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Abstract—We present the query-by-description (QBD) compo-
nent of “Kandem,” a time-aware music retrieval system. The QBD
system we describe learns a relation between descriptive text con-
cerning a musical artist and their actual acoustic output, making
such queries as “Play me something loud with an electronic beat”
possible by merely analyzing the audio content of a database. We
show a novel machine learning technique based on Regularized
Least-Squares Classification (RLSC) that can quickly and effi-
ciently learn the non-linear relation between descriptive language
and audio features by treating the problem as a large number of
possible output classes linked to the same set of input features. We
show how the RLSC training can easily eliminate irrelevant labels.

I. INTRODUCTION

Retrieval of digital music is suddenly a confirmed hot topic:
a curious coincidence erupting from the intersection the ‘new’
Internet and the popular perceptual codec MP3. As the dust set-
tles from the upheaval created by the record industry trying to
arm itself against future technologies, it is becoming more im-
portant than ever to provide a simple but powerful interface for
music search. Science has responded with novel approaches
to multimedia search and music search in particular: query-
by-humming [7], query-by-example, or query-by-style or genre
[17], [21].

The most natural interface for finding what you want is still
language. Most of our purchasing and listening experiences
come from conversations with friends and reading reviews. If
we want to hear something relaxed or quiet, we read synopses
of records, or ask our friend who knows everything. And now
with all of future media being centrally available through some
future distribution mechanism, we can offer systems that can
hear these sorts of queries and act as an ‘intelligent expert’–
one that knows which songs are quiet, which are danceable,
and which are loud.

However, this solution presents a number of intermediate
problems. First, we need to label the data in some automatic
way [20], and then we need to figure out which terms could be
construed as musical (‘electronic’, ‘romantic’) and which are
not (‘popular,’ ‘talented.’) We also are faced with an inordi-
nately large scaling problem: with millions of songs and hun-
dreds of thousands of possible labelings, how could we possibly
computationally figure out any automatic relation?

In this article, we present a query-by-description system
for music, using the tenets of language processing, informa-
tion retrieval and machine learning. Our system treats the re-
lation between words and audio content as a ‘severe multi-
class’ learning problem: given audio content with thousands of
known labels (descriptions), only some of which are even rele-
vant (reflect anything in the underlying audio data), we train a
machine for each label. We discuss a novel machine learning
technique using regularized least-squares classification (RLSC)
that makes such multi-class problems tractable and show how
we can eliminate incorrect classifications and increase query-
by-description accuracy.

II. BACKGROUND

Searching for music from the content is a current area of
research that has gained striking results for various problems.
Systems can ‘understand’ music enough to classify it by genre
or style [17], [6], [21], and [8] and have shown high accura-
cies in either the score level (where the notes and structure are
pre-encoded) or the audio domain (where you use a perceptual
representation and a learning mechanism.) However, the link
between musical content and language is not as prominent: [8]
shows that certain style-related terms such as ‘lyrical’ or ‘fran-
tic’ can be learned from the score level. Their data was gen-
erated by performers who were viewing the terms and asked
to play in that style: a luxury analyses of prerecorded music
cannot have.

In the visual domain, some work has been undertaken at-
tempting to learn a link between language and multimedia. The
lexicon-learning aspects in [9] study a set of fixed words ap-
plied to an image database and use a method similar to EM
(expectation-maximization) to discover where in the image the
terms (nouns) appear. [2] and [3] outline similar work. In the
‘opposite’ direction, work undertaken in [16] learns the mean-
ing of objects from listening to users describing their utility
over a microphone.

III. DATA COLLECTION AND REPRESENTATION

Our system operates on links between audio content and tex-
tual description culled automatically from the Internet. Below



we describe the approaches for collecting and representing both
textual descriptive data and the audio data to which it should re-
late.

A. Audio Dataset

We use audio from the NECI Minnowmatch testbed (related
work analyzes this database in [19], [4], [21], [13].) The testbed
includes on average ten songs from each of 1,000 artists. The
artist list was chosen as the most popular artists on OpenNap, a
popular peer-to-peer music sharing service, in August of 2001.
([20] describes the peer-to-peer collection system.)

For the purposes of our experiment, we chose five songs each
randomly selected from 51 randomly chosen artists among the
dataset, for a total of 255 songs. Each song has the average
length of a pop song (we removed a few outliers that were over
six minutes or under two minutes.)

We encoded our song set into the representation used in [21],
a system that performed accurate style identification. Our aim
was to represent the general ‘aboutness’ of the music, not any-
thing specifically occurring in the bitstream.

