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Abstract

A set of features extracted from audio sources is investigated for content-based classification of musical
instrument timbres. The adopted features describe spectral characteristics of monophonic sounds and
rely on the previous segmentation of the signal and the estimation of pitch. The dataset is composed by
1007 tones from 27 musical instruments ranging from orchestral sounds (strings, woodwinds, brass) to
pop/electronic instruments (bass, electric and distorted guitar). The extracted features are then classified
by widely used pattern recognition techniques. A thorough evaluation of the resulting performances and
comparative analysis with previous works is presented. Quadratic Discriminant Analysis shows an error
rate of 7.19% for the individual instruments and 3.23% for instrument families. These results are by far
superior to the performances of other classification methods (Canonical Discriminant Analysis, Support
Vector Machines, Nearest Neighbours). The use of a machine-built decision hierarchy did not improve the
results.

1 Introduction

The introduction of languages for sound authoring, like CSound, or the more recent Structured Audio Orches-
tra Language (saol) in the newborn mpeg-4 standard, and languages devoted to describe audio content, like
in the forthcoming mpeg-7 standard, revive the interest in automatic music understanding. A great number
of commercial applications could soon be available for both entertainment and professional appliances, thus
boosting research efforts in the multimedia scientific community.

An interesting application in the area of sound databases is the automatic classification of audio sources
by musical instrument timbre, and this is the goal of the present work. Timbre differs from the other sound
attributes, namely pitch, loudness, and duration, because it is ill-defined. The American National Standards
Institute (ansi) defines timbre as “that attribute of auditory sensation in terms of which a listener can judge
that two sounds similarly presented and having the same loudness and pitch are dissimilar” [1]. In other
words, it is not possible to associate a physical quantity to the perceptual experience that we call “timbre.”

In this paper, various classification methods have been employed over a set of features extracted from
audio sources. The results will be compared to those reported in other works. Tests have been carried out
with labelled sounds, i.e. using supervised classification. Issues about perceptual similarity have not been
addressed; rather, our objective is the organization of sounds for multimedia libraries. An indexing schema
of musical sounds should rely on a selection of audio descriptors that is reduced in number and significant.
At the same time, a classification algorithm is needed in order to organize these descriptors into groups of
similar timbres and to retrieve music information by content.

2 Related Work

A complete review of studies on timbre classification is out of our scope. For the interested reader, a recent
paper has been presented by Serra et al. [8]. Previous works on musical instrument identification primarily
focused either on feature extraction techniques or on classification methods, rarely on both. Researchers with
a background on music signal analysis employed a wide range of features, justifying their choice in terms
of musical relevance, brightness, spectral synchronicities, harmonicity, and so forth, but they used simple
classification algorithms. On the other hand, works from other research areas used to simplify the feature
extraction process in favour of more powerful classification techniques. For instance, in [5], 44 temporal and
cepstral features are classified by means of a k-Nearest Neighbours algorithm and a Gaussian classifier. In
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other studies, besides the introduction of advanced methods like Support Vector Machines [12] and Neural
Networks [3, 11], a basic set of features have been extracted from audio (for instance: Mel Cepstrum Coeffi-
cients, Short-Time rms-energy) or tests have been carried out with a limited amount of data (8 instruments
or less).

As we mentioned earlier, the real-world applications envisioned by the automatic instrument identification
span the domain of multimedia databases. There exist two implementations that allow searching sounds by
similarity in digital archives: A commercial product by Musclefish called SoundFisher [18], and Studio Online,
which is derived by researches conducted at IRCAM [9]. In the mid-long term, the early (possibly assisted)
audio annotating systems should appear, such as an extractor of mpeg-7-like descriptors.

3 Feature Extraction

A great deal of work has been done to explore acoustic and perceptual features related to timbre. Since
the first studies by Grey [7], it has been clear that we are dealing with a multi-dimensional attribute, which
includes spectral and temporal features. An example of the former is the harmonic spectral centroid which
corresponds to the perceived “brightness” of a sound, while the envelope attack time, which is bound to the
“sharpness” of sounds, regards the latter.

A considerable number of features is currently available in the literature, each one describing some aspects
of audio content. Since features are usually calculated out of a certain amount of samples, which is normally
very small compared to the total duration of a tone, we must face the problem of summarizing their temporal
evolution into a small set of values. Mean, standard deviation, skewness and auto-correlation have been the
preferred strategies for their simplicity, but more advanced methods like Hidden Markov Models could be
employed, as illustrated in [19]. By combining these time-spanning statistics with the known features, an
impressive number of variables can be extracted from each sound. The researcher, though, has to carefully
select them, in order to both keep the time required for the extraction to a minimum, and, more importantly,
to prevent from incurring into the so-called curse of dimensionality. This fanciful term refers to a well-known
result of classification theory [4], which states: As the number of variables grows, in order to maintain the
same error rate, the classifier has to be trained with an exponentially growing training set.

