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ABSTRACT

This paper describes the theoretic framework and applica-

tions of automatic audio content analysis. After explaining

the basic properties of audio analysis, we present a toolbox

being the basis for the development of audio analysis algo-

rithms. We also describe new applications which can be de-

veloped using the toolset, among them music indexing and

retrieval as well as violence detection in the sound track of

videos.

KEYWORDS audio content analysis, audio toolbox, audio

segmentation, audio indexing and retrieval, violence detec-

tion

1 INTRODUCTION

Looking at multimedia research, the field of automatic con-

tent processing of multimedia data becomes more and more

important. Automatic cut detection in the video domain [34,

18, 1], genre recognition [8, 33] or automatic creation of dig-

ital video libraries [35, 29] are key topics addressed by re-

searchers.

The MoCA project (Movie Content Analysis) at the Univer-

sity of Mannheim aims at the automatic analysis of streams

of video and audio data. We have developed a workbench

to support us in this difficult task [16]. First results have

been achieved in automatic genre recognition [8], text recog-

nition in videos [17], video abstracting [22] and audio content

analysis.l

Research in multimedia content analysis has so far concen-

trated on the video domain. Few researchers do audio content

analysis as well [12, 4, 9, 30]. We are convinced that audio

1For further information on MoC4 see

http://www.infomatik. uni-mmnheim.de/informatiWpi4/projectsMoCW

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, lnc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requmes specific
permission and/or fee.
ACM Multimedia 96, Boston MA USA
@1996 ACM 0-89791-871-1/96/11 ..$3.50

content processing is as important as video content process-

ing. Humans use both eyes and ears to understand contents.

Why not do so in processing content by computer?

In this article we describe the tools of our audio content pro-

cessing toolbox as well as the applications we have developed

using the toolbox. Although many audio tools can be found

on the Internet, a system as a collection to build new applica-

tions has never been reported. As a part of the MoCA work-

bench, the toolbox is developed as a set of algorithms which

can be easily combined to create new applications. In this

paper we describe not only the standard algorithms, but also

new, more complex algorithms we have developed for auto-

matic audio content processing.

Applications include a music indexing and retrieval system

and a violence detection system. Many researchers concen-

trate on the creation of efficient image retrieval systems [35],

very few on the creation of audio retrieval systems [12]. Us-

ing our toolbox, we explain in detail a general music retrieval

system. We also introduce our computer-assisted violence

detection system. It could perhaps one day serve to protect

children from rated movies containing violence segments.

We explain initial steps towards this challenging goal, among

them the automatic recognition of shots, cries and explosions.

This paper is organized as follows. Section 2 describes basic

approaches to audio analysis. Section 3 describes our toolset

of basic operators for automatic audio content analysis. Sec-

tion 4 reports on different applications of audio content anal-

ysis and Section 5 concludes the paper.

2 BASIC PROPERTIES OF AUDIO

The content of audio must be regarded from two angles: first

with regard to measurable properties, from the point of view

of physics, e.g. amplitude or waveform, and second, with

regard to properties of human cognition such as subjective

loudness or harmony.

2.1 Physical Properties

Sound is defined as a change in air pressure which is modelled

as a waveform composed of sinusoidal waves of different

amplitude, frequency and phase. Experiments with different

sounds have shown that the human ear does not differentiate
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phases, but it is well known that we hear amplitude changes

as changes in loudness, and frequency changes as changes in

pitch [24]. The phase information is, however, still interest-

ing, e.g. when trying to locate a sound source on the basis of

phase differences between both ears, This proves that the hu-

man acoustical system analyzes waveforms directly.

More interesting than the waveform itself, however, is often

its composition of sinusoidal waves and their amplitudes and

frequencies. In physics, this is known as the Fourier Tran-

form (a fast algorithm to implement the Fourier Transform on

computer systems is known as Fast Fourier Transform FFT)

[6, 3]. The ear also performs such a transformation via a spe-

cial reception mechanism in the inner ear [24]. It is the ba-

sic step in any kind of detailed audio analysis. Only when we

possess information on the frequencies can we distinguish be-

tween different sounds: every sound we hear is composed of

different frequencies and amplitudes whose change pattern is

characteristic. The duration of such patterns is the first ba-

sic piece of information for partitioning the audio track into

“single sounds”, which can then be classified. We will ana-

lyze this in more detail in Subsection 3.3.1.