The audio tracks were decimated to a sampling rate of
11,025Hz, converted to mono, and had their mean removed. We
then take a 512-point power spectral density (PSD) estimate of
every three seconds of audio. The data then is rank-reduced us-
ing principal components analysis (PCA) to twenty dimensions.
The end result is a ‘frame’ for every three seconds of audio con-
sisting of twenty dimensions. We store the relationship of frame
number to artist for accuracy and precision checking later on.

B. Text Description Classes

We use descriptive classes generated from the “Klepmit” sys-
tem outlined in [20]. The Klepmit text-set contains vectors of
‘community metadata’ (descriptive terms with salience weights
from community description) for each artist in the Minnow-
match testbed. The idea behind Klepmit’s data is to represent
an artist by means of Internet-wide description by using data
mining and information retrieval techniques. The community
metadata vectors are meant to be ‘time-aware’ – that is, pub-
lic’s perception of artists and the artist themselves change over
time, which is a crucial missed point in most music-IR systems.
We repeatedly crawl for this data weekly, and the cumulative
vectors are organized into five term types: n1 (unigrams), n2
(bigrams), np (noun phrases), adj (adjectives), and art (artist
names.)

The data is collected as follows: we first query popular search
engines for artist names, and parse the resultant pages for text
found around the artist. We use a part-of-speech tagger [5] and
a noun-phrase chunker [14] to extract the term types described
above. (The art term type is meant to extract ‘related artists’
found when a review or description tries to explain a similar
artist.) We then compute statistics on the extracted terms: we
compute the ft (frequency of a term relating to an artist) and fd
(frequency of the term occurring overall), and use both together
to create a weighted salience metric s for each term t:

np Term Score
beth gibbons 0.1648
trip hop 0.1581
dummy 0.1153
goosebumps 0.0756
soulful melodies 0.0608
rounder records 0.0499
dante 0.0499
may 1997 0.0499
sbk 0.0499
grace 0.0499

adj Term Score
cynical 0.2997
produced 0.1143
smooth 0.0792
dark 0.0583
particular 0.0571
loud 0.0558
amazing 0.0457
vocal 0.0391
unique 0.0362
simple 0.0354

TABLE I
TOP 10 TERMS (NP AND ADJ SETS) FOR ‘PORTISHEAD.’

s(t) =
fte

�(log(fd)��)2

2�2
(1)

We use a � of 3 and a � of 0.9 throughout, which we arrived
at from analyzing the distribution of the term types. See Table
I for a list of sample extracted terms and their weights.

The Klepmit text-set was used successfully as a ‘cultural rep-
resentation’ in [21] to classify music by a fine-grained style la-
bel, and also proved to work well as an artist similarity measure
in [10]. It is meant to capture information about music that can
not be easily represented by content-based retrieval methods,
and also to model the important long-term time domain.

Of further note is that the Klepmit community metadata vec-
tors are completely obtained by automatic and unsupervised
methods. Throughout this process of data collection and anal-
ysis, we never self-label the audio content nor do we input our
own biases.

IV. LEARNING FORMALIZATION OF

QUERY-BY-DESCRIPTION

With the text and audio representations in place, we then
move to our model of machine learning to uncover descriptive
links from community metadata. Our first step is to treat the
system as a classification problem: for each possible descrip-
tive term t, we train a machine ct to learn the relation between
it and an audio frame. However, the problem has three impor-
tant caveats that separate it from most classification problems:
� Surfeit of output classes: Each audio frame can be re-

lated to up to 200,000 terms (in the unconstrained case.)
Most artists have community metadata vectors of 10,000
terms at one time. For a standard machine learning tech-
nique, this would involve costly multi-class learning and
combinations.

� Classes can be incorrect or unimportant: Due to the un-
supervised and automatic nature of the description classes,
many are incorrect (such as when an artist is wrongly de-
scribed) or unimportant (as in the case of terms such as
‘talented’ or ‘cool’– meaningless to the audio domain.)
We would need a system that could quickly fetter out such
errant classes.



� Outputs are mostly negative: Because the decision space
over the entire artist space is so large, most class outputs
are negative. In our 51 artist set, for example, only two
are described as ‘cynical’ while 49 are not. This creates
a bias problem for most machine learning algorithms and
also causes trouble in evaluation.

One possible way to learn this relation is to train a binary
classifier on each term type, given the audio frames as input ex-
amples. However such training has a large startup time for each
new class. We show below a novel algorithm that eliminates
this startup time and allows for multiple classes to be tested
easily.

A. Handling “Severe Multi-class” Problems With Regularized
Least-Squares Classification

Regularized Least-Squares Classification (or regression) is a
powerful approach to solving machine learning problems [15].
It is related to the Support Vector Machine [18] in that they
are both instances of Tikhonov regularization [11], but whereas
training a Support Vector Machine requires the solution of a
constrained quadratic programming problem, training RLSC
only requires solving a single system of linear equations. Re-
cent work [12], [15] has shown that the accuracy of RLSC is
essentially identical to that of SVMs.