In this work, a set of features related to the harmonic properties of sounds is extracted from monophonic
musical signals. The number of features implemented is small compared to previous works by Martin [13]
and Klapuri [5]. The extraction of the descriptors relies on a number of preliminary steps, namely temporal
segmentation of the signal, detection of the fundamental frequency and the estimation of the harmonic struc-
ture (Figure 1). The evaluation of automatic classification based only on spectral features is one of the main
goals of our work. As we will show in Section 6, we achieved very satisfactory results without employing any
temporal features.

3.1 Audio Segmentation

The aim of the first stage is the temporal segmentation of the audio signal into a sequence of meaningful
events. We do not make any assumptions about the content of each event, which corresponds to an isolated
tone in the ideal case. The output of this segmentation is a list of non-silent events (starting and ending
points). A simple procedure based on energy evaluation is briefly described here. The signal is first processed
with a band-pass Chebyshev filter of order five; cut-off frequencies are set to 80 Hz to filter out noise due to
unwanted vibrations (for instance, oscillation of the microphone stand) and 5000 Hz, corresponding to E8 in
a tempered musical scale. After windowing the signal (46ms Hamming), an rms-energy curve is computed
with the same frame size. By comparing the energy to an absolute threshold, we find out a rough estimate of
the boundaries of the events. A finer analysis is then performed at a 5 ms frame to determine actual on/off-
sets; in particular we look for a 6 dB step near every rough estimate. This algorithm performs satisfactorily
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Figure 1: Block diagram of the feature extraction process.
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for moderately noisy signals and isolated tones. In case of real executions, it may fail to detect some tone
transitions, but the next step often fixes this problem.

3.2 Pitch Tracking

Pitch deserves a special place in our research, since it enables us to refine signal segmentation and it is the
basic value for the calculation of some spectral features. Through pitch detection, we can identify notes that
are not well defined by the energy curve or that are possibly played legato. At frame level, instantaneous
values of the fundamental frequency are used to estimate features related to the harmonic structure. The
pitch-tracking algorithm employed follows the one presented in [14], so it will not be described here. The
output of the pitch tracking is the average value (in hertz) of each note hypothesis, a frame by frame value of
pitch and a value of accuracy that measures the uncertainty of an estimate.

3.3 Calculation of Features

From each tone isolated through the procedure just described, a set of nine features is extracted frame by
frame and their means and standard deviations are stored as descriptors for that event (Figure 2). Thus, we
collect a total of 18 features for each tone. Pitch values (f0) estimated in the previous stage are used only
as a reference by the feature extraction algorithm. The signal is analysed with half-overlapping windows and
smoothed with a Hamming function. The size of the analysis window is variable in order to have a frequency
resolution of at least 1/24th of octave, even for the lowest tones. Short-Time Fourier Analysis is then adopted
for spectrum estimation.

Feature number (mean
and standard deviation) Feature name Formula

1–2 Zero Crossing Rate
z =

∑

n

∣

∣ sgn[s(n)]− sgn[s(n− 1)]
∣

∣/2

sgn(x) =
{

+1 if x ≥ 0,
−1 if x < 0.

3–4 Spectral Centroid c =

∑fmax
f=fmin

f · E(f)
∑fmax

f=fmin
E(f)

5–6 Bandwidth b =

∑fmax
f=fmin

|c− f |E(f)
∑fmax

f=fmin
E(f)

7–14 Harmonic Energy
Percentage

Epi =
PfRi

f=fLi
E(f)Pfmax

f=fmin
E(f)

fLi = pi − 1/24 oct

fRi = pi + 1/24 oct

1 ≤ i ≤ 4

15–16 Inharmonicity δ =
4

∑

i=1

|pi − i · f0|
i · f0

17–18 Harmonic Energy
Skewness

h =
4

∑

i=1

|pi − i · f0|
i · f0

Epi

Figure 2: Description of the extracted features.
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First, mean and standard deviation of zero crossing rate normalized with respect to the size of the window,
spectral centroid (i.e. the centre of gravity of the spectrum) and bandwidth (or magnitude-weighted differences
between the spectral components and the centroid) are calculated, see Figure 2. Then, the first four partials
(pi) are estimated as the most prominent peaks of the spectrum in a range of 1/12th of octave, centred at
frequencies f0, 2f0, 3f0, and 4f0. We called the cumulative distance between the estimated partials and
their theoretic value inharmonicity. Power spectral density of the first four bands centred at the partials
and 1/12th of octave wide are now normalized with respect to the total energy. In other words, we keep
the percentage of total energy contained in each partial. Finally, we considered a novel feature (harmonic
energy skewness), which is defined as the sum of the energy confined in the partial regions, multiplied by the
respective inharmoncities.

