
MACS: MUSIC AUDIO CHARACTERISTIC SEQUENCE INDEXING FOR SIMILARITY
RETRIEVAL

Cheng Yang

Department of Computer Science
Stanford University

yangc@cs.stanford.edu

ABSTRACT

We present a prototype method of indexing raw-audio music files
in a way that facilitates content-based similarity retrieval. The
algorithm tries to capture the intuitive notion of similarity perceived
by human: two pieces are similar if they are fully or partially based
on the same score, even if they are performed by different people
or at different speed.

Local peaks in signal power are identified in each audio file,
and a spectral vector is extracted near each peak. Nearby peaks are
selectively grouped together to form “characteristic sequences”
which are the basis for indexing. A hashing scheme known
as “Locality-Sensitive Hashing” is employed to index the high-
dimensional vectors. Retrieval results are ranked based on the
number of final matches filtered by some linearity criteria.

1. OVERVIEW AND RELATED WORK

Developments in internet technology have made a large volume of
multimedia data, in particular music audio data, available to the
general public, and yet there are not many search tools that can
help users search through these data. Most existing search tools
rely on file names or text labels, but they become useless when
meaningful text descriptions are not available. As is happening
with Napster users right now, people intentionally hide file names
or text labels for legal reasons, and a larger and larger collection of
music data is becoming unsearchable.

A truly content-based music retrieval system should have the
ability to find similar songs based on their underlying score or
melody, regardless of their text description. In addition, it can be
used for such potential applications as music identification, plagia-
rism detection, copyright enforcement, etc. Traditional techniques
used in text searching do not easily carry over to the music domain,
and new technology needs to be developed.

As we know, music can be represented in computers in two
different ways. One way is based on musical scores, with one
entry per note, keeping track of pitch,duration (start time/end time),
strength, etc, for each note. Examples of this representation include
MIDI and Humdrum, with MIDI being the most popular format.
Another way is based on acoustic signals, recording the audio
intensity as a function of time, sampled at a certain frequency, often
compressed to save space. Examples of this representation include
.wav, .au, and MP3. MIDI-style data can be synthesized into
audio signals easily, but there is no known algorithm to do reliable
conversion in the other direction (i.e., music transcription), except

Supported by a Leonard J. Shustek Fellowship, part of the Stanford
Graduate Fellowship program, and NSF Grant IIS-9811904.

in monophonic or simple polyphoniccases [1, 3, 10]. Transcription
of general polyphonic signal is extremely hard.

Past research on content-based music retrieval has primarily
focused on score-based data such as MIDI, with input methods
ranging from note sequences to melody contours to user-hummed
tunes [2, 5, 7]. Because MIDI-style data is very structured, string
matching or text searching methods can be applied. Very little has
been done on retrieving raw audio music. However, only a small
fraction of music data on the internet is represented in score-based
formats; most music data is found in various raw audio formats.
Our work focuses on raw audio databases; both the underlying
database and the user query are given in .wav audio format. We
develop algorithms to search for music pieces similar to the user
query. Similarity is based on the intuitive notion of similarity
perceived by humans: two pieces are similar if they are fully or
partially based on the same score, even if they are performed by
different people or at different tempo.

Among music retrieval research conducted on raw audio data-
bases, Scheirer [8, 9] studied pitch and rhythmic analysis, seg-
mentation, as well as music similarity estimation at a high level
such as genre classification. Tzanetakis and Cook [11] built tools
to distinguish speech from music, and to do segmentation and
simple retrieval tasks. Wold et al. at Muscle Fish LLC [12] devel-
oped audio retrieval methods for a wider range of sounds besides
music, based on analyses of sound signals’ statistical properties
such as loudness, pitch, brightness, bandwidth, etc. Recently,
*CD (http://www.starcd.com) commercialized a music identifica-
tion system that can identify songs played on radio stations by
analyzing each recording’s audio properties.

Foote [4] experimented with music similarity detection by
matching power and spectrogram values over time using a dy-
namic programming method. He defined a cost model for matching
two pieces point-by-point, with a penalty added for non-matching
points. Lower cost means a closer match in the retrieval result.
Test results on a small test corpus indicated that the method is fea-
sible for detecting similarity in orchestral music. In our previous
work [13] we also employed a dynamic programming matching
approach based on a cost model, but preprocess the signals to
identify peaks and only match the spectrograms near the peaks.
Furthermore, we used some linearity filtering criteria to distin-
guish between a good match and a bad match. Both of these
approaches lack scalability, and performance deteriorates rapidly
when the database gets large. To address this issue, we propose
a new scalable framework using indexing, therefore moving one
step closer towards a practical music retrieval system.

