Timbre Similarity

By Daniel McEnnis

Outline

- Timbre similarity by MDS
 - Grey and Gordon
- Timbre Similarity and Classification
 - Fujinaga
 - Fujinaga and MacMillan
 - Brown
 - Herrera, Yeterian, and Gouyon
 - Tindale, Kapur, Tzanetakis, Fujinaga
- Concluding thoughts

Grey and Gordon 78

- Similarity of Timbre by Psychoacoustics
 - Attempts to find acoustically relevant features
 - Utilizes similarity judgments by participants for raw data
 - Correlate results using MDS
 - 16 tones from 14 instruments
 - Each subject listens to every possible combination of tones

Grey and Gordon 78

- MDS Multi Dimensional Scaling
 - Take a set of distance measurements and calculate the smallest possible number of dimensions that can 'adequately' explain results
 - Take guesses as to what the features are and test for fit
- Finds 3 dimensions 'adequately' explain results
- Finds spectral centroid as 1 feature with a high correlate, but none found for other dimensions

Fujinaga 98

Data source

- McGill sound source 39 instruments at different pitches for 1338 individually played notes
- Features
 - First 10 Moments of spectrum
 - Fundamental frequency
 - Amplitude
 - Partials above fundamental

Fujinaga 98

- Features Used
 - Fundamental Frequency
 - 0th 3rd order moment
 - Standard deviation
 - First 2 partials
- Method
 - K Nearest Neighbor with Genetic Algorithms
- Results
 - 64% over all 39 instruments with high of 90% and low of 8%

MacMillan and Fujinaga

- Real time system
- Data Source
 SHARC database
- Features
 - First 10 Moments of spectrum
 - Fundamental frequency
 - Amplitude
 - Partials above fundamental
 - Velocity of centroid
 - Variance of centroid
 - Spectral irregularity
 - Tristimulus

MacMillan and Fujinaga

- Method Used
 - K Nearest Neighbor with Genetic Algorithms
- Results
 - 68% correct classification across all 39 instruments.

Brown 99

- Data Source
 - Music from Wellesley College Music Library Collection (not samples)
 - Music from the personal collection of Jay Panetta (not samples)
- Training set of 1 minutes sax and 1 minute oboe

- Chosen by which sample gives best results

 Test set of 52 sax and 28 oboe excerpts

Brown 99

- Features
 - Cepstrum Coefficients
- Model
 - Gaussian classifiers
- Results
 - Not easily summarized

Herrera, Yeterian, Gouyon 2002

- Data Source
 - 234 drum sounds from various commercial cd's
- Features
 - Attack
 - Energy
 - Log attack time
 - Zero crossing rate
 - Temporal centroid
 - TC/EA (temporal centroid / attack length)
 - Decay
 - Spectral flatness
 - Spectral centroid + variance
 - Strong peak
 - Spectral kurtosis

Herrera Yeteran Gouyan 2002

- Decay cont.
 - Zero crossing rate + variance
 - Skewness
- Other
 - 8 empirically chosen bands
 - 13 MFCC
- Model
 - Pre-filtered by none, Correlation Based
 Feature Selection, or ReliefF
 - K Nearest Neighbor, Canonical Discriminant analysis, and C4.5

Herrera Yeterian Gouyan 2002

- Results
 - KNN 99.2%
 - C4.5 97.2%
 - Canonical Discriminant Analysis 99.1%

Tindale et al. 2004

- Data Source
 - Self collected drum hit sounds
- Features
 - Spectral Flux
 - Spectral Rolloff
 - Spectral Centroid
 - Spectral Kurtosis
 - Spectral Skewness
 - MFCC (12)
 - Linear Prediction Coding Coefficients
 - 9 wavelet bands and their variances

Tindale et al. 2004

- Model
 - Neural Net (6 hidden and 7 output nodes)
 - K Nearest Neighbor
 - Support Vector Machine
- Results
 - Neural Nets 89%
 - Nearest Neighbor 94.9%
 - Support Vector Machine 68.8%

Concluding Thoughts

- Not nearly everything, but its a start
- Most early work is psychoacoustic studies, not classification experiments