4 Classification Techniques

In this section, we provide a brief survey on the most popular classification techniques, comparing different
approaches. As an abstract task, pattern recognition aims to associate a vector y in a p-dimensional space
(the feature space) to a class, given a dataset (or training set) of N vectors di. Since each of these observations
belong to a known class, among the c available, this is said to be a supervised classification. In our instance
of the problem, the features extracted are the dimensions, or variables, and the instrument labels are the
classes. The vector y represents the tone played by an unknown musical instrument.

4.1 Discriminant Analysis

The multivariate statistical approach to the question [6] has a long tradition of research. Considering y and
di as realizations of random vectors, the probability of a misclassification of a classifier g can be expressed as
a function of the Probability Density Functions fi(·) of each class

γg = 1−
c

∑

i=1

(

πi

∫

Rp
fi(y) dy

)

, (1)

where πi is the a priori probability that an observation belongs to the i-th class. It can also be proven that
the optimal classifier, which is the classifier that minimizes the error rate, is the one that associates to the
i-th class every vector y for which

πifi(y) > πjfj(y) ∀i 6= j. (2)

Unfortunately, pdfs fi(·) are generally unknown. Nonetheless, one can make assumptions about the distri-
butions of the classes, and estimate the necessary parameters to obtain a good guess of those functions.

4.1.1 Quadratic Discriminant Analysis

This technique starts from the working hypothesis that classes have multivariate normal pdfs. The only
parameters characterising those distributions are the mean vectors µi and the covariance matrices Σi. We
can easily estimate them computing the traditional sample statistics

mi =
1
Ni

N
∑

j=1

dij and Si =
1

Ni − 1

Ni
∑

j=1

(dij −mi)(dij −mi)′, (3)

using the Ni observations dij available for the i-th class from the training sequence. It can be shown that,
in this case, the hypersurfaces delimiting the regions of classification—in which the associated class is the
same—are quadratic forms, hence the name of the classifier.

Although, as we pointed out, this is the optimal classifier for normal mixtures, it could lead to sub-
optimal error rates in practical cases, for two reasons. First, classes can depart sensibly from the assumption
of normality. A subtler source of errors is the fact that with this method the actual distributions remain
unknown, since we only have their best estimates of them, based on a finite training set.

4.1.2 Canonical Discriminant Analysis

The Canonical Discriminant Analysis (cda) is a generalization of the Linear Discriminant Analysis, which
separates two classes (c = 2) in a plane (p = 2) by means of a line. This line is found by maximising
the separation of the two one-dimensional distributions that result from the projection of the two bivariate
distributions on the direction normal to the line of separation sought. In a p-dimensional space, and for c > 2
classes, cda does the same thing using a similar criterion.
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Computationally equivalent to qda, cda has proven to perform better when there are few samples avail-
able, because it is less sensitive to overfitting. cda and qda are identical (i.e. optimal) rules under ho-
moscedasticity conditions. Thus, if the underlying covariance matrices are “very different,” qda has lower
error rates. qda is also to be preferred in presence of long tails and pronounced kurtosis, whereas a moderate
skewness suggests to use cda.

4.2 k-Nearest Neighbours

This is one of the most popular non-parametric technique in pattern recognition. It does not require any
knowledge about the distribution of the samples and it is quite easy to implement. In fact, this method
classifies y as belonging to the class which is most frequent among its k nearest observations. Thus, only two
parameters are needed: A distance metric and the number of nearest samples considered (k).

4.3 Support Vector Machines

The Support Vector Machines (svm) are a recently developed approach to the learning problem [2]. The aim
is to find the linear hyperplane that best separates observations belonging to different classes.