We begin with a kernel functionKf , where Kf (x1; x2) is a
generalized dot product (in a Reproducing Kernel Hilbert Space
[1]) betweenxi and xj. In our work, we use the Gaussian kernel

Kf (x1; x2) = e�
(jx1�x2j)

2

�2 (2)

where � is a tunable parameter. We form the matrix K, where
Kij � Kf (xi; xj). Then, training an RLSC system consists of
solving the system of linear equations

(K +
I

C
)c = y; (3)

where C is a user-supplied regularization constant. The result-
ing real-valued classification function f is

f(x) =

`X

i=1

ciK(x; xi): (4)

A key property of this approach is that the solution c is linear in
the right-hand side y. We compute and store the inverse matrix
(K + I

C
)�1 (this is numerically stable because of the addition

of the regularization term I
C

), then for a new right-hand side y,
we can compute the new c via a simple matrix multiplication.

We are faced with a “severe multi-class” problem, where we
have a very large number of different labelings of our data. In
our application, a reasonable approach is to consider a labelling
to be relevant or useful if we can learn the relationship be-
tween the input and the labelling (on a held out test set). To
this end, we will train a single RLSC classifier for each label

under consideration. “Training” each classifier is a matrix mul-
tiplication (once we have precomputed (K + I

C
)�1), and, if we

store the kernel products between all test and training points,
each classifier can also be tested via a single matrix multipli-
cation. The ability to very quickly train powerful classifiers is
crucial for this application; in our tests, we use roughly 700 dif-
ferent classes, and training an SVM or neural network for each
class would be impractical.

V. EXPERIMENTS AND RESULTS

We evaluated the training system and representation by cre-
ating a query-by-description prediction task. This experiment
hopes to measure the strength of the connections between mu-
sic and language by asking the system to label as-yet ‘unheard’
audio with a description. However, this method has a serious
flaw in that we cannot trust our ground truth, and therefore au-
tomatically scored results (without human intervention) will be
low. So instead we place a high value on the differences be-
tween different terms’ performance.

For the purposes of the experiment, we used the 51 artist,
255 song set described above and split it into two roughly
equivalent-sized sets for training and testing. The test and train
data are from different artists and therefore represent different
acoustic distributions. For our output classes, we chose to stay
only within the adjective term types, and limited the possible
number of output classes to those that were used to describe at
least two of the artists in our 51-artist space. This left us with
roughly 700 output classes, many of which only described a few
artists.

We computed the stored kernel outlined above (using a � of
2 and a C of 10) and proceeded to train a new c t for each term
t against the training set. ft(x) for the test set is computed over
the each frame x and term t. If the sign of f t(x) is the same
as our supposed ‘ground truth’ for that artist and t, we consider
the prediction successful. The evaluation is then computed on
the test set by computing a ‘weighted precision’: where P (ap)
indicates overall positive accuracy (given an audio frame, the
probability that a positive association to a term is predicted)
and P (an) indicates overall negative accuracy, P (a) is defined
as P (ap)P (an).

The computation of each consecutive class takes only sec-
onds, a striking improvement over the standard method of com-
puting 700 SVM classifiers for this problem. The results for
a select set of terms are shown in Table II. While the overall
accuracy is low, we should consider the extremely low base-
line of the problem itself compounded with our low trust in the
ground truth used for this evaluation. We see immediately that
more ‘musically relevant’ terms are predicted with far higher
accuracy. In this manner, we can easily remove low-scoring
classes, both for data reduction and for accuracy. This type of
evaluation provides keen insights into the amount of descriptive
power certain terms have against acoustic content.

We also use these results to visualize the spectral fingerprints
of various descriptions. We take the mean of all spectral content



Term Precision Term Precision
acoustic 23.2% annoying 0.0%
classical 27.4% dangerous 0.0%
clean 38.9% gorgeous 0.0%
dark 17.1% hilarious 0.0%
electronic 11.7% lyrical 0.0%
female 32.9% sexy 1.5%
happy 13.8% troubled 0.0%
romantic 23.1% typical 0.0%
slow 18.9% unusual 2.3%
upbeat 21.0% wicked 0.0%
vocal 18.6% worldwide 2.8%

TABLE II
SELECTED ADJECTIVE TERMS AND THEIR WEIGHTED PRECISION.
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Fig. 1. Mean spectral characteristics of four different terms. Magnitude of
frequency on the y-axis, frequency in Hz on the x-axis.

described as certain high-scoring terms, weighting each frame
by its gaussian-derived score described above. Figure 1 shows
two sets of comparisons. We see the expected result for ‘quiet’
versus ‘loud’ and a curious but understandable increase in the
bass level bins of the ‘funky’ spectrum versus ‘lonesome”s flat
response.