2.2 Psycho-acoustical Properties

Upon hearing a sound, humans do not perceive an amplitude

and frequencies, but the human auditory system extracts cer-

tain desired information from the physical information. The

information extracted can be very general, like “I hear that

somebody is talking”, or it can be more precise, like “I hear

that Jenny is saying that she is hungry”. The sound, how-

ever, consists only of the physical information. It is surpris-

ingly difficult to automatically derive even general informa-

tion such as the classification into speech, music, silence or

noise, or perceived loudness and dynamics (changes in loud-

ness) from the audio wave.

How do humans accomplish this? Using a computer, we have

two methods of simulating human auditory perception: either

we try to model the human auditory system in every detail that

is known, or since we know the input data (physical proper-

ties of sound) and the ouput data (audio content), we try to

make black box models of the processes occuring in the hu-

man auditory system and transfer them into programs. Both

methods are rewarding and have’ been used by researchers,

though most prefer one or the other.

The first method leads to programs which represent our cur-

rent biological knowledge of the human auditory system. As

our knowledge is incomplete, we can only model the deriva-

tion of certain basic information (see Subsection 3.2).

The second method is better suited to derive higher seman-

tic information. If we do not know how a human identifies

as music a sound heard, we must wager a guess. Is it a spe-

cial frequency pattern that has been learned to be identified

as music? How can a computer program model the processes

which may occur in a human brain? Psychoacoustics is the

science behind this second approach [24, 5, 32]. Researchers

in this area have constructed models to derive higher acoustic

semantics and have tested them on humans [14, 21, 27, 28].

Some of the theories have also been tested on computers in

order to extract higher semantics from digitized sound.

We claim that given a knowledge of biology, psychoacous-

tics, music and physics, we can setup theories on human au-

ditory perception and transfer them into computer programs

for evaluation. An example is the description of loudness as

perceived by a human. Different scales have been invented to

judge loudness: for example dB scale, phon scale, sone scale

[10, 20, 31]. Each measures a different kind of loudness: dB

simply measures amplitude differences, phon compares the

loudness of different frequencies that are of the same am-

plitude, and sone compares the loudness of different sounds,

But when a human expresses that some sound is “loud”, this

sensation is also dependent on the duration of that sound [37],

the frequency differences present in the sound [36], that hu-

man’s “sound history”, his visual perception of the sound

source, his sensitivity and his expectations (and probably on

more influences).

How can we approach such a problem with a computer pro-

gram? dB, phon and sone are implemented easily. The im-

pact of the duration of a sound is explained biologically as

the adaptation of the auditory nerves - this too can be simu-

lated. Involvement of other parameters has to be discussed

because some are very subjective (like that human’s sensitiv-

ity) or are not extractable from the audio alone (like the vi-

sual perception of the sound source). “Sound history” or the

human’s expectations can perhaps be modelled in more de-

tail. For “sound history” we could use a profile of the loud-

ness the human has perceived in the past (for example during

the last 2 minutes) and the human’s expectations can perhaps

be derived from the environment. For example when going

to a disco, music of a certain loudness is expected. A kind

of “intersubjective” loudness measure will result from such

concepts which can surpass those currently available.

3 THE AUDIO OPERATORS TOOLBOX

3.1 General Outline

In Section 2, we have described the basic kinds of approaches

to analyze digital audio, mentioning there some common

operators of digital audio analysis such as the Fast Fourier

Transfom (lVW). Having decided to produce a toolbox con-

taining such basic operators, we developed algorithms in C

and C++ on a Unix workstation.2 It is our goal to combine

these tools to create new applications. The indicators the tool-

box contains so far are

● Volume analysis,

● Frequency analysis,

● Pitch analysis,

. Onset and offset,

zThe too]b~x is ~~ of the MoCA workbench, via which audio operators

are easily combined with picture anatysis algorithms.



Q Frequency transition maps,

. Audio segmentation,

● Fundamental frequency analysis and

● Beat analysis.

The first three are described in the literature [6], so we omit an

explanation here. The other, more sophisticated and uncom-

mon algorithms are described in the following subsections.

