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ABSTRACT
With the advent of large musical archives the need to provide an
organization of these archives becomes eminent. While artist-based
organizations or title indexes may help in locating a specific piece
of music, a more intuitive, genre-based organization is required to
allow users to browse an archive and explore its contents. Yet,
currently these organizations following musical styles have to be
designed manually.

In this paper we propose an approach to automatically create a
hierarchical organization of music archives following their perceived
sound similarity. More specifically, characteristics of frequency
spectra are extracted and transformed according to psycho-acoustic
models. Subsequently, the Growing Hierarchical Self-Organizing
Map, a popular unsupervised neural network, is used to create a
hierarchical organization, offering both an interface for interactive
exploration as well as retrieval of music according to perceived
sound similarity.

1. INTRODUCTION
With the availability of high-quality audio file formats at sufficient
compression rates, we find music increasingly being distributed
electronically via large music archives, offering music from the
public domain, selling titles, or streaming them on a pay-per-play
basis, or simply in the form of on-line retailers for conventional
distribution channels. A core requirement for these archives is the
possibility for the user to locate a title he or she is looking for, or to
find out which types of music are available in general.

Thus, those archives commonly offer several ways to find a desired
piece of music. A straightforward approach is to use text based
queries to search for the artist, the title or some phrase in the lyrics.
While this approach allows the localization of a desired piece of mu-
sic, it requires the user to know and actively input information about
the title he or she is looking for. An alternative approach, allow-
ing users to explore the music archive, searching for musical styles,
rather than for a specific title or group, is thus usually provided in the
form of genre hierarchies such as
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section, and will there find - depending on the further organization of
the music archive - a variety of interpretations, being similar in style,
and thus possibly suiting his or her likings. However, such organi-
zations rely on manual categorizations and usually consist of several
hundred categories which involve high maintenance costs, in par-
ticular for dynamic music collections, where multiple contributors
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have to file their contributions accordingly. The inherent difficul-
ties of such taxonomies have been analyzed, for example, in [22].
Another approach taken by on-line music stores is to analyze the
behavior of customers to give those showing similar interests rec-
ommendations on music which they might appreciate. For example,
a simple approach is to give a customer looking for pieces similar
to SUTVKWYX � 	9��Z recommendations on music which is usually bought
by people who also purchased SUTVKW[X � 	9��Z . However, extensive and
detailed customer profiles are rarely available.

The \-]H^ Z ��_ , i.e. the \?](^a` Z2bKcd��b��2Z;e � V �MZ�f �Lg system, outlined
in [26], facilitates exploration of music archives without relying on
further information such as customer profiles or predefined cate-
gories. It does not require the availability of detailed, high-quality
meta-data on the various pieces of music, or musical scores. Rather,
we rely on the sound information, present in the form of any acous-
tical wave format, as it is available e.g. from CD tracks or MP3 files.
Based on the sound signal we extract low-level features based on fre-
quency spectra dynamics, and process them using psycho-acoustic
models of our auditory system. The resulting representation allows
us to calculate to a certain degree the perceived similarity between
two pieces of music. We use this form of data representation as
input to the h W ��i 	9bKjlk[	�Z W � W ��cK	��
�� \ Z�� m `
] W jM��bd	n��	9bKj ^ �2o

( h k `
\-]H^ ) [6], an extension to the popular self-organizing map [13].
This neural network provides cluster analysis by mapping similar
data items close to each other on a map display. Specifically, the
h k \-]H^ is capable of detecting hierarchical relationships in the
data, and thus produces a hierarchy of maps representing various
styles of music, into which the pieces of music are organized.

The remainder of this paper is organized as follows. Section 2 briefly
reviews the related work. The feature extraction process is presented
in detail in Section 3, followed by a description of the principles and
training procedure of the \ Z�� m `
] W jM��b%	n��	9bAj ^ �2o

, and the h W ��i 	9bAjkp	!Z W � W ��cK	������ \ Z�� m `�] W jM��b%	���	qbKj ^ �2o
in Section 4. We then describe

experimental results, using both a reduced collection of 77 pieces
of music, as well as a larger archive consisting of 359 pieces in
Section 5. Finally, in Section 6 some conclusions are drawn.

2. RELATED WORK
A vast amount of research has been conducted in the area of content-
based music and audio retrieval. For example, methods have been
developed to search for pieces of music with a particular melody.
The queries can be formulated by humming and are usually trans-
formed into a symbolic melody representation, which is matched
against a database of scores usually given in MIDI format. Re-
search in this direction is reported in, e.g. [1, 2, 10, 16, 28]. Other
than melodic information it is also possible to extract and search for
style information using the MIDI format. For example, in [4] solo
improvised trumpet performances are classified into one of the four
styles:

� r W 	��
�� , m W ��b%s�	�� , ��r�b5� � o���s/Z
e , or
o � 	9b%s�	��q� 	9�
s�	�� .

The MIDI format offers a wealth of possibilities, however, only
a small fraction of all electronically available pieces of music are
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available as MIDI. A more readily available format is the raw audio
signal to which all other audio formats can be decoded. One of the
first audio retrieval approaches dealing with music was presented
in [35], where attributes such as the pitch, loudness, brightness and
bandwidth of speech and individual musical notes were analyzed.
Several overviews of systems based on the raw audio data have been
presented, e.g. [9, 18]. However, most of these systems do not treat
content-based music retrieval in detail, but mainly focus on speech
or partly-speech audio data, with one of the few exceptions being
presented in [17], using hummed queries against an MP3 archive
for melody-based retrieval.