VI. DISCUSSION AND FUTURE WORK

To achieve a high-accuracy QBD system, we will use the re-
sults above to inform a more supervised learning process. By
analyzing which terms can be associated with acoustic content,
our next step is to use the same algorithms on hand-labeled
smaller sets of audio, and then re-label a far larger test set auto-
matically using the thousands of learned relations.

From the results outlined above, we propose that our method
of handling a ‘severe multi-class’ problem such as query-by-
description works well at determining incorrect or useless class
labels. If we set a threshold ahead of time, the entire process,
from data collection to evaluation, could be automated and the
set of musically salient terms would be easy to handle.

These experiments clearly show that with enough data and an
appropriate statistical measure, we can go a long way towards
finding out what we talk about when we talk about music– and
gain an overall better understanding of the link between two
powerful forms of expression.

VII. ACKNOWLEDGEMENTS

Thanks to Steve Lawrence and the Music, Mind and Machine
group for their helpful contributions.

REFERENCES

[1] N. Aronszajn. Theory of reproducing kernels. Transactions of the Amer-
ican Mathematical Society, 68:337–404, 1950.

[2] K. Barnard, P. Duygulu, and D. A. Forsyth. Clustering art. In IEEE Conf.
on Computer Vision and Pattern Recognition II, pages 434–441, 2001.

[3] K. Barnard and D. Forsyth. Learning the semantics of words and pictures.
2000.

[4] A. Berenzweig, D. Ellis, and S. Lawrence. Using voice segments to im-
prove artist classification of music. In AES-22 Intl. Conf. on Virt., Synth.,
and Ent. Audio.

[5] E. Brill. A simple rule-based part-of-speech tagger. In Proceedings
of ANLP-92, 3rd Conference on Applied Natural Language Processing,
pages 152–155, Trento, IT, 1992.

[6] W. Chai and B. Vercoe. Folk music classification using hidden markov
models. In Proceedings of International Conference on Artificial Intelli-
gence, 2001.

[7] W. Chai and B. Vercoe. Melody retrieval on the web. In Proceedings of
Multimedia Computing and Networking. 2002.

[8] R. B. Dannenberg, B. Thom, and D. Watson. A machine learning ap-
proach to musical style recognition. In In Proceedings of the 1997 In-
ternational Computer Music Conference, pages 344–347. International
Computer Music Association., 1997.

[9] P. Duygulu, K. Barnard, J. D. Freitas, and D. Forsyth. Object recognition
as machine translation: Learning a lexicon for a fixed image vocabulary.

[10] D. Ellis, B. Whitman, A. Berenzweig, and S. Lawrence. The search for
ground truth in artist similarity. 2002. To appear.

[11] T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and sup-
port vector machines. Advanced In Computational Mathematics, 13(1):1–
50, 2000.

[12] G. Fung and O. L. Mangasarian. Proximal support vector classifiers. In
Provost and Srikant, editors, Proceedings of the Seventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pages 77–86. ACM, 2001.

[13] Y. Kim and B. Whitman. Singer identification in popular music record-
ings using voice coding features. 2002. To appear.

[14] L. Ramshaw and M. Marcus. Text chunking using transformation-based
learning. In D. Yarovsky and K. Church, editors, Proceedings of the Third
Workshop on Very Large Corpora, pages 82–94, Somerset, New Jersey,
1995. Association for Computational Linguistics.

[15] R. M. Rifkin. Everything Old Is New Again: A Fresh Look at Historical
Approaches to Machine Learning. PhD thesis, Massachusetts Institute of
Technology, 2002.

[16] D. Roy. Learning words from sights and sounds: A computational model.
1999.

[17] G. Tzanetakis, G. Essl, and P. Cook. Automatic musical genre classifica-
tion of audio signals, 2001.

[18] V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.
[19] B. Whitman, G. Flake, and S. Lawrence. Artist detection in music with

minnowmatch. In Proceedings of the 2001 IEEE Workshop on Neu-
ral Networks for Signal Processing, pages 559–568. Falmouth, Mas-
sachusetts, September 10–12 2001.

[20] B. Whitman and S. Lawrence. Inferring descriptions and similarity for
music from community metadata. In Proceedings of the 2002 Interna-
tional Computer Music Conference, pages 591–598. Gothenburg, Swe-
den, 2002.

[21] B. Whitman and P. Smaragdis. Combining musical and cultural features
for intelligent style detection. 2002. To appear.