3.2 Biological Operators

The major difference between data analysis with and with-

out perception simulation is the use of a special filter. A per-

ception-independent solution directly analyzes frequencies,

for example those produced by a Fourier Transform. There-

fore, frequencies are filtered first in a perception-simulating

analysis. The filter hereby computes the response a specific

nerve cell of the auditory nerve will produce. This response is

frequency-dependent. We use the phase-compensated gam-

matone filter gc proposed by [7] to transform the frequency

signal.

gc(t) = (tc + t)(n-lJezp(–27rb(t + tC))cos(2mf~t)

The filter is a fourth-order filter(rt = 4) where b is related

to bandwith, .fo is the center frequency and t. is a phase-

correction constant. The center frequency is the frequency to

which the nerve cell is tuned. We use a filter bank of 256 dif-

ferent filters spaced equally on the frequency scale.

F!lte? Strength Gammatone Filters

.
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Tkme [ins]

Figure 1: Gammatone Filters

Figure 1 shows three of these filters. The higher the frequen-

cy, the more the filter oscillates. Taking the output of a spe-

cific filter, the probability of a cell to fire can be calculated us-

ing the Meddis hair-cell model [19]. The signal, transformed

into nerve-cell response probabilities, can now be used to cal-
culate two important indicators for classifying audio content:

● Onset and offset, which are a measure of how fast a

cell responds to a signal. These indicators are a measure

of how fast a signal changes.
● Frequency transitions, which describe glides in fre-

quency over time.

“o 5 10 15 20 25
Time [ins]

Figure 2: Onset

Figure 2 shows an onset plot for a cry and for a shot. The

shot’s onset is much higher than that of the cry.

Frequency-transition maps are calculated using a direction-

selective filter, for example the second derivative of a normal

distribution rotated by an angle a. This filter is convolved

with the response of the Meddis hair-cell model and describes

glides in frequency over time as perceived by humans. For

further details see [4].

3.3 Physical Analysis Operators

3.3.1 Content-based Segmentation

In order to recognize the contents of audio, it is necessary to

first structure the audio stream. This is similar to determining

content in still images: successful object segmentation is the

basis for further processing. Our first step in content-based

audio segmentation is to distinguish between music, speech,

silence and other sound sequences, because handling of con-

tent differs fundamentally for each of these. For example,

if an arbitrary piece of audio is found to be speech, speech

recognition and speaker recognition can be performed on it.

If it is found to be music, note, bar or theme boundaries may

be extracted, and fundamental frequencies can be determined.

How can the general classification into silence, speech, mu-

sic and other sounds be achieved? Fh-st, we partition the au-

dio stream into similar segments. This is performed both in

the temporal and in the frequency domain. In the temporal

domain, we produce amplitude (loudness) statistics (similar

to [26]) and in the frequency domain, statistics of patterns in

frequency bands (tone-color, similar to [2]), These aid us in

deciding about the similarity of subsequently analyzed sam-

ple groups, which leads to the segments.

The second step is the classification of the segments into



speech, music, silence and other sounds. How do we perform

this? Humans determine silence on a relative scale: a loud-

ness of O dB is not very common in any natural environment,

let alone in digitized sound. Therefore, an automatic recogni-

tion of silence must be based on comparison of loudness lev-

els along a timeline and with an adaptive threshold. In that

way, silence can be distinguished from other sound classes.3

Speech and music are distinguishable simply by the spectrum

that they cover: speech frequencies lie in the range of 100 to

7000 Hz, and music frequencies between about 16 and 16000

Hz. Unfortunately, the latter also applies to environmental

sounds (“noise”). Therefore, our idea is to distinguish be-

tween music and other sounds by analyzing the spectrum for

“orderliness”: tones and their characteristic overtone pattern

do not appear in environmental sounds, neither is a rhythmic

pattern present there.
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3Such silence detection is easily exploited fOr ?.rn’veikirrce of rooms. A

vault room, for example, may be supervised less conspicuously by several

microphones than by cameras.

We have performed experiments to distinguish speech, mu-

sic, silence and noise [11]. An example of a distinction be-

tween a speech and a music passage is shown in Figures 3

and 4: the first shows the wave pattern of the analyzed au-

dio piece and the second, the difference values of tone-color

where a zero value implies a segmentation point.