Furthermore, only few approaches in the area of content-based music
analysis have utilized the framework of psychoacoustics. Psychoa-
coustics deals with the relationship of physical sounds and the human
brain’s interpretation of them, cf. [37]. One of the first exceptions
was [8], where psychoacoustic models are used to describe the simi-
larity of instrumental sounds. The approach was demonstrated using
a collection of about 100 instruments, which were organized using
a \ Z�� m `
] W jM��b%	n��	9bAj ^ �2o

in a similar way as presented in this pa-
per. For each instrument a 300 milliseconds sound was analyzed and
steady state sounds with a duration of 6 milliseconds were extracted.
These steady state sounds can be regarded as the smallest possible
building blocks of music. A model of the human perceptual behav-
ior of music using psychoacoustic findings was presented in [30]
together with methods to compute the similarity of two pieces of
music. A more practical approach to the topic was presented in [33]
where music given as raw audio is classified into genres based on
musical surface and rhythm features. The features are similar to
the rhythm patterns we extract, the main difference being that we
analyze them separately in 20 frequency bands.

Our work is based on first experiments reported in [26]. In particular
we have redesigned the feature extraction process using psychoa-
coustic models. Additionally, by using a hierarchical extension of
the neural network for data clustering we are able to detect the
hierarchical structure within our archive.

3. FEATURE EXTRACTION
The architecture of the \?]H^ Z ��_ system may be divided into 3
stages as depicted in Figure 1. Digitized music in good sound qual-
ity (44kHz, stereo) with a duration of one minute is represented
by approximately 10MB of data in its raw format describing the
physical properties of the acoustical waves we hear. In a prepro-
cessing stage, the audio signal is transformed, down-sampled and
split into individual segments (steps P1 to P3). We then extract fea-
tures which are robust towards non-perceptive variations and on the
other hand resemble characteristics which are critical to our hear-
ing sensation, i.e. rhythm patterns in various frequency bands. The
feature extraction stage can be divided into two subsections, consist-
ing of the extraction of the specific loudness sensation expressed in
\�� b&Z (steps S1 to S6), as well as the conversion into time-invariant
frequency-specific rhythm patterns (step R1 to R3). Finally, the data
may be optionally converted, before being organized into clusters in
steps A1 to A3 using the h k \-]H^ . The feature extraction steps are
further detailed in the following subsections, with the clustering pro-
cedure being described in Section 4, with the visualization metaphor
being only touched upon briefly due to space considerations.

3.1 Preprocessing
( ��� ) The pieces of music may be given in any audio file format,
such as e.g. MP3 files. We first decode these to the raw � V � ��Z � � eAZ
^ � e V ����s�	 � b (PCM) audio format.

( ��� ) The raw audio format of music in good quality requires huge
amounts of storage. As humans can easily identify the genre of a
piece of music even if its sound quality is rather poor we can safely
reduce the quality of the audio signal. Thus, stereo sound quality
is first reduced to mono and the signal is then down-sampled from

Preprocessing

P1: Audio -> PCM

P2: Stereo -> Mono, 44kHz->11kHz

P3: music -> segments

Specific
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S2: Critical Bands
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; -�� �
%2(

44kHz to 11kHz, leaving a distorted, but still easily recognizable
sound signal comparable to phone line quality.

( ��< ) We subsequently segment each piece into 6-second sequences.
The duration of 6 seconds ( =6>@? samples) was chosen heuristically
because it is long enough for humans to get an impression of the
style of a piece of music while being short enough to optimize
the computations. However, analyses with various settings for the
segmentation have shown no significant differences with respect to
segment length. After removing the first and the last 2 segments
of each piece of music to eliminate lead-in and fade-out effects,
we retain only every third of the remaining segments for further
analysis. Again, the information lost by this type of reduction has
shown insignificant in various experimental settings.

We thus end up with several segments of 6 seconds of music every
18 seconds at 11kHz for each piece of music. The preprocessing
results in a data reduction by a factor of over 24 without losing
relevant information, i.e. a human listener is still able to identify the
genre or style of a piece of music given the few 6-second sequences
in lower quality.

3.2 Specific Loudness Sensation - Sone
Loudness belongs to the category of intensity sensations. The loud-
ness of a sound is measured by comparing it to a reference sound.
The 1kHz tone is a very popular reference tone in psychoacoustics,
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and the loudness of the 1kHz tone at 40dB is defined to be � \5� b5Z .
A sound perceived to be twice as loud is defined to be 2 \5� b5Z and
so on. In the first stage of the feature extraction process, this spe-
cific loudness sensation (Sone) per critical-band (Bark) in short time
intervals is calculated in 6 steps starting with the PCM data.

( � � ) First the power spectrum of the audio signal is calculated. To
do this, the raw audio data is first decomposed into its frequencies
using a S ���
s S-� VKW 	!Z W��dW ��b%�Nm � W�� ��s�	 � b�� S S ��� . We use a window
size of 256 samples, which corresponds to about 23ms at 11kHz,
and a Hanning window with 50% overlap. We thus obtain a Fourier
transform of 11 / 2 kHz, i.e. 5.5 kHz signals.

( ��� ) The inner ear separates the frequencies and concentrates them
at certain locations along the basilar membrane. The inner ear
can thus be regarded as a complex system of a series of band-
pass filters with an asymmetrical shape of frequency response. The
center frequencies of these band-pass filters are closely related to the
critical-band rates, where frequencies are bundled into 24 critical-
bands according to the _ � W � scale [37]. Where these bands should
be centered, or how wide they should be, has been analyzed through
several psychoacoustic experiments. Since our signal is limited to
5.5 kHz we use only the first 20 critical bands, summing up the
values of the power spectrum within the upper and lower frequency
limits of each band, obtaining a power spectrum of the 20 critical
bands for the segments.

( ��< ) Spectral Masking is the occlusion of a quiet sound by a louder
sound when both sounds are present simultaneously and have similar
frequencies. Spectral masking effects are calculated based on [31],
with a spreading function defining the influence of the 	 -th critical
band on the

	
-th being used to obtain a spreading matrix. Using

this matrix the power spectrum is spread across the critical bands
obtained in the previous step, where the masking influence of a
critical band is higher on bands above it than on those below it.