Suppose we have a set of linearly separable training samples d1, . . . ,dN , with di ∈ Rp. We refer to the
simplified binary classification problem (two classes, c = 2), in which a label li ∈ {−1, 1} is assigned to the
i-th sample, indicating the class they belong to. The hyperplane f(y) = (w · y) + b that separates the data
can be found by minimizing the 2-norm of the weight vector w subject to class separation constraints. The
optimal solution can be viewed in a dual form by applying the Lagrange Theory and imposing the conditions
of stationariness. The Support Vectors are defined as the input samples di for which the respective Lagrange
multiplier is non-zero, so they contain all the information needed to reconstruct the hyperplane. Geometrically,
they are the closest samples to the hyperplane to lie on the border of the geometric margin.

For the non-linearly separable case, the samples are projected through a non linear function Φ(·) from the
input space Y in a higher-dimensional space (the transformed space1 T ). Since the high number of dimensions
increases the computational effort, it is possible to introduce the kernel functions

K(y, z) = 〈Φ(y) · Φ(z)〉 , (4)

which implicitly define the transformation Φ(·), and allow to find the solution in the transformed space T by
making simpler calculations in the input space Y . The theory does not grant that the best linear hyperplane
can always be found, but, in practice, a solution can be heuristically obtained. Obviously, not just any
function is a kernel function; it must be symmetric, it must satisfy the Cauchy-Schwartz inequality, and must
satisfy the condition imposed in Mercer’s Theorem.

The simplest example of a kernel function is the dot kernel, which maps the input space directly into
the transformed space. Radial Basis Functions (rbfs) and polynomial kernels are widely used in image
recognition, speech recognition, hand-written digit recognition, and protein homology detection problems.

5 Experiment

An extended collection of musical instruments tones is essential for training and testing classifiers. To achieve
results comparable to the previous works by Martin [13] and Klapuri [5], our dataset comes from the mums
(McGill University Master Samples) cds [15], which are a library of isolated sample tones from a wide number
of musical instruments, played with several articulation styles and covering the entire pitch range. A large
dataset is needed, for two distinct reasons. First, methods that require an estimate of the covariance matrices,
namely qda and cda, must compute it with at least p + 1 linearly independent observations for each class, p
being the number of features extracted, so that they are definite positive. In addition, we need to avoid the
curse of dimensionality discussed in Section 3, thus a rich collection of samples brings the expected error rate
down. It follows from the first observation that we could not include musical instruments with less than 19
tones in the training set. This is why we collapsed the family of saxophones (alto, soprano, tenor, baritone) to
a single instrument class2. Having said that, even though the total number of musical instruments considered
was 27, the classification results reported in the next section can be claimed to hold for a set of 30 instruments.

mums cds provided standard Audio cd quality files—sampling frequency of 44.1 kHz, 16 bit dynamic
resolution—which have been analysed by the feature extraction algorithms. If the accuracy of a pitch estimate
is below a pre-defined threshold, the corresponding tone is rejected from the training set. Following this
procedure, the number of tones accepted for training/testing was 1007 in total. We adopted a leave-one-out
error rate estimation method for each of the classifiers tested: cda, qda, k-nn, k-nn with kernel (i.e. the

1For the sake of clarity, we shall avoid the traditional name “feature space.”
2We observe that the recognition of the single instrument within the sax class can be easily accomplished by inspecting the

pitch, since ranges do not overlap.
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input space is modified according to a kernel function) and svm. Tests have been carried out with a growing
number of classes (13, 17, 20, and 27 instruments), and classifiers that clearly performed unsatisfactorily
with a smaller set of instruments have not been employed in the subsequent experiments. k-nn has been
tested with k = 1, 3, 5, 7 and with 3 different distance metrics (1-norm, Euclidean 2-norm, 3-norm). For svm,
we adopted a software tool developed at the Royal Holloway University of London [16]. Input values have
been normalized independently and we chose a multi-class classification method that trains c(c− 1)/2 binary
classifiers, where c is the number of instruments.

6 Results

For each experiment, results have been evaluated by means of confusion matrices and overall success rates.
Although we put the emphasis at the instrument level, we have also grouped instruments belonging to the
same family (strings, brass, woodwinds and the like), extending Sachs’ taxonomy [10] with the inclusion of
“rock strings” (deep bass, electric guitar, distorted guitar). The svm classifier has been tested with a subset
of 17 and 20 musical instruments and with various kernels in order to explore their performances. Since rbf
kernels obtained the best results, this svm classifier has been chosen for the classification of 27 instruments. k-
nn did not present a consistent trend, going from 13 to 27 instruments, except that 1-nn with 1-norm distance
always performed better than 3/5/7-nn in combination with the other distance metrics. The introduction of
kernel did not improve the error rate; for instance, 1-nn performed with 71% success rate on 20 instruments
with polynomial kernel of order 1 and 74% with no kernel.