Work towards similar aims has been performed before. [26]

tried to separate speech and music signals based on ampli-

tude statistics in the time domain alone. [14] presented a psy -

choacoustic model to distinguish between speech and music

based on loudness and pitch characteristics which determined

a metric structure. None of them tried, as we did, to classify

audio streams completely.

3.3.2 Music Operators

Music is characterized by a temporal structure and a note

(pitch and overtones) structure. The analysis of temporal

structure is based on amplitude statistics. We have used am-

plitude statistics to derive the beat in modern disco music

[25]. While an amplitude analysis maybe a first step towards

the temporal analysis of audio, it does not suffice: spectrum

analysis is necessary, too. For example, a segmentation of

musical harmony (chords) can be performed by analyzing the

spectrum and retrieving regularities. Because typical music

consists of a series of chords which are frequently changed,

the chords are visible in the spectrum as a group of frequen-

cies simultaneously present for a longer time. This approach

yields a segmentation of music into entities similar to written

music.

Based on this segmentation, we can perform a fundamental

frequency (fuf) determination on the chords as a first step to-

ward note analysis. The sequence of fuf’s in a piece of mu-

sic is very important for the human attribution of content to

a piece of music: it determines the perception of melody and

is one of the parameters most ;mportant in determining the

structure of a piece of music.

Human fuf perception is not trivial [24, 23]. A human is able

to hear the fuf of a sound even though the fuf itself might

not be present. For example, the fuf of an adult male voice

lies at about 120 Hz, that of an adult female voice at about

220 Hz. When voice is transmitted via a common telephone

line, only the frequencies between 300 and 3400 Hz are trans-

mitted (the lower boundary results from signal-distortion re-

strictions and the upper boundary from signal resolution). We

hear the restricted quality of the speech signal, but we don’t

realize that the fuf itself is missing because our auditory sys-

tem completes this frequency from the rest of the heard fre-

quencies.

The same effect occurs when listening to music on a cheap
transistor radio: because of the small loudspeakers, frequen-

cies below 150 Hz are not played. The low frequencies are

perceived nevertheless.

The fuf results from overlaying the higher frequencies. For
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Figure 5: Overlaying frequencies ~1 and ~z

Interval frequency relation fundamental frequency

Fifth f2 = ;fl 1=2 fl) = ~fl

Fourth f2 = ;fl 1=3 fl) = -fl
?Major Third fz = :fl fz = +fl 1=4 fo = ~fl fo = +fl

Minor Third f2 = !+fl 1=5 fo = yfl

Table 1: Correlation between intervals and their perceived fundamental frequency

example, if two frequencies fl, fz are played, which are one

musical fifth apart from each other, the frequency f. of the

resulting sound is calculated as follows:

~Z = ~fl (i.e.fz isonefifth above fl),

fo = ifl (i.e.fo iS one octave below fl).

Looking at the frequency diagram in Figure 5, it can be seen

that the period belonging to the fuf is the smallest common

multiple of the periods of the frequencies of which it consists.

Table 1 shows this result for different intervals.

This result can now be used by a program to determine the fuf

of a musical chord. It works for musical intervals, notes with

harmonic overtones and harmonic chords.

Algorithm fufi

1,

2.

3.

4.

Determine the lowest (significant) frequency appearing

in the spectrum. Call it fl.

Check, whether a (significant) frequency one fifth,

fourth, major or minor third above fl appears in the

sound:

~z=~.fl, fW~=2)..15.

If yes, choose fo = } fl as fuf.

Otherwise, choose fl as the fundamental frequency.

4 APPLICATIONS AND EXPERIMENTAL RESULTS

Having explained some of the operators contained in our au-

dio toolbox, we now proceed to the presentation of two appli-

cations which have been implemented using the toolbox.

4.1 Music Indexing and Retrieval

The compression of a piece of music into a sequence of fundam-

ental frequencies (fufs) is a means to produce a chm-acter-

istic signature of music pieces. Such a signature can be used

for audio retrieval, where music must be recognized and lcm-

glasting pattern recognition processes are not acceptable.