( ��
 ) The intensity unit of physical audio signals is sound pressure
and is measured in � ���2�
�� (Pa). The values of the PCM data
correspond to the sound pressure. Before calculating \�� b&Z values
it is necessary to transform the data into decibel. The decibel value
of a sound is calculated as the ratio between its pressure and the
pressure of the hearing threshold, also known as dB-SPL, where
SPL is the abbreviation for sound pressure level.

( �� ) The relationship between the sound pressure level in decibel
and our hearing sensation measured in \�� b&Z is not linear. The
perceived loudness depends on the frequency of the tone. From the
dB-SPL values we thus calculate the equal loudness levels with their
unit Phon. The � c � b levels are defined through the loudness in dB-
SPL of a tone with 1kHz frequency. A level of 40 � c � b resembles
the loudness level of a 40dB-SPL tone at 1kHz. A pure tone at
any frequency with 40 � c � b is perceived as loud as a pure tone
with 40dB at 1kHz. We are most sensitive to frequencies around
2kHz to 5kHz. The hearing threshold rapidly rises around the lower
and upper frequency limits, which are respectively about 20Hz and
16kHz. Although the values for the equal loudness contour matrix
are obtained from experiments with pure tones, they may be applied
to calculate the specific loudness of the critical band rate spectrum,
resulting in loudness level representations for the frequency ranges.

( �� ) Finally, as the perceived loudness sensation differs for different
loudness levels, the specific loudness sensation in \5� b5Z is calculated
based on [3]. The loudness of the 1kHz tone at 40dB-SPL is defined
to be 1 Sone. A tone perceived twice as loud is defined to be 2 \�� b&Z
and so on. For values up to 40 � c � b the sensation rises slowly,
increasing at a faster rate afterwards.

Figure 2 illustrates the data after each of the feature extraction steps
using the first 6-second sequences extracted from _ Z�Z2sqc ��� Z2b�� SUTVKWX � 	9��Z and from �Y� W b�� S W Z;�1� � b ���-Z
���;c

. The sequence of SUTVKW
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X � 	9��Z contains the main theme starting shortly before the 2nd second.
The specific loudness sensation depicts each piano key played. On
the other hand, S W Z;�1� � b:�$�?Z;��� c

, which is classified as
k Z;� � r

^ Z2s!�� %'&YZ;��sqc ^ Z2s!��
, is quite aggressive. Melodic elements do not

play a major role and the specific loudness sensation is a rather
complex pattern spread over the whole frequency range, whereas
only the lower critical bands are active in SUTVKW�X � 	9��Z . Notice further,
that the values of the patterns of S W Z
�L� � b �(�?Z;��� c

are up to 18
times higher compared to those of S TV�WpX � 	9��Z .
3.3 Rhythm Patterns
After the first preprocessing stage a piece of music is represented
by several 6-second sequences. Each of these sequences contains
information on how loud the piece is at a specific point in time in a
specific frequency band. Yet, the current data representation is not
time-invariant. It may thus not be used to compare two pieces of
music point-wise, as already a small time-shift of a few milliseconds
will usually result in completely different feature vectors. In the
second stage of the feature extraction process, we calculate a time-
invariant representation for each piece of music in 3 further steps,
namely the frequency-wise rhythm pattern. These rhythm patterns
contain information on how strong and fast beats are played within
the respective frequency bands.

( ) � ) The loudness of a critical-band usually rises and falls several
times resulting in a more or less periodical pattern, also known as
the rhythm. The loudness values of a critical-band over a certain
time period can be regarded as a signal that has been sampled at
discrete points in time. The periodical patterns of this signal can
then be assumed to originate from a mixture of sinuids. These
sinuids modulate the amplitude of the loudness, and can be calcu-
lated by a Fourier transform. The modulation frequencies, which
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can be analyzed using the 6-second sequences and time quanta of
12ms, are in the range from 0 to 43Hz with an accuracy of 0.17Hz.
Notice that a modulation frequency of 43Hz corresponds to almost
2600bpm. Thus, the amplitude modulation of the loudness sensa-
tion per critical-band for each 6-second sequence is calculated using
a FFT of the 6-second sequence of each critical band.

( ) � ) The amplitude modulation of the loudness has different effects
on our sensation depending on the frequency. The sensation of� V ��s V ��s�	 � b �
s W Z2bAj�sqc is most intense at a a modulation frequency
of around 4Hz and gradually decreases up to 15Hz. At 15Hz the
sensation of W � V j1cKb&Z2�
� starts to increase, reaches its maximum at
about 70Hz, and starts to decreases at about 150Hz. Above 150Hz
the sensation of hearing

sqc W Z
Z ��Z/o�� W ��s/Z�� r � V e�	�f��nZ s � b5Z2� increases.
It is the fluctuation strength, i.e. rhythm patterns up to 10Hz, which
corresponds to 600 beats per minute (bpm), that we are interested
in. For each of the 20 frequency bands we obtain 60 values for
modulation frequencies between 0 and 10Hz. This results in 1200
values representing the fluctuation strength.

( ) < ) To distinguish certain rhythm patterns better and to reduce
irrelevant information, gradient and Gaussian filters are applied.
In particular, we use gradient filters to emphasize distinctive beats,
which are characterized through a relatively high fluctuation strength
at a specific modulation frequency compared to the values immedi-
ately below and above this specific frequency. We further apply a
Gaussian filter to increase the similarity between two rhythm pattern
characteristics which differ only slightly in the sense of either being
in similar frequency bands or having similar modulation frequen-
cies by spreading the according values. We thus obtain modified
fluctuation strength values that can be used as feature vectors for
subsequent cluster analysis.

The second part of the feature extraction process is summarized in
Figure 3. Looking at the modulation amplitude of SUTVKW X � 	9��Z it
seems as though there is no beat. In the fluctuation strength subplot
the modulation frequencies around 4Hz are emphasized. Yet, there
are no clear vertical lines, as there are no periodic beats. On the other

hand, note the strong beat of around 7Hz in all frequency bands of
S W Z;�1� � bl� �?Z;��� c

. For an in-depth discussion of the characteristics
of the feature extraction process, please refer to [23, 24].