21-24 October 2001, New Paltz, New York W2001-1

Audio Query

store lookup

Retrieval

matching items

Result

Phase 3

Phase 2

Phase 1

Audio Database

Preprocessing

Indexing / Lookup

Figure 1: Structure of an Index-based Retrieval System

2. THE MACS INDEXING APPROACH

In this section we start with an architectural overview of the in-
dexing algorithm, identify the main challenges, and then give a
step-by-step description of our MACS (Music Audio Characteris-
tic Sequence) indexing method.

2.1. Framework

Figure 1 shows the basic structure of an index-based retrieval sys-
tem, which consists of three phases. Phase 1 (preprocessing phase)
converts all raw audio data into “indexable” items, typically points
in a high-dimensional vector space with an appropriate distance
measure. Phase 2 (lookup phase) takes a query, converts it into
indexable items as in Phase 1, and then performs a lookup in the
index to get the best matching items. Phase 3 (retrieval phase)
evaluates all the matching items and decides which of the original
music pieces is the best candidate.

Each of the three phases poses its challenges. In phase 1, the
challenge is to come up with a way to generate “indexable” items
in a good vector space whose distance measure reflects music sim-
ilarity. We propose a “characteristic sequence” method to address
this issue. In phase 2, it is a nontrivial task to index and retrieve
vectors efficiently in very high dimensions. We use the “Locality-
Sensitive Hashing” (LSH) scheme [6] to implement this. In phase
3, it is important to have a systematic way of determining high-
level similarity based on a set of matches among indexable items.
We use a linearity filtering method as suggested in our previous
work [13]. In the following sections we describe the three phases
in more detail.

2.2. Generation of Characteristic Sequences

After decompression and parsing, each raw audio file can be re-
garded as a list of signal intensity values, sampled at a specific
frequency. CD-quality stereo recordings have two channels, each
sampled at 44.1kHz, with each sample represented as a 16-bit in-
teger. In our experiments we use single-channel recordings of a
lower quality, sampled at 22.05kHz, with each sample represented
as an 8-bit integer. Therefore, a 60-second uncompressed sound
clip takes

���������������
	����������������
bytes.

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8
x 10

4

time (sec.)

po
we

r

Figure 2: Power plot of Tchaikovsky’s Piano Concerto No. 1

A
B

C
D

time

Figure 3: True Peak vs. Bogus Peak

For each audio file, a set of characteristic sequences is gener-
ated in the following way:

1. Use the Short-Time Fourier Transform (STFT) to convert
each signal into a spectrogram: split each signal into 1024-
byte-long segments with 50% overlap, window each seg-
ment with a Hanning window and perform 2048-byte zero-
padded FFT on each windowed segment. Taking absolute
values (magnitudes) of the FFT result, we obtain a spec-
trogram giving localized spectral content as a function of
time.

2. Plot the instantaneous power as a function of time. Figure
2 shows such a power plot for a 40-second sound clip of
Tchaikovsky’s Piano Concerto No. 1.

3. Identify peaks in the power plot, where peak is defined as a
local maximum value within a neighborhood of a fixed size.
This definition helps remove certain bogus local “peaks”
which are immediately followed or preceded by higher val-
ues. For example, in Figure 3, � ����� are true peaks but�

is a bogus peak. Intuitively, these peaks roughly cor-
respond to distinctive notes or rhythmic patterns, but with
some errors, which will be compensated later.

4. Extract frequency components near each peak. We take
180 samples of frequency components between 200Hz and
2000Hz. Average values over a short time period following
the peak are used in order to reduce sensitivity to noise and to
avoid the “attack” portions produced by certain instruments
(short, non-harmonic signal segments at the onset of each
note). This step generates a list of 180-dimensional vectors.

5. Pass each 180-dimensional vector through a set of 24 comb
filters representing different pitch levels. Specifically, a
comb filter representing a pitch at � Hz outputs the number��������! ��"

, where
 ��"

is the frequency component at fre-
quency #$� Hz. This step generates a list of 24-dimensional
vectors, % � %'& �()(�(� %�* , where + is the number of peaks

21-24 October 2001, New Paltz, New York W2001-2

time

sequence 2

sequence 1
d=1

d=2

Figure 4: Construction of Characteristic Sequences

obtained. Intuitively, each vector estimates the pitch distri-
bution at the corresponding time instant.

