig-
nal into constituent parts (unique sound sources) and then
mapping the frequency content of each into symbolic data
has proven to be quite difficult, and as of yet is an unsolved
problem.

There have been several advances in regards to this
problem however, with one of those being the transcription
system of [Kashino and Tanaka 1993]1. This particular sys-
tem was groundbreaking in that it was the first such ap-
proach to utilize rules that were based on human percep-
tion. In particular, the notion of segmentation and fusion
of auditory events was introduced, ideas that were informed
by the work in auditory scene analysis. This area, simply
put, deals with the human processing of auditory streams
within the scope of one’s sound environment. The pioneer-
ing work was done by Al Bregman, and is well documented
in [Bregman 1990].

The transcription system described herein uses percep-
tual based rules to group frequency components that be-
long to the same note via bottom-up processing. This is
achieved after an analysis and extraction of frequency com-
ponents. After these components have been grouped at the
note level, a higher level processing occurs that is success-
ful at assembling these notes into chordal arrangements. We
first describe the formal approach to sound seperation taken
by the authors, and then describe the aspects of the system
that we have just briefly introduced.

2. PERCEPTUAL SOURCE SEPERATION
Within the context of computational auditory scene

analysis, Kashino introduces the problem of Perceptual Sound
Source Seperation:

1Another important advancement that utilizes Bayesian
networks can be found in [Kashino et al. 1995], but will
not be discussed in this short paper.

Suppose we have mono sound signal S(t) that is a mixture
of m signals {S1(t), . . . , Sm} and which can be represented
by some parameter set P = {p1(t), . . . , pn(t)}. Find some
collection of parameters Pi ⊂ P that represent signal Si for
each i = 1 . . . m.

In the case of this trasciption system our set of parameters
are frequency components

F (t) = {F1(t), . . . , FL(t)}
where

Fj(t) = {pj(t),j (t), ψj(t)}
and pj(t),j (t), ψj(t) represent power frequency and band-
width of a spectral peak, respectively. Given this, the prob-
lem for this particular system then becomes twofold:

1. Extract frequency components Fj(t) from a spectro-
graphic analysis.

2. Cluster these components into note and finally chord
structures based on perceptual rules. These rules were de-
termined by work in psychoacoustics as presented in [Breg-
man 1990] and [Moore and Glasberg 1986], among others.

We now describe the different parts of the system, begin-
ning with the extraction of frequency components.

3. FREQUENCY COMPONENT EXTRAC-
TION
Prior to extraction, the mono input signal is sampled

at 16bit/48khz. The analysis is performed by a bank of
2nd order IIR bandpass filters with log frequency scale. Af-
ter this, spectral peaks are found by a method devised by
the authors and described as ”pinching planes.” This ap-
proach is a regression plane analysis calculated by a least
squares fitting. In other words two planes are fixed in the
x and y (time and frequency) direction on either side of a
peak, and the z (power) parameter is varied so as to mini-
mize the sum of least squares distance between the planes
and the signal. From the general expression of the planes
z = ax + by + c one can find the spectral bandwidth of a
peak by computing the cross product of each plane’s normal
vector, as well as the frequency and power of the peak. The
author’s introduce an effective peak threshold parameter θe

that determines the minimum power by which the system
accepts/rejects potential spectral peaks, with the ”winners”



going through the subsequent extraction via the described
method. This threshold, along with the x and y ”window
size” of the pinching planes, are free parameters. As we will
see there are several others that are introduced and which
may greatly determine the effectiveness of the system.

4. CLUSTERING OF COMPONENTS FOR
SOURCE IDENTIFICATION

4.1 Grouping Strategy
The next aspect of the system deals with the clustering

of frequency components into groups that humans tend to
hear as one. As such, perceptual rules based on human au-
ditory functioning are introduced. Specifically, components
are clustered based on:

1. Harmonic Mistuning
2. Onset Asynchrony.

The evaluation is in terms of probability of seperation. The
probability functions used were approximations of psychoa-
coustic experiments conducted by the authors. The experi-
mental results provided thresholds by which to measure sim-
ilarity. For example, the threshold determined for harmonic
mistuning was 2.6%, meaning that if two frequencies were
inharmonic by more than 2.6% then they have probability
1 of belonging to different notes. Given these probability
functions c1 and c2, a distance measure was created for the
space of frequency components as follows:

m = 1− (1− c1)(1− c2)

This measure integrates both probabilities, and is based on
Dempster’s law of combination. The actual process of clus-
tering is achieved by pairwise assessment of the distance
(relative m values) between frequency components. If m
is found to be greater than some threshold parameter θm,
then components are said to belong to different clusters.
The threshold parameter is chosen by the user.