4. HIERARCHICAL DATA CLUSTERING
Using the rhythm patterns we apply the \ Z�� m `�] W jM��bd	n��	9bKj ^ �2o
( \-]H^ ) [13], as well as its extension, the h W ��i 	9bKjlk[	!Z W � W ��cA	��
��
\ Z�� m `
] W jM��bd	n��	9bKj ^ �2o

( h k \-]H^ ) [6] algorithm to organize the
pieces of music on a 2-dimensional map display in such a way that
similar pieces are grouped close together. In the following sections
we will briefly review the principles of the \?](^ and the h k \-]H^ ,
followed by a description of the last steps of the \-]H^ Z ��_ system,
i.e. the cluster analysis steps A1 to A3 in Figure 1.

4.1 Self-Organizing Maps
The \ Z�� m `
] W jM��b%	n��	9bAj ^ �2o

( \?]H^ ), as proposed in [12] and de-
scribed thoroughly in [13], is one of the most distinguished un-
supervised artificial neural network models. It basically provides
cluster analysis by producing a mapping of high-dimensional input
data onto a usually 2-dimensional output space while preserving the
topological relationships between the input data items as faithfully
as possible. In other words, the \?](^ produces a projection of the
data space onto a two-dimensional map space in such a way, that
similar data items are located close to each other on the map.

More formally, the \?](^ consists of a set of units � , which are ar-
ranged according to some topology, where the most common choice
is a two-dimensional grid. Each of the units � is assigned a model
vector ��� of the same dimension as the input data, �����
	�� . In
the initial setup of the model prior to training, the model vectors
are frequently initialized with random values. However, more so-
phisticated strategies such as, for example, Principle Component
Analysis, may be applied. During each learning step  , an input
pattern ������ is randomly selected from the set of input vectors and
presented to the map. Next, the unit showing the most similar model
vector with respect to the presented input signal is selected as the
winner � , where a common choice for similarity computation is the
Euclidean distance, cf. Expression 1.

������������ ���������� �!����"���!#%$'&�(�
) ��� ������*�+��������"��� , �.-/�
Adaptation takes place at each learning iteration and is performed
as a gradual reduction of the difference between the respective com-
ponents of the input vector and the model vector. The amount of
adaptation is guided by a monotonically decreasing learning-rate0 , ensuring large adaptation steps at the beginning of the training
process, followed by a fine-tuning-phase towards the end.

Apart from the winner, units in a time-varying and gradually de-
creasing neighborhood around the winner are adapted as well. This
enables a spatial arrangement of the input patterns such that alike
inputs are mapped onto regions close to each other in the grid of
output units. Thus, the training process of the self-organizing map
results in a topological ordering of the input patterns. According
to [27] the self-organizing map can be viewed as a neural network
model performing a spatially smooth version of 1 -means cluster-
ing. The neighborhood of units around the winner may be described
implicitly by means of a neighborhood-kernel 2��3� taking into ac-
count the distance – in terms of the output space – between unit �
under consideration and unit � , the winner of the current learning
iteration. A Gaussian may be used to define the neighborhood-
kernel, ensuring stronger adaption of units close to the winner. It is
common practice that in the beginning of the learning process the
neighborhood-kernel is selected large enough to cover a wide area
of the output space. The spatial width of the neighborhood-kernel
is reduced gradually during the learning process such that towards
the end of the learning process just the winner itself is adapted.
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In combining these principles of self-organizing map training, we
may write the learning rule as given in Expression (2), with 0 rep-
resenting the time-varying learning-rate, 2 �3� representing the time-
varying neighborhood-kernel, � representing the currently presented
input pattern, and ��� denoting the model vector assigned to unit � .

� � ����%- � #%� � ������ 0 ������/2 �3� ������	� �������� � � �����
 � =!�
A simple graphical representation of a self-organizing map’s archi-
tecture and its learning process is provided in Figure 4. In this
figure the output space consists of a square of 36 units, depicted
as circles, forming a grid of ���� units. One input vector ������ is
randomly chosen and mapped onto the grid of output units. The
winner � showing the highest activation is determined. Consider the
winner being the unit depicted as the black unit labeled in the fig-
ure. The model vector of the winner, ��� ���� , is now moved towards
the current input vector. This movement is symbolized in the input
space in Figure 4. As a consequence of the adaptation, unit � will
produce an even higher activation with respect to the input pattern
� at the next learning iteration, �� - , because the unit’s model vec-
tor, � � ���� -/� , is now nearer to the input pattern � in terms of the
input space. Apart from the winner, adaptation is performed with
neighboring units, too. Units that are subject to adaptation are de-
picted as shaded units in the figure. The shading of the various units
corresponds to the amount of adaptation, and thus, to the spatial
width of the neighborhood-kernel. Generally, units in close vicinity
of the winner are adapted more strongly, and consequently, they are
depicted with a darker shade in the figure.

Being a decidedly stable and flexible model, the \-]H^ has been em-
ployed in a wide range of applications, ranging from financial data
analysis, via medical data analysis, to time series prediction, indus-
trial control, and many more [5, 13, 32]. It basically offers itself
to the organization and interactive exploration of high-dimensional
data spaces. One of its most prominent application areas is the orga-
nization of large text archives [15, 19, 29], which, due to numerous
computational optimizations and shortcuts that are possible in this
NN model, scale up to millions of documents [11, 14].