Additionally, we keep track of the time offsets of the original
+ peaks,

� � � & �()(�(� � * , and define ��� to be the vector % "
such that

� "����	� � "�
��
, i.e., the last peak no later than

time
�

. It follows that ���� 	 % � , and � � is undefined for��� �
.

6. Normalize vectors % � % & �(�()(� %�* so that they each have
mean 0 and variance 1.

7. Construct a set of “characteristic sequences”as follows: for
any two nearby peaks which are separated by fewer than

�
other peaks, identify a sequenceof “follow-up” peaks which
maintain roughly equal distance from each other, starting
from the two original peaks. The process is illustrated in
Figure 4. Formally, a characteristic sequence is given by

� %�� %��
�� � ���
 &���� ������� ��� � � ���
! �"� ������� ��� � �()(�(�
� � �
 ��# � � �$��� �"�%� � � � ��&

where ' is the pre-defined length of each sequence, (is
the starting point, which ranges over all possible indexes,
and) is the bracketing control, which takes on small integer
values in the interval * �� �,+

. Note that each % vector is 24-
dimensional, so the dimensionality of each characteristic
sequence is

�.- ' .

In our experiments, we take ' 	 �
and

� 	 �
. The

purpose of having the bracketing control)0/1* �� �,+
is to

offset the effects of possible bogus peaks that survived step
3, such as the second peak in Figure 4.

2.3. Indexing

Suppose we would like to compare two characteristic sequences� (� (& �()(�(� (2# & and
�23 � 3 & �((�(� 3 # & . Let 4 be root-mean-

squared error between vectors (and
3
. It can be shown that 4

is linearly related to the correlation coefficient of (and
3

and rep-
resents a degree of similarity. A smaller 4 value corresponds to
a larger correlation coefficient. (See [14] for proof.) Therefore,
Euclidean distance in the space of characteristic sequences can be
used to estimate similarity.

Each characteristic sequence obtained from the previous sec-
tion is a high-dimensional vector and can be indexed. We use
the Locality-Sensitive Hashing (LSH) scheme [6] to perform in-
dexing. Given a query vector, LSH is a fast probabilistic scheme

s

r

s

r

A "good" match

A "bad" match

Figure 5: “Good” vs. “bad” matching

that returns approximate nearest neighbors with a controllable false
positive and false negative rate. Due to space limitations, we cannot
elaborate on the details here.

2.4. Matching with Linearity Filtering

To find similar music given a query music piece, we first break
down the query into a set of characteristic sequences and perform
an index lookup. Each lookup may generate a set of matches.
Each match contains a tuple (query-offset, matching-offset) which
indicates the time offsets of the two matching points. Figure 5
shows two ways to match (against

3
, both with 10 matches, but

the top one is obviously better than the bottom one. In the top
one, there is a slight tempo change between the two pieces, but
the change is uniform in time. In the bottom one, however, there
is no plausible explanation for the twisted matching. If we plot a
2-D graph of the matching points of (on the horizontal axis vs. the
corresponding points of

3
on the vertical axis, the top match would

give a straight line while the bottom one would not.

Formally, let ' " 	 ��576 � 98 �;: 576 & 98 & : �(�()(� 576 " 98 "<: & be the
set of tuples of matching offsets. We can plot it on a 2-D graph,
with

6 � 6 & �(�()(� 6 " (of the first music piece) on the horizontal axis
and

8 � =8 & �(�(�()98 " (of the second piece) on the vertical axis. If
the two pieces were indeed mostly based on the same score, the
plotted points should fall roughly on a straight line. Without tempo
change, the line should be at a 45-degree angle. With possible
tempo change, the line may be at a different angle, but it should
still be straight.

In this step of linearity filtering, we examine the graph of the
matching tuples obtained from index lookup, fit a straight line
through the points (using least mean-square criteria), and check if
any points fall too far away from the line. If so, remove the most
outlying point and fit a new line through the remaining points.
Repeat the process until all remaining points lie within a small
neighborhood of the fitted line. (In the worst case, only two points
are left at the end. But in practice we stop when too few points
remain.)

The total number of matching points after this filtering step is
taken as an indicator of how well two pieces match. Music pieces
from the database are ranked based on this number for retrieval.

21-24 October 2001, New Paltz, New York W2001-3

I II III IV V
0

10

20

30

40

50

60

70

80

90

100

Type

%
 R

et
rie

va
l A

cc
ur

ac
y

Figure 6: Retrieval Accuracy

3. EXPERIMENTS

Our data collection is done by recording CDs or tapes into PCs
through a low-quality PC microphone. No special efforts are taken
to reduce noise. This setup is intentional, in order to test the
algorithm’s robustnessand performance in a practical environment.
Both classical music and modern music are included, with classical
music being the focus. Instead of taking the entire pieces, only 30-
to 60-second clips are taken from each piece, because that much
data is generally enough for similarity detection.

