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ABSTRACT

In this short text, we wish to define clearly the requirements
for real-time pitch tracking algorithms in musical applica-
tions, briefly introduce the major developments in the field
over the last 40 years and provide some insight on what
techniques might be more suitable for certain applications.

1. PITCH TRACKING REQUIREMENTS

Historically, a lot of algorithms that are used in music
processing come from the research and developments oper-
ated in the speech telecommunication industry. When used
in musical contexts however, a sometimes radically differ-
ent set of requirements is defined, which may or may not
compromise the usability of the given algorithm. Critical to
the evaluation of the number of pitch tracking algorithms
portrayed in the literature is thus the definition of general
requirements for fundamental frequency detection in musical
contexts.

First, the algorithm must be able to run in real-time using
only a fraction of the computing power available, to leave
some resources for actual sound transformations and pro-
cessing. In many cases where synthesis is dependent on the
detected fundamental frequency, the algorithm must also
run with a minimal output latency to avoid a feedback ef-
fect that could confuse the performer. Note here that for
an algorithm which output discrete pitch instead of just the
fundamental frequency tracking there is an additional delay
required to ensure a valid discrete guess (e.g. vibrato might
slow down pitch recognition).

Another requirement is accuracy in the presence of noise.
In offline processed algorithms, one can always come back
and fix detection errors, but in a typical musical concert sit-
uation where the pitch tracker operate in real-time, mistakes
in the detection process will cause an undesired synthesized
result which cannot be further corrected. The musical en-
vironment setup often using loudspeakers for the audience
creates important feedback problems that the pitch tracker
must be able to handle correctly for proper operation.

One more constraint on pitch tracking algorithms is the
required frequency resolution demands which may be very
high depending on the application. Tracking pitch micro-
variations such as vibrato in many string instrument and
human voice might require resolution to much less than one
percent of the fundamental frequency for example.

Ideally, the pitch tracker should be able to operate on
a wide range of input signals (e.g. different instruments
or room characteristics) to be useful in most musical set-
tings. The pitch and amplitude ranges that the algorithm

is designed to handle is particularly important for musical
applications.

2. TIME-DOMAIN METHODS

2.1 Autocorrelation method

The autocorrelation method is based on the fact that a
periodic signal will correlate strongly with itself when offset
by the fundamental period. The autocorrelation function is
just a measure to which extent a signal correlates with a
time-shifted version of itself. The time shift corresponding
to the maximum in the autocorrelation function of the signal
indicates a likely candidate for fundamental period of the
signal.

One advantage of the autocorrelation function [Rabiner
1977] is that it is largely phase insensitive and is thus well
suited for application where the signal might have been de-
graded with respects to its time evolution. Disadvantages of
the techniques however are a possible confusion of the peaks
because of spectral formants and poor resolution at high fre-
quencies. Note that pre-processing (often spectral flatten-
ing) is required to achieve better results with this technique.

2.2 AMDF

The Amplitude Magnitude Difference Function is again
based on the idea that a periodic signal will be similar to
itself shifted by a fundamental period. The AMDF is there-
fore similar in concept to the ACF but rather looks at the
difference with the time shifted version of itself. The time
shifts which yields minima in the AMDF function are con-
sidered likely period estimates of the signal.

The AMDF suffers from the the same drawbacks as the
ACF, but is less computationally expensive due to the use
of substractions rather than multiplications and additions.
[Kobayashi and Shimamura 1995] achieved more robust re-
sults by combining the ACF and AMDF functions together,
than those obtained by each function used separately.

2.3 Fundamental Period Measurement

In the Fundamental Period Measurement method [Kuhn
1990], the signal is first ran through a bank of half-octave
bandpass filters. If the chosen filters are sharp enough, the
output of one of the filters should display the input wave-
form fundamental frequency freed from its upper partials (a
nearly sinusoidal signal). It is then up to a decision algo-
rithm to decide which of the filter outputs corresponds to
the current fundamental frequency of the signal. Once the
decision is made, it is then trivial to obtain the fundamental



period by performing an inexpensive zero-crossings analysis.
Major advantages of the technique are its easy implemen-
tation and efficiency of computation. Some obvious disad-
vantage being its strong dependance on thresholds levels cru-
cial for the decision algorithm. Fortunately, an automatic
threshold setting algorithm was also implemented.

3. SPECTRAL-DOMAIN METHODS
3.1 Cepstrum

The cepstrum is defined as the power spectrum of the log-
arithm of the power spectrum of the signal and is a tool of-
ten used in speech processing. One property of the cepstrum
is that it clearly separates the contribution of spectral for-
mants and the periodicity characteristics of the signal. This
is useful to solve some of the problems notably encountered
in the autocorrelation method, to avoid misidentification of
fundamental frequency due to the presence of strong for-
mants in the spectrum. The strongest peak can be looked for
in the excitation part of the cepstrum (high cepstral region)
and the given quefrency can be related to the fundamental
frequency of the input signal.