However, due to its topological characteristics, the \?](^ not only
serves as the basis for interactive exploration, but may also be used as
an index structure to high-dimensional databases, facilitating scal-
able proximity searches. Reports on a combination of \?]H^ �

and
R*-trees as an index to image databases have been reported, for
example, in [20, 21], whereas an index tree based on the \?](^
is reported in [36]. Thus, the \?](^ combines and offers itself in
a convenient way both for interactive exploration, as well as for
the indexing and retrieval, of information represented in the form
of high-dimensional feature spaces, where exact matches are ei-
ther impossible due to the fuzzy nature of data representation or
the respective type of query, or at least computationally prohibitive,
making them particularly suitable for image or music databases.

layer 0

layer 1

layer 2

layer 3

� � 	2���� ������������� - 0& � � � � & � ����

4.2 The GHSOM
The key idea of the h W ��i 	9bAj k[	�Z W � W ��cK	��
�� \ Z�� m `
] W jM��b%	n��	9bAj ^ �2o

[6]
is to use a hierarchical structure of multiple layers, where each layer
consists of a number of independent \-]H^ �

. One \?](^ is used at
the first layer of the hierarchy, representing the respective data in
more detail. For every unit in this map a \?]H^ might be added to
the next layer of the hierarchy. This principle is repeated with the
third and any further layers of the h k \?]H^ .

Since one of the shortcomings of \-]H^ usage is its fixed network
architecture we rather use an incrementally growing version of the
\-]H^ . This relieves us from the burden of predefining the network’s
size which is rather determined during the unsupervised training
process. We start with a layer 0, which consists of only one single
unit. The weight vector of this unit is initialized as the average of
all input data. The training process basically starts with a small map
of, say, =� = units in layer 1, which is self-organized according to
the standard \-]H^ training algorithm.

This training process is repeated for a fixed number � of training
iterations. Ever after � training iterations the unit with the largest
deviation between its weight vector and the input vectors represented
by this very unit is selected as the error unit. In between the error unit
and its most dissimilar neighbor in terms of the input space either a
new row or a new column of units is inserted. The weight vectors
of these new units are initialized as the average of their neighbors.

An obvious criterion to guide the training process is the � V ��bds�	n�L� `s�	 � b Z W2W � W � � , calculated as the sum of the distances between the
weight vector of a unit � and the input vectors mapped onto this unit.
It is used to evaluate the mapping quality of a \-]H^ based on the� Z;��b � V ��bds�	n�L��s�	 � b Z W2W � W ( ^"! X ) of all units in the map. A map
grows until its ^"! X falls below a certain fraction # > of the � � of
the unit � in the preceding layer of the hierarchy. Thus, the map now
represents the data of the higher layer unit � in more detail.

As outlined above the initial architecture of the h k \-]H^ consists
of one \?](^ . This architecture is expanded by another layer in case
of dissimilar input data being mapped on a particular unit. These
units are identified by a rather high quantization error � � which is
above a threshold #%$ . This threshold basically indicates the desired
granularity level of data representation as a fraction of the initial
quantization error at layer 0. In such a case, a new map will be
added to the hierarchy and the input data mapped on the respective
higher layer unit are self-organized in this new map, which again
grows until its ^"! X is reduced to a fraction # > of the respective
higher layer unit’s quantization error � � . Note that this does not
necessarily lead to a balanced hierarchy. The depth of the hierarchy
will rather reflect the diversity in input data distribution which should
be expected in real-world data collections. Depending on the desired
fraction # > of ^"! X reduction we may end up with either a very deep
hierarchy with small maps, a flat structure with large maps, or – in
the extreme case – only one large map. The growth of the hierarchy
is terminated when no further units are available for expansion.
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A graphical representation of a h k \?]H^ is given in Figure 5. The
map in layer 1 consists of M 7= units and provides a rough organiza-
tion of the main clusters in the input data. The six independent maps
in the second layer offer a more detailed view on the data. Two units
from one of the second layer maps have further been expanded into
third-layer maps to provide sufficiently granular input data repre-
sentation. By using a proper initialization of the maps added at each
layer in the hierarchy based on the parent unit’s neighbors, a global
orientation of the newly added maps can be reached [7]. Thus, sim-
ilar data will be found on adjoining borders of neighboring maps in
the hierarchy.

4.3 Cluster analysis of music data
The feature vectors extracted according to the process described in
Section 3 are used as input to the h k \?](^ . However, some further
intermediary processing steps may be applied in order to obtain
feature vectors for pieces of music, rather than music segments, as
well as to, optionally, compress the dimensionality of the feature
space as follows.

( N � ) Basically, each segment of music may be treated as an in-
dependent piece of music, thus allowing multiple assignment of a
given piece of music to multiple clusters of varying style if a piece of
music contains passages that may be attributed to different genres.
Also, a two-level clustering procedure may be applied to first group
the segments according to their overall similarity. In a second step,
the distribution of segments across clusters may be used as a kind
of O bKjAZ W o W 	9b%s to describe the characteristics of the whole piece
of music, using the resulting distribution vectors as an input to the
second-level clustering procedure [26].

On the other hand, our research has shown, that simply using the
median of all segment vectors belonging to a given piece of music,
results in a stable representation of the characteristics of this piece of

music. We have evaluated several alternatives using Gaussian mix-
ture models, fuzzy c-means, and k-means pursuing the assumption
that a piece of music contains significantly different rhythm patterns.
However, the median, despite being by far the simplest technique,
yielded comparable results to the more complex methods. Other
simple alternatives such as the the mean proved to be too vulnerable
with respect to outliers.

The rhythm patterns of all 6-second sequences extracted from SUTVKWX � 	9��Z and from S W Z;�1� � b � �?Z;��� c
as well as their medians are

depicted in Figure 6. The vertical axis represents the critical-bands
from _ � W � 1-20, the horizontal axis the modulation frequencies
from 0-10Hz, where _ � W � 1 and 0Hz is located in the lower left
corner. Generally, the patterns of one piece of music have common
properties. While SUTVKWYX � 	9��Z is characterized by a rather horizon-
tal shape with low values, S W Z;�1� � b:���-Z
���;c

has a characteristic
vertical line around 7Hz. To capture these common characteristics
within a piece of music the median is a suitable approach. The
median of S TV�WDX � 	9��Z indicates that there are common but weak ac-
tivities in the range of 3-10 _ � W � with a modulation frequency of up
to 5Hz. The single sequences of S TV�W X � 	9��Z have many more details,
for example, the first sequence has a minor peak around 5 _ � W � and
5Hz modulation frequency. However, the main characteristics, e.g.
the vertical line at 7Hz for S W Z;�1� � b � �?Z;��� c

, as well as the generic
activity in the frequency bands are preserved.