We identify five different types of “similar” music pairs, with
increasing levels of difficulty:

� Type I: Identical digital copy
� Type II: Same analog source, different digital copies, possi-

bly with noise
� Type III: Same instrumental performance, different vocal

components
� Type IV: Same score, different performances (possibly at

different tempo)
� Type V: Same underlying melody, different otherwise, with

possible transposition

Sound samples of each type can be found at the websitehttp:
//www-db.stanford.edu/˜yangc/musicir/ .

Queries are conducted on a dataset of 120 music pieces, each
of size 1MB. For each query, items from the database are ranked
according to the number of final matching points with the query
music, and the top 5 matches are returned. Figure 6 shows the
retrieval accuracy for each of these five types of queries. As can
be seen from the graph, the algorithm performs reasonably well in
the first 4 types, but the last type is still too difficult.

4. CONCLUSIONS AND FUTURE WORK

We have presented an indexing algorithm to perform content-
based music retrieval based on spectral similarity. Experiments
have shown that the approach can detect similarity while tolerating
tempo changes, some performance style changes and noise, as long
as the change is not too much and the different performances are
based on the same score.

Further study is needed on the effects of various parameters
used in the algorithm, in order to find ways to automate the selection
of certain parameters to optimize performance.

Each of the three phases of the algorithm may need further
refinement. Better signal processing techniques can be used in
phase 1 to generate a more meaningful sequence representation;
improved indexing techniques in phase 2 may further reduce false
hits and speed up the lookup process; and more elaborate matching
methods in phase 3 need to be developed to better compute high-
level similarity from low-level matches.

We are also planning to augment the algorithm to handle more
of the type-V case including transpositions (pitch shifts).

5. REFERENCES

[1] J. P. Bello, G. Monti and M. Sandler, “Techniques for Auto-
matic Music Transcription”, in International Symposium on
Music Information Retrieval, 2000.

[2] S. Blackburn and D. DeRoure, “A Tool for Content Based
Navigation of Music”, in Proc. ACM Multimedia, 1998.

[3] J. C. Brown and B. Zhang, “Musical Frequency Tracking
using the Methods of Conventional and ’Narrowed’ Autocor-
relation”, J. Acoust. Soc. Am. 89, pp. 2346-2354. 1991.

[4] J. Foote, “ARTHUR: Retrieving Orchestral Music by Long-
Term Structure”, in International Symposium on Music In-
formation Retrieval, 2000.

[5] A. Ghias, J. Logan, D. Chamberlin and B. Smith, “Query
By Humming – Musical Information Retrieval in an Audio
Database”, in Proc. ACM Multimedia, 1995.

[6] P. Indyk and R. Motwani, “Approximate Nearest Neighbors:
Towards Removing the Curse of Dimensionality”, in Proc.
30th Symposium on Theory of Computing, 1998.

[7] R. J. McNab, L. A. Smith, I. H. Witten, C. L. Henderson
and S. J. Cunningham, “Towards the digital music library:
Tune retrieval from acoustic input”, in Proc. ACM Digital
Libraries, 1996.

[8] E. D. Scheirer, “Pulse Tracking with a Pitch Tracker”, in Proc.
Workshop on Applications of Signal Processing to Audio and
Acoustics, 1997.

[9] E. D. Scheirer, Music-Listening Systems, Ph. D. dissertation,
Massachusetts Institute of Technology, 2000.

[10] A. S. Tanguiane, Artificial Perception and Music Recognition,
Springer-Verlag, 1993.

[11] G. Tzanetakis and P. Cook, “Audio Information Retrieval
(AIR) Tools”, in International Symposium on Music Infor-
mation Retrieval, 2000.

[12] E. Wold, T. Blum, D. Keislar and J. Wheaton, “Content-
Based Classification, Search and retrieval of audio”, in IEEE
Multimedia, 3(3), 1996.

[13] C. Yang, “Music Database Retrieval Based on Spectral Sim-
ilarity”, Stanford University Database Group Technical Re-
port 2001-14.

[14] C. Yang and T. Lozano-Pérez, “Image Database Retrieval
with Multiple-Instance Learning Techniques”, Proc. Interna-
tional Conference on Data Engineering, 2000, pp. 233-243.

21-24 October 2001, New Paltz, New York W2001-4