An example is advertisement analysis (see figure 6): having

a multimedia database, we store all TV commercials, includ-

ing the video and audio tracks in digital format, together with

other information such as the respective product name. Most

commercials contain an identifying melody on which we pler-

form our fuf-recognition algorithm. The resulting fuf signa-

tures are also stored in the database.

Now, we are interested to know, how often a specific comm-

ercial is run in a certain time period on all channels on

TV. Provided that all examined commercials contain an idtm-

tifying melody, we simply record all commercials from all

channels, digitize them, extract each single commercial (au-
tomatic commercial recognition and segmentation is easily

performed on the picture track [15]), and determine the mu:sic

parts by use of our audio segmentation algorithm (see 3.3.1).

On the music parts, we then perform the fuf recognition (see
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3.3 ,2), resulting in the characteristic fuf sequence, which is

then compared with the fuf sequen~es stored in the database.

If the queried commercial is already in the database, the re-

spective entry has a significantly higher correlation to the

queried piece and we can automatically count its appear-

ances. If the queried commercial is new, i.e. one not yet

part of the database, there is no such title with a significantly

higher correlation.

We have experimented with the retrieval of music titles based

on the fuf recognition and compared it to retrieval based on

frequency characteristics [13]. As we only worked on 8000

Hz sampled audio pieces, the frequency resolution resulting

from Fourier Transform is not very detailed and therefore the

fuf recognition not very good. This will be changed in the

future. We developed 10 FFT analysis indicators without use

of windows, 10 FFT analysis indicators using a Harming win-

dow and 10 fuf analysis indicators. These three classes of in-

dicators are evaluated separately. Stored in the database. are

30 indicators per entry. These 30 indicators are also calcu-

lated for a queried piece and then compared to each respective

indicator of the pieces in the database, resulting in a similar-
ity percentage. The highest similarity percentage determines

the entry that is identified by a single indicator. Then, the in-

dicator results are accumulated within the four classes. The

piece with the highest similarity percentage and the highest

hit rate is determined to be the retrieved piece of the class.

Our current prototype database consists of 100 pieces of digi-

tized commercials. “The results of an experiment with 27 new-

ly recorded and digitized pieces, 17 of which were already in

the database (different digitization), can be seen in Figures 7

and 8. The 17 pieces were always retrieved correctly by the

three classes, i.e. the hit rate was 1007’o. For new pieces, ei-

ther all three classes retrieved different pieces or the average

similarity percentages of the retrieved pieces were very low.

Therefore, a good retrieval decision with this system is based

on the three classes and the two following conditions:

1.

2.

All three classes must determine the same piece as “win-

ner”.

The average similarity percentage must be above 85% in

all three classes.

rcer.lat b rate [-t 1
120,

12345670 910 f112131415,c .,
Pi., w

Figure 7: Recognition rates for 17 retrieved pieces

The experimental music indexing and retrieval system shows

that we cannot yet produce a characteristic signature based
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Figure 8; Recognition rates for 10 new pieces

solely on fuf indicators. A combination with ITT indicators

is more reliable at the moment. We are investigating further

into more. reliable fuf signatures with better frequency reso-

lution.

4.2 Violence Detection

Violence in movies can have a bad influence on children,

which is why movies are rated. Although a computer system

will never be able to rate movies in a fully automated fashion,

it can assist in the process. Movie sequences that contain vi-

olence could be cutout via such a computer-aided film-rating

system.

As violence itself contains many ‘aspects and is strongly de-

pendent on the cultural environment, a computer system can-

not recognize violence in all its forms. It is most unlikely that

a computer would be able to recognize mental violence. It is

not our goal to recognize every form of violence; we concen-

trate on the recognition of a few forms of violence as an initial

step into this field.

A variety of sounds exist which indicate violence and which

are independent of the cultural’ environment of the user:

among them are shots, explosions and cries.

The algorithm we propose for their recognition is the follow-

ing:

1.

2.

3.

Compute for each ms amplitude, frequency, pitch, on-

set, offset and frequency-transition maps statistics of a

window of 30 ms of the audio file to be tested.

Compare these statistics with signatures of explosions,

cries and shots calculated earlier and stored on disk. The

comparison can be made either by using the correlation
of the two patterns or the Euclidean distance of both pat-

terns.