( N � ) Furthermore, the 1200-dimensional feature space may be com-
pressed using Principle Component Analysis (PCA). Our experi-
ments have shown that a reduction down to 80 dimensions may be
performed without much loss in variance. Yet, for the experiments
presented in this paper we use the uncompressed feature space.

( N < ) Following these optional steps, a h k \-]H^ may be trained to
obtain a hierarchical map interface to the music archive. Apart from
obtaining hierarchical representations, the h k \?]H^ may also be
applied to obtain flat maps similar to conventional \?](^ �

, or grow
linear tree structures.

( P � � � - 5:�
; -�� �
%2( ) The resulting maps offer themselves as interfaces
to explore a music archive. Yet advanced cluster visualization tech-
niques based on the \?](^ , such as the Q-`9^ ��s W 	 g [34], may be used
to assist in cluster identification. A specifically appealing visual-
ization based on

� � �L� sqc%Z;eae��s!� cK	9�
s � j W � � ��� \ & k � [25] are theR ������b�e�� � m ^ V �
	�� , which use the metaphor of geographical maps,
where islands resemble styles of music, to provide an intuitive in-
terface to music archives. Furthermore, attribute aggregates are
used to create S Z
��sqc%Z W ��cd� W s�� that help the user to understand the
sound characteristics of the various areas on the map. For a detailed
discussion and evaluation of these visualizations, see [24].

5. EXPERIMENTS
In the following sections we present some experimental results of our
system based on a music archive made up of MP3-compressed files
of popular pieces of music from a variety of genres. Specifically,
we present in more detail the organization of a small subset of
the entire archive, consisting of 77 pieces of music, with a total
playing time of about 5 hours, using the h k \?](^ . This subset,
due to its limited size offers itself for detailed discussion. We
furthermore present results using a larger collection of 359 pieces
of music, with a total playing length of about 23 hours. In both
cases, each piece is represented by 1200 features which describe
the dynamics of the loudness in frequency bands. The experiments,
including audio samples, are available for interactive exploration
at the \-]H^ Z ��_ project homepage at TVUUXW�Y[ZZ"\&\\�]_^"`bac]dU&e\1^&f"g�]hi ] h UbZ1j h gVk1^XZVa&l�m f&n"o .

5.1 A GHSOM of 77 pieces of music
Figure 7 depicts a h k \?]H^ trained on the music data. On the first
level the training process has resulted in the creation of a M�pM
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map, organizing the collection into 9 major styles of music. The
bottom right represents mainly classical music, while the upper left
mainly represents a mixture of Hip Hop, Electro, and House by
_ � � m V b�� ^ � � �;f�m � � � . The upper-right, center-right, and upper-
center represent mainly disco music such as � � ����& � by � � fLf�	!Z
S 	��9� 	�� � � � W � ���e 	 � , _ � V Z by X 	 � Z������(�;Z2	 � Z��	��� ` f�� V Z � , or S W � �1Z2b
by ^ �Me � bdb5�$� m W � �1Z2b � . Please note, that the organization does not
follow clean “conceptual” genre styles, splitting by definition, e.g.kp	 odk � o and

k � V ��Z , but rather reflects the overall sound similarity.

Seven of these 9 first-level categories are further refined on the sec-
ond level. For example, the bottom right unit representing classical
music is divided into 4 further sub-categories. Of these 4 cate-
gories the lower-right represents slow and peaceful music, mainly
piano pieces such as SUTVKW X � 	q��Z �;Z�� 	9��Z � and ^ � b5e�����cdZ2	9b%� � b���s/Z� � � b5e � by _ Z
Z2sqc ��� Z2b , or S W Z � eAZ�� T��b�eAZ WlV b�e ^ Z2b%�2��c%Z2b

by
\ ��c V�� ��bdb ����	�e�����Z2b5Z � . The upper-right represents, for example,
pieces by 
 ��b5Z2�
��� ^ �AZ

(vm), which, in this case, are more dy-
namic interpretations of classical pieces played on the violin. In the
upper-left orchestral music is located such as the as the end credits
of the film _ �M��� s � sqc%Z S V s VKW Z R_R_R � m V s V�W Z � and the slow love song� c%Z ��� ��Z by _ Z2s�s/Z ^ 	�ed�nZ W �/sqc%Z W � ��Z � , exhibiting a more intensive
sound sensation, whereas the lower right corner unit represents the
_ W ��b5eMZ2b5f VKW j � � b���Z W s�� by _ �M��c � f W ��b�eAZ2b � .
Generally speaking, we find the softer, more peaceful songs on this
second level map located in the lower half of the map, whereas the
more dynamic, intensive songs are located in the upper half. This
corresponds to the general organization of the map in the first layer,
where the unit representing Classic music is located in the lower right
corner, having more aggressive music as its upper and left neighbors.
This allows us, even on lower-level maps, to move across map
boundaries to find similar music on the neighboring map following

the same general trends of organization, thus alleviating the common
problem of cluster separation in hierarchical organizations.