Figure 3 provides a graphical representation of the best results at the instrument level, achieved with a
dataset of 17, 20 and 27 instruments. qda performed better than the other classifiers in every test, with an
impressive success rate of 92.81% for 27 instruments and with an almost stable trend (from 94.7% to 92.81%).
The confusion matrix relative to this case is depicted in Table 1. Most of the misclassifications are within the
correct instrument family (e.g. doublebass classified as cello), except for piano and cello, classified respectively
as viola pizzicato (13% of piano tones) and classic guitar (15% of cello tones). Comparing the qda confusion
matrices for 13 and 27 instruments, it is remarkable that success rates for the instruments in common are the
same. cda and 1-nn have never obtained momentous results, in fact success rates range from 65.74% (k-nn,
27 instruments) to 76.63% (cda, 17 instruments).

svm achieved the second best score, showing a plunge as the number of instruments increases (from
80.20% to 69.71%). If we compare our results with the ones reported by Marques [12] (30% error rate with
8 instruments), the svm classifiers presented here had an error rate of 20%, despite our classes are twice as
much. This can be only partially explained by the different training sets employed, so we draw the conclusion
that our set of features is better suited for describing musical timbres than the one employed by Marques [12],
which is derived from the speech-recognition area.

At the instrument family level, classification results based on 27 instruments are shown in Table 2. Our
best success rate (96.77%) was better than any other results we are aware of, although the different taxonomy
employed by Klapuri and the introduction of new families with respect to Martin makes a direct comparison
difficult. The identification of a broader group of instruments, namely “pizzicati” and “sustained,” was
achieved with an average success rate of 97.25% that is lower than those reported by Martin and Klapuri
(99%). This was to be expected, for two main reasons. First, we did not introduce any feature related to the
time envelope of sounds. For instance, cello bowed is classified as sustained in 82% of trials and as pizzicato
in 17% (confusion with classic guitar and viola pizzicato). Also, the family of pizzicati in our dataset is larger
than the ones in cited experiments since it includes piano, harpsichord, harp and classic guitar.

Although k-nn was one of the favourite techniques in previous works on timbre classification, it must be
noticed that it showed the worst performance with success rates similar to those reported by Martin [13].
Furthermore, the change in the extracted features did not affect the performance. Using the best features for
each instrument and k-nn, Klapuri reported an 80% success rate, which is very far from qda performances
for a comparable dataset. Moreover, unlike Klapuri, we did not consider pitch ranges in our classifications.

In one of our experiments, we have also made use of a decisional tree. Instead of imposing the structure,
though, as Martin and Klapuri did, we used a hierarchical clustering algorithm [17], because we thought that
imposing a hierarchy rigidly based on the traditional taxonomy of western instruments could have had a neg-
ative impact on the results. Even with this machine-built hierarchy, the classification of 27 instruments, using
cda in each decisional node, brought the results down to 59.89% (against 66.74% with flat cda classification).
With this preliminar experient, we thus confirm Klapuri’s conclusions, that hierarchical classification does not
improve the error rate.
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Table 1: Confusion matrix for c = 27 instruments, classified with a flat qda classifier.

Classifier
Family

Success Rate (%)
Pizzicato/Sustained
Success Rate (%)

qda 96.77 97.25
cda 79.10 79.27
svm 78.04 78.58
k-nn 76.61 77.47

Table 2: Summary table for higher levels of abstraction, with c = 27 instruments.
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7 Discussion and Further Work

It has been demonstrated that broadly used classifiers could not provide comparable results to qda perfor-
mances. Since qda is the optimal classifier under multivariate normality hypotheses, the results seem to
suggest that the features we extracted from isolated tones follow such distribution. To validate this hypothe-
sis a series of statistical tests is undergoing on the dataset. Although hierarchical classification could lead to
faster and more flexible classifiers (e.g. selection of the best features or the best classification method in each
decisional node), with these early results we found that it is of no advantage. Our feature set still lacks of
temporal descriptors of the signal, as it has been made clear by the poor pizzicato/sustained discrimination.
Thus, we plan to introduce features like log attack slope or, more audaciously, new timing cue schemes like
the cited hmms. The introduction of new features will be gradually accomplished since the compactness of
the representation is one of the requirements for efficient database architectures. A new session of tests with
music samples extended to percussive sounds and with live-recorded musical instruments has already started.
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