4.2 Source Identification
Once components are grouped into clusters that represent

singular sound events (based on human auditory function-
ing), the next step is to identify the source of each and to
group sounds based on similar sources. This part of the sys-
tem is a higher level approach that looks at global character-
istics of each cluster. Based on the parameters employed in
this method, it is intended for groups that contain a single
note.

Once again a distance measure is constructed; in this
instance the structure of each sound cluster is compared
based on physical characteristics, rather than perceptual.
Specifically, the constructed measure is defined as

D = w1fp + w2fq + w3ta + w4ts

where

fp = Peak power ratio of second harmonic to fundamental
fq = Peak power ratio of third harmonic to fundamental
ta= attack time
ts = sustain time.

The wk are user determined coefficients, allowing such
a user to weigh one or another of these parameters more
heavily. Seemingly, this would have great effect on the algo-
rithms ability to properly group sources. In terms of the cho-
sen physical parameters, it seems that only certain sources
would have these as salient characteristics. Perhaps this is
one of the stronger factors that contribute to the systems
apparent inability to recognize all types of sources. Indeed,
the tests described in [Kashino et al. 1998] were restricted
to several instruments.

5. TONE MODEL BASED PROCESSING
In the event that a sound cluster contains only a single

note, the process described in the preceding section is suffi-
cient for accurate transcription (varying effectiveness based
on type of input). In the case of simultaneously sounding
notes, further processing is required. This is accomplished
in this work via tone model based processing. The initial im-
plementation of this technique generates tone models, which
are two dimensional matrices with rows corresponding to
different frequency components and columns to time steps.
At each matrix location is stored a two dimensional vector
of normalized power and frequency. Thus, the matrix rep-
resents time-varying frequency and power values for each
component. These tone models are generated and compared
to the sound clusters based on ”mixture hypotheses.” These
hypotheses set the following standardizations and rules for
comparison:

•Limit the number of simultaneous notes in a model to three
•adjust amplitude of the model so that the lowest frequency
component is the same as that of the sound cluster, and
•Time shift the tone model from -20 ms to 20 ms, and com-
pare against sound clusters.

The metric for comparison is defined as

Dt =
FX

i=1

TX
j=1

|pij − p′
ij | · f ′

ij

where F is the number of frequency components in the sound
cluster, T is the number of time steps in the tone model, pij

is the power component at the corresponding matrix loca-
tion for the tone model, and p′

ij , f
′
ij are similar power and

frequency values for the sound cluster. Therefore, the size
of the matrices for comparison are determined by the fre-
quency components of a sound cluster, and the time dis-
cretization introduced by the time steps of the tone model.
The two matrices (tone model and discretized sound cluster)
are compared at several relative time shifts, and the model
that minimizes the metric Dt is chosen as the chordal rep-
resentation.

This tone based processing implementation is said to
work well for chord recognition, while being restricted to
three note polyphony. This method requires user registra-
tion of tone models based on knowledge and assumption of
what the structure might be (as well as knowledge of ex-
isting instrument models). In order to avoid the need for
such a registration process, the authors implement an auto-
matic tone model based processing scheme. The difference
between this and the above is that the metric Dt is modified
such that the number of ”hits” are taken into account. That
is, the number of frequency indices that overlap ”well” be-
tween cluster and model give a measure of correspondence



between the two which allows for the model to automatically
generate new frequency components or to shift existing ones.
When the metric falls below a specified threshold, the model
is kept as being the correct representation.

6. CONCLUSIONS
The technique of polyphonic transcription and source

seperation that has been described in this paper was an
early example of transcription systems defined by percep-
tual rules. In this sense it can be regarded as noteworthy
in a historical sense. Beyond this, however, the implemen-
tation shows promise based on the results given in the 1993
report, thereby providing validity for such perception based
systems. In the reported results, both automatic and reg-
istration based tone modeling studies gave high recognition
rates for two note polyphony, with registration based mod-
eling further giving high rates for 3 note polyphony. As with
all polyphonic transcription systems to date, there are trade-
offs and limitations, however. The maximum polyphony is
3, the number of free parameters means that plenty of user
adjustment is required, and further the psychoacoustic pa-
rameters of section 4.1 and ”global cluster” variables of sec-
tion 4.2 seem to imply certain instrument types. Thus, we
can conclude that this system is quite effective for partic-
ular listening contexts, but that there is still a lot of work
to be done to achieve a general polyphonic seperation and
symbolic transcription system.
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