Some interesting insights into the music collection which the h k `
\-]H^ reveals are, for example, that the song S W Z
Z2�
s�r��nZ W by _D� � `m V bK� ^ � �

(center-left) is quite different then the other songs by
the same group. S W Z
Z2�
s�r�nZ W was the groups biggest hit so far and,
unlike their other songs, has been appreciate by a broader audience.
Generally, the pieces of one group have similar sound characteristics
and thus are located within the same categories. This applies, for
example, to the songs of h V ��b ��� odZ2� ��jM� � and � �2o�� ��� �M��c �No W � ,
which are located in the center of the 9 first-level categories together
with other aggressive rock songs. However, another exception is�I	 � 	9bAj>	9b ���I	!Z

by h V ��b �� odZ2����jM� ` � 	!Z � , located in the lower-
left. Listening to this piece reveals, that it is much slower than the
other pieces of the group, and that this song matches very well to,
for example, � eMe�	���s by ��� � �?c � 	���Z .
5.2 A GHSOM of 359 pieces of music
In this section we present results from using the \-]H^ Z ��_ system
to structure a larger collection of 359 pieces of music. Due to space
constraints we cannot display or discuss the full hierarchy in detail.
We will thus pick a few examples to show the characteristics of the
resulting hierarchy, inviting the reader to explore and evaluate the
complete hierarchy via the project homepage.

The resulting h k \-]H^ has grown to a size of = �� units on the
top layer map. All 8 top-layer units were expanded onto a second
layer in the hierarchy, from which 25 units out of 64 units total
on this layer were further expanded into a third layer. None of
the branches required expansion into a fourth layer at the required
level-of-detail setting. An integrated view of the two top-layers of
the map is depicted in Figure 8. We will now take a closer look at
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some branches of this map, and compare them to the respective areas
in the h k \?]H^ of the smaller data collection depicted in Figure 7

Generally, we find pieces of soft classical music in the upper right
corner, with the music becoming gradually more dynamic and ag-
gressive as we move towards the bottom left corner of the map.
Due to the characteristics of the training process of the h k \-]H^
we can find the same general tendency at the respective lower-layer
maps. The overall orientation of the map hierarchy is rotated when
compared to the smaller h k \-]H^ , where the classical titles were
located in the bottom right corner, with the more aggressive titles
placed on the upper left area of the map. This rotation is due to
the unsupervised nature of the h k \-]H^ training process. It can,
however, be avoided by using specific initialization techniques if a
specific orientation of the map were required.

The unit in the upper right corner of the top-layer map, representing
the softest classical pieces of music, is expanded onto a M  = map
in the second layer (expanded to the upper right in Figure 8). Here
we again find the softest, most peaceful pieces in the upper right
corner, namely part of the sound-track of the movie � V�W ���
�
	�� � � W � ,
next to

�?Z;� � 	9bAj ��� W s by � � � Z2� k � W b&Z W , � c%Z ^ Z W�W r � Z;���2��b%s��
by \ ��c V�� ��bdb , and

�(��b � b by � �M��c%Z���f�Z�� . Below this unit we find
further soft titles, yet somewhat more dynamic. We basically find
all titles that were mapped together in the bottom right corner unit
of the h k \?]H^ of the smaller collection depicted in Figure 7 on
this unit, i.e. � 	 W � � � Z ^ � W 	���� SUTVKW X � 	q��Z � S W Z � eAZ�� T��b�eAZ W V b�e
^ Z2bd�2��c%Z2b ����	�e��2��Z2b&Z � and the ^ � b�e��2��c%Z2	9bd� � b5��s/Z . Furthermore,
a few additional titles of the larger collection have been mapped
onto this unit, the most famous of which probably are

& 	!Z ���nZ2	9b5Z
� �M��cKs �YV �
	N� by ^ � �L� W s , the S V b&Z W �� ^ � W ��c by

�?c � o%	9b or the
� eM�Lj�	 � from the Clarinet Concert by emphMozart.

Let us now take a look at the titles that were mapped onto the
neighboring units in the previously presented smaller data collection.
The _ W ��b5eAZ2b�f V�W j�	9�2��c%Z �Y� bK�1Z W s/Z , located on the neighboring unit
to the right in the first example, can be found in the lower left corner

of this map, together with, for example, � � � � ��o W �M��c
	I� W ��sqc V �
s W �
by � 	���cd� W e \ s W � V�� . Mapped onto the upper neighboring unit in the
smaller h k \?]H^ we had titles like the S 	 W �
s ^ � � Z � Z2b%s � mHsqcdZ ��sqc
\ r � odc � bdr by _ Z
Z2sqc ��� Z2b , or the � � �
�
��s!� ��b5e S V jAZ[	9b�& ^ 	9b � W
by _ ���c . We find these two titles in the upper left corner of the
2-layer map of this h k \?]H^ , together with two of the three titles
mapped onto the diagonally neighboring unit in the first h k \?](^ ,
i.e.

� ��� Z � Z � Z2b5eAZ W by X � � 	9� � W Z2���nZ2r , and � c%Z ��� ��Z by _ Z2s�s/Z
^ 	�ed�nZ W , which are again soft, mellow, but a bit more dynamic. The
third title mapped onto this unit in the smaller h k \?](^ , i.e. the
sound track of the movie _ �M���ls � sqc%Z S V s VKW Z R_R_R

is not mapped
into this branch of this h k \-]H^ anymore. When we listen to this
title we find it to have mainly strong orchestral parts, which have a
different, more intense sound than the soft pieces mapped onto this
branch, which is more specific with respect to very soft classical titles
as more of them are available in the larger data collection. Instead,
we can find this title on the upper right corner in the neighboring
branch to the left, originating from the upper left corner unit of the
top-layer map. There it is mapped together with � cdZ _ Z;� V s�r ��b�e
sqcdZ _ Z;���
s and other orchestral pieces, such as � �9�nZ�j W � ^ � � s � by
_ W �1c � � . We thus find this branch of the h k \?](^ to be more or
less identical to the overall organization of the smaller h k \?](^ in
so far as the titles present in both collections are mapped in similar
relative positions to each other.