Cepstral pitch determination [Noll 1967] is a proven method
that is especially suitable for signals which can be efficiently
represented by a source-filter model (e.g. human voice). One
disadvantage however is its relatively high computational
cost due to the two cascaded Fourier transformations.

3.2 Harmonic Product Spectrum

The Harmonic Product Spectrum (HPS) approach [Schroeder

1968] measures the maximum coincidence of harmonics by
simply looking at the bin amplitudes from a Fourier trans-
form for each spectral frame (they are multiplied together).
The resulting periodic correlation array is searched for a
maximum which should correspond to the fundamental fre-
quency.

Since the algorithm is highly sensitive to octave errors, it
must be followed by a correction algorithm looking at the
power at the octave below to ensure the correct octave of
the fundamental frequency is detected. The algorithm is
very simple to implement, and does well under a wide vari-
ety of conditions. The poor low frequency resolution of this
technique is often compensated by zero padding the signal
before taking the Fourier transform to obtain better inter-
polation of the low frequencies. This however augments the
computational requirements of the algorithm substantially.

3.3 Constant-Q transform method

It is a well known fact that the linear scale outputs of the
Fourier transformation does not match well the way we per-
ceive audio frequencies. To better approximate this phenom-
ena, the constant-Q transform turns the Fourier transforma-
tion into a logarithmic scale representation of frequency. A
periodic signal analyzed through this procedure will yield a
constant distance pattern between partials in the transform
representation. [Brown 1992] used the cross-correlation of
this result with a perfect comb pattern (corresponding to
ideal partial positions for a given fundamental frequency) to
determine the periodicity of the signal. The result is peak
picked and the strongest peak corresponds to the fundamen-
tal frequency of the signal.

The complexity of the constant-Q transform was signifi-
cantly reduced in [Brown and Puckette 1992] and allows a

real-time implementation to be viable. The algorithm how-
ever is sensitive to octave errors and other peaks could be
considered as pitch candidates.

3.4 Least-Squares fitting

All the spectral algorithms seen so far rely heavily on
Fourier transformation. [Choi 1997] however wanted to over-
come the delay introduced by Fourier analysis and does spec-
tral analysis using a least-square approach. The idea is to
fit sinusoids to the current signal segment and minimize the
error signal to determine where are located the sinusoidal
components. Strong sinusoidal components are identified as
sharp valleys in the least-squares error signal. To achieve
the detection of the first couple of partials, few evaluation
of the error function are required and this fact keeps the
computational complexity of the algorithm reasonable.

The fundamental frequency is obtained by averaging the
first few partial frequencies over their partial number to ob-
tain a better resolution of the fundamental frequency. The
major advantage of the algorithm is that it can use rectan-
gular windowing (as opposed to methods using DFT which
must use more dynamic window functions), and can thus
operate on shorter window lengths, providing an apprecia-
ble gain in responsiveness of the algorithm. Least-squares
method is by far out performing spectral method with re-
spect to the output latency of the technique, and is thus
particularly recommended for applications with minimum
latency requirements.

3.5 Maximum Likelihood

Maximum likelihood algorithms search through a set of
possible ideal spectra and chooses the one which matches
more closely the sound analyzed by a Fourier transforma-
tion. This algorithm was adapted to sinusoidal modelling
theory [McAulay and Quatieri 1990], by finding the best
possible fit for given sets of harmonic partials to the set of
partials measured. With this technique, it is possible to fur-
ther enhance the discrimination of pitch by neglecting small
amplitude valued partials (possibly belonging to reverbera-
tion or else).

This algorithm inherits the high computational cost of
sinusoidal modeling but might still be acceptable depending
on the application. It provides very robust estimation of
the fundamental frequency even when a significant number
of partials are missing (including the fundamental).

4. OTHER METHODS

It is impossible to summarize all attempts to fundamental
frequency tracking in such a small text. Other undiscussed
approaches are here briefly mentioned but we are still far
from having covered all major implementations.

The recent re-emergence of interest for adaptive learning
systems has also been witnessed in fundamental frequency
tracking with approaches using Neural Networks and Hidden
Markov Models [Doval and Rodet 1991]. [Marchand 2001]
came up with a promising approach using Fourier of Fourier
transformation. Sub-harmonic to harmonic ratio was also
recently proposed by [Sun 2002] for effective detection in
noisy environments. It is also important to note that there
is also an increasing number of implementations following
the steps of [Gold and rabiner 1969] towards using several
algorithms in parallel to increase the validity of the detec-
tion.



5. CONCLUSIONS

Although real-time pitch detection is often considered as
a solved problem, there is still quite a bit of research per-
formed on this topic to try to achieve more robust and faster
implementations. It was noted that despite the abundant lit-
erature on the topic since the 1950’s, complete and objective
performance evaluation reviews are still missing.
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