Transcription An Historical Overview

By Daniel McEnnis

Overview of the Overview

- In the Beginning: early transcription systems
 - Piszczalski, Moorer
- Note Detection
 - Piszczalski, Foster, Chafe, Katayose, Maher, Kashino
- Other Detection
 - Lerdhal, Chafe, Mont Reynaud, Desian
- Missing References
- Conclusions
 - What wasn't published

Moorer 77

- Restrictions
 - Only harmonic instruments
 - No vibrato
 - No overlaps between fundamentals and harmonics

Moorer 77

- Method
 - Periodicity detector to separate harmonics
 - Look for fundamental frequencies
 - assign by goodness of fit
 - Get duration by getting minimum durational value as an input from the user.

Piszczalski 77

Restrictions

- Monophonic recorder or symphonic flute

Method

- Convert to frequency domain
- Frequency of strongest partial + average weighting of spectral neighbors
- Abrupt change in pitch or change in amplitude implies a note off.

Piszczalski 81

- Restriction
 - Monophonic input
- Method
 - Change to frequency domain
 - 'abrupt' change in pitch or amplitude implies note off
 - Ignore 'impossible' notes by thresholding duration

Foster 82

- Restrictions
 - No harmonic based polyphony
- Method
 - Transform into frequency and process backwards
 - Determine pitch
 - Use autoregressive measure of goodness of fit. Drop in goodness of fit implies an attack.

Foster 82

- Notes on polyphony
 - Recognize by differing attack times
 - Identify by 'frequency locked' vibrato patterns
 - Can not handle harmony.

Chafe 85

- Restrictions
 - None listed
- Method
 - Blackboard style approach
 - Separate signal into pieces by BoundedQ frequency transform
 - Multiple passes

Chafe 85

- Blackboard Modules
 - Signal Transformation
 - Event Detection
 - Note Modeling
 - Metrical grid formation

Katayose 89

Restrictions

- Precomputed spectra for all instruments used

Method

- "pick up every note whose harmonic is associated with the tone under investigation"
- Set threshold for deciding whether tone is fundamental or not
- Extract fundamental using threshold
- Repeat for notes in order of loudness

Maher 90

- Restrictions
 - 2 monophonic voices
 - Instruments must be harmonic
 - Max(voice b) < Min(voice a)
 - Noise free

Maher 90

Method

- Choose 2 fundamentals that maximize coverage of harmonics present
- Full search 3 times per second
- Up to semitone difference checked between full searches

Kashino 93

- Restrictions
 - None listed
- Method
 - cluster partials using vertical theory of timbrel perception
 - Cluster these partials into sound sources

Kashino 93

- Methods for clustering
 - Harmonic mistuning
 - Onset asynchrony
 - Timbre memory
 - Old + new

Lerdahl and Jackendoff 83

- No experiment conducted
- Foundation for most symbolic based computer processing of music
- Collections of rules for segmentation and meter detection.

Chafe 82

- Monophonic transcription
- Method
 - Uses Foster's algorithm to get notes'
 - Marks agogic accents based on Lerdahl and Jackendoff's duration grouping rule and accent grouping rule.
 - Uses accents to weight tonality measurements to estimate key
 - Similar process for analyzing meter

Mont Reynaud

- Metrical Pattern Matching
 - Formed from Interval Onset Intervals (IOI)
- Methods
 - All patterns are time invariant
 - Exact pattern matching
 - Unconstrained elaboration
 - Grammar driven elaboration

Desian 89

- Quantization of music
- Connectionist approach
- Method
 - Sequentially iterates over IOI's, slowly transforming them into simple integer ratios of each other.

Conclusions

- Prior to Lerdhal and Jackendoff, no processing of symbolic data only audio
- Polyphonic transcription problem has been around for quite a while
- Beat detection and meter detection has historically been an afterthought