Due to the topology preservation provided by the h k \?]H^ we can
move from the soft classical cluster map to the left to find somewhat
more dynamic classical pieces of music on the neighboring map
(expanded to the left in Figure 8). Thus, a typical disadvantage of
hierarchical clustering and structuring of datasets, namely the fact
that a cluster that might be considered conceptually very similar is
subdivided into two distinct branches, is alleviated in the h k \-]H^
concept, because these data points are typically located in the close
neighborhood. We thus find, on the right border of the neighboring
map, the more peaceful titles of this branch, yet more dynamic than
the classical pieces on the neighboring right branch discussed above.
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Rather than continuing to discuss the individual units we shall now
take a look at the titles of a specific artist and its distribution in
this hierarchy. In total, there are 7 titles by 
 ��b&Z2�
�2� ^ �AZ

in
this collection, all violin interpretations, yet of distinctly different
style. Her most “conventional” classical interpretations, such as
Brahm’s \ ��c%Z W � � 	9b � ^ 	9b � W � � � ` f W �1c � � � or Bach’s � � W s�	9s!���� 	9b X m � W \�� � � 
 	 � � 	9b � � � ` f����c � are located in the classic-
cluster in the upper right corner branch on two neighboring units
on the left side of the second-layer map. These are definitely the
most “classical” of her interpretations in the given collection, yet
exhibiting strong dynamics. Further 3 pieces of Vanessa Mae ( � c%Z� \ Z;��� � bd� by Vivaldi, � Z;e 
 	 � � 	9b in its symphonic version, and� Z � V 	���� ^a� ����	9bKjMf�	 W e ) are found in the neighboring branch to the
left, the former two mapped together with S Z2��s/Z W b & W Z
� � by

� Z i
^ � eMZ�� � W�� r . All of these titles are very dynamic violin pieces with
strong orchestral parts and percussion.

When we look for the remaining 2 titles by 
 ��b&Z2�
�2� ^ �AZ
, we find

them on the unit expanded below the top right corner unit, thus
also neighboring the classical cluster. On the top-left corner unit
of this sub-map we find

�������
�
	��
�� h ��� , which starts in a classical,
symphonic version, and gradually has more intensive percussion
being added, exhibiting a quite intense beat. Also on this map, on
the one-but-next unit to the right, we find another interpretation of the� � �
�
��s!� ��b5e S V jAZ[	9b�& ^ 	9b � W by Bach, this time in the classical
interpretation of 
 ��b&Z2�
�2� ^ �AZ

, also with a very intense beat. The
more “conventional” organ interpretation of this title, as we have
seen, is located in the classic cluster discussed before. Although
both are the same titles, the interpretations are very different in their
sound characteristic, with 
 ��b5Z2�
��� ^ �AZ

’s interpretation definitely
being more pop-like than the typical classical interpretation of this
title. Thus, two identical titles, yet played in different styles, end
up in their respective stylistic branches of the \?](^ Z ��_ system.
We furthermore find, that the system does not organize all titles
by a single artist into the same branch, but actually assigns them
according to their sound characteristics, which makes it particularly
suitable for localizing pieces according to ones likings independent
of the typical assignment of an artist to any category, or to the
conventional assignment of titles to specific genres.

In spite of these desired characteristics, however, several weaknesses
remain, especially when titles, that may be very similar in terms of
their beat characteristics in the various frequency bands, are mapped
together, yet derive from very different genres and are immediately
associated with those genres. This refers, for example, to titles where
the language is a specific characteristic, such as several German-
language songs in our collection. Furthermore, in some cases like
the previously-mentioned S Z2�
s/Z W b�& W Z;� � by

� Z i ^ � eAZ�� � W�� r ,
which is mapped together with titles by 
 ��b&Z2�
�2� ^ �AZ

, the rhyth-
mic properties might be similar, yet the perceived sound is still
distinctively different because of the strong vocal parts. Even if the
acoustic background shares some similarities over long distances
of the title, the rhythmic vocal parts are perceived much stronger.
This points towards the necessity to incorporate additional features
to better capture sound characteristics. Furthermore, in some cases
like these it might be advisable to use the two-stage clustering ap-
proach outlined in [26], as for some titles the variance of sound
characteristics of segments is rather large. When taking a look at
the mapping of the respective segments of S Z2�
s/Z W b & W Z;� � in an-
other experiment we find 3 segments of it to be located in a more
classical sub-branch, whereas the other segments are located in the
more dynamic, aggressive branches of the hierarchy.

Further units depicted in more detail in Figure 8 are the bottom right
unit representing the more aggressive, dynamic titles. We leave it to
the reader to analyze this sub-map and compare the titles with the
ones mapped onto the upper left corner map in Figure 7.

6. CONCLUSIONS
We have presented the \-]H^a` Z2b�cd��b5��Z;e � V �MZ�f �Lg � \?](^ Z ��_ � , a
system for content-based organization and visualization of music
archives. Given pieces of music in raw audio format a hierarchical
organization is created where music of similar sound characteristics
is mapped together. Our system thus enables a user to browse
through the archive, searching for music representing a particular
style, without relying on manual genre classification.

Rhythm patterns in various frequency bands are extracted and used
as a descriptor of perceived sound similarity, incorporating psychoa-
coustic models during the feature extraction stage. The h k \-]H^
automatically identifies the inherent structure of the music collection
and offers an intuitive interface for genre browsing. Furthermore,
by mapping a piece of music representing a “query” onto the map
structure, the user is pointed to a location within the map hierarchy,
where he or she will find similar pieces of music. We evaluated our
approach using a collection of about 23 hours of music and obtained
encouraging results. Future work will mainly deal with improving
the feature extraction process. While the presented features offer
a simple but powerful way of describing the music, additional in-
formation is required to better capture sound characteristics that go
beyond frequency-specific beat patterns, focusing e.g. on the tim-
bre and instrumentation. Furthermore, more abstract features are
necessary to explain the organization principles to the user.

While the current evaluation allows for an intuitive analysis of the
system’s performance, a more formal evaluation is desired. We thus
plan to perform a user study allowing us to evaluate both users’
expectations towards such a system as well as to obtain feedback on
the perceived quality of the current approach.
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