If a similarity between test pattern and stored pattern is

found, the event is recognized.

Statistics represent only the mean values of the time period

examined. To be able to examine changes of the test pattern

in time we compare the test pattern with several stored pat-

terns. We store the mean statistics for the entire event: the

beginning, the end and the time window which contains the

greatest change. The amount of change is hereby determined

by the variance. The correlation between 30-ms test patterns

and stored patterns of a few seconds length but of the same

event type is still very good.

We extracted shots, explosions and cries out of audio tracks

manually and stored the calculated signature of the events.

We then tried to locate these events in the same tracks. A 30-

ms audio track test pattern was calculated and compared with

the stored pattern, the time window was incremented by 2!ms

and the process repeated until the end of the audio track. The

question was whether the correlation between the test patterns

and the much longer stored pattern was high enough to be able

to recognize the event. The correlation between the 30-ms

test patterns and the stored pattern in all of the 20 tests ex-

ceeded 90 percent. Our test data set therefore contains four

test sets for each event and several sets of the same event. The

database currently contains data on 20 cries, 18 shots and 15

explosions.

For every indicator (loudness, frequency,’pitch, onset, offset,

frequency transitions), we compute minimum, maximum,

mean, variance and median statistics. In our experience a lin-

ear combination of minimum, maximum, mean, variance and

median yields the best results. The weights for such a com-

bination cannot be equal as the correlation is different. Ob-

viously in most cases the correlation between mean and vari-

ance is higher than that between mean and maximum. ‘The

weights we determined heuristically are shown in Table 2.

Tram$ition Strergth Tram it ions for Shot
10,

$+1 “tramShot”.-
8

7 t

o w lCQ MC 200 250
Time [ins]

Figure 9: Freqency transition for shot

Figures 9 and 10 show plots of frequency transitions for a cry

and for a shot. It is evident that these two events can already

be distinguished on the basis of this indicator alone.
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r Statistical Elmnents I
Maximum Minimum Mean Variance Median z,

33.33 3.33 33?33 20 10 100

Table 2: Weights of statistical instruments

Event Results in percent E
correctly classified no recognition possible falsely classified

Shot 81 10 9 100

cry 51 32 17 \ 100

Explosion 93 7 0 ] 100

Table 4: Classification Result

Tmmk{on Strength Tramitiom for Cry
10

9 .
Wlwrg” ..-

$ .
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Figure 10; Freqency transition for cry

As the indicators are not equally important for the recognition

process we also use different weights. These weights differ

from event to event (see Table 3). Using them we are able to

calculate a mean correlation between test pattern and stored

pattern.

To be able to recognize an event we have defined three deci.

sicm areas, If the correlation of the two patterns is below 60

percent, we reject, if it is beween 60 and 85 percent we are un.

decided, and if the correlation is above 85 percent we accept
that the test pattern and the stored pattern are identical.

Our experiment series contained a total of 80 tests. The se-

ries contained 27 files which did not contain cries, shots or

explosicms. Test results are shown in Table 4.

The percentage of correctly classified events is not very high

for cries. An important detail of the classificatim is the very

low percentage of falsely classified events, A possibility ta

avoid uncertain decisions is either to ask the user if the movie

part should be shown m not to show at all apart which might

possibly contain violence.

Indicator Event

Shot Cry Explosion

~

Offset 9 11 2

Frequency Transition Map 12 13 17

z, 100 100 100

Table 3: Weights of indicators

5 CONCLUSION

In this paper, we have described algorithms to analyze the

contents of audio automatically, Information on amplitude,

frequency, pitch, onset, offset and frequency transitions can

be used to classify the contents of audio. We distinguish be-

tween algorithms simulating the human perception process

and those seeking direct relations between the physical prop-

erties of an audio signal and its content.

Further, we showed exemplary applications we have devel.
oped to classify audio content. These include the detection

of violence and the indexing and retrieval of music.

We strive to develop more new algorithms to extract informs.

tion from audio-data streams. These include algorithms for

harmony analysis as well tone analysis.

Qur efforts in the field of music analysis focus on the distinc.
tion of different music styles like pop music and classical mu.

sic.
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