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Examples (cont.)

Supposetwo events Al W,BI W arenot mutually exclusive;

ACB!f
Then

Pr(AE B) = Pr(A) + Pr(B) - Pr(AC B)

proof: mutually exclusive

AE B=AE ACB B= ACBE ACB
Pr(AE AB)=Pr(A)+Pr(AC B) Pr(B)=Pr(AC B)+Pr(AC B)

b Pr(AE B)=Pr(A)+Pr(A)- Pr(AC B) -
L
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Examples (cont.)

if Al W then A istheevent corresponding to
“A did not occur”, and

Pr(A)=1- Pr(A)

ex) 1roll of afair die

if A={roll iseven} then A ={roll isodd}
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Pr(A)=1-Pr(A)=05 r
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Examples (cont.)

ex) A fair coin istossed 3 times in succession.

Events. A- get atotal of 2 heads
B- get a head on second toss

W={HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

A: X X X
B: X X X X u
' .
.
Pr(A) =3/8 Pr(B) =4/8 Pr(ACB)=2/8 K
J
Pr(AE B)=3/8+4/8- 2/8=5/8 1
I
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Conditional Probability

Pr(AC B)
P(B)

Pr(AB)°

ex) A fair coin istossed 3 times in succession.

Events. A- get atotal of 2 heads
B- get a head on second toss

I

W={HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} :
A: X X X il
B: X X X X d
J

A

—Pr(B) = 4/8, Pr(AC B) =2/8, Pr(A | B) = (2/8) / (4/8) = 1/2
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Examples (cont.)

ex) A fair dieisthrown once:

ITW={1, 2, 3,4,5, 6
*A-roll a“2”
*B- roll iseven

*Pr(A) = 1/6 Pr(B)=3/6 pr(AC B)=Pr(A)=1/6

.

P(A | B) = (1/6)/(3/6) = 1/3 4

d

J

note Pr(A | A) =1, and if A and B are independent events: -
J

Pr(AIB) = Pr(A) r
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Hidden Markov Models (HMM’s)

example 1) Po =1
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Example of an HMM

= The g; are state transition probabilities, give the

probability of moving from state i to state .

m Notethat:

aa, =1

J
m At state Q,, one of 3 output symbols, R, B, or Yis

generated with probabilities | (R),b(B), or b (Y)

State, Q [ b(R) bi(B) b(Y)
0 0.3 0.2 0.5
1 0.7 0.2 0.1
2 0.9 0 0.1
3 0.2 0.8 0
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Example of an HMM (cont.)

= One output symbol is generated per state (like aMoore
state machine).

possible output sequence: R, Y, B, B, R, Y, R ..
state: Qg, Qq, Qs, Qp, Q1 Qp, Qs ..

m Often the observed output symbols bear no obvious
relationship to the state sequence (i.e. states are “hidden”).

d
d
m Knowing the state sequence generally provides more o
useful information about the characteristics of thesignal 4
being analyzed than the observed output symbols (as was j

7 the case with syntactic recognition). -
d
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Definition of Hidden Markov Models

there are T observationtimes: t= 0, ..., T-1
there are N states: Q,, ..., Q.1
there are M observation symbols: v, ..., V.1
state transition probabilities:

a; = Pr(Qj atimet+1| Q attimet)

m symbol probabilities:
b, (k) = Pr(v, attimet | Q, attimet)
m initial state probabilities:
p, =Pr(Q att=0)
aEawaaaa
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Definition of Hidden Markov Models (cont.)

m Definethe matrices A, B, and P:

{A}, =2, ,i=0,..,N-1
{B}, =Db(k), j=0,..,N-1 k=0,...,M-1

.

notation for HMM: | = (A, B, P) 4

: : d

m Notation for observation sequence: O =0,,0,,...,0;; .
= Notation for state sequence: | = iy, Iy, .. 111 d
N

d
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Three Fundamental Problems

m Problem 1: Given the observation sequence O = O,,0,,...,0;_,
and themodd | = (A, B, P), how do we compute the
probability of the observation sequence, Pr(O|1)?

m Problem 2: Given the observation sequence o=, 0,,...,0, ,
and themodd | = (A, B, P), how do we estimate the Sate
sequence, | = iy, I4, ..., iy Which produced the
observations?

m Problem 3: How do we adjust the model parameters| =

d

d
. d
(A, B, P) tomaximize Pr(O || )? F
J
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Relevance to Normal/Abnormal ECG Rhythm Detection

Suppose we have one HMM that models normal rhythm,
and a second HMM that models abnormal rhythm, and we
have a measured observation sequence. Problem 1 can be
used to determine which is the most likely model for the
measured observations, hence, we can classify the rhythm
as normal or abnormal.

Suppose we have a single model which enables usto
associate certain states with with the components of the
ECG (P, QRS, and T waves). Problem 2 can be used to
estimate the states from the observation sequence. The
state sequence can then be used to detect P, QRS, and T
waves.
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Relevance to Normal/Abnormal ECG Rhythm Detection
(cont.)

m Problem 3is used to generate the model parameters that
best fit agiven training set of observations. In effect, the
solution to Problem 3 allows usto build the model. This
problem must be solved first before we can solve Problems
1 and 2. Problem 3 ismore difficult to solve than Problems
1 and 2.
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Markovian Property of State Sequences

m Thesequenceiy, iq, ..., 1.1 hasthe Markov property:

Pl’(ik|ik_1,ik_2,...,io) = Pr(iklik—l)

that is, the state at timet = k, i, isindependent of al
previous states except I, ;.
m A conseguence of this property is (homework):

notation: Pr(i, i, i,iy 2,..-,i0)° Pr(i, Ci,, Ci, ,C...Ciy)

|

.
N
Priy i1k oe--sio) = Pr(ilic 1) Pr(ic.alic )+ Pr(isli,) Pr(i,) :
.
N
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Trellis Representation of HMM in Example 1
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Probability of state sequence: | = Q,, Q;, Qs, Q, Q, Q1 Q,

Pr(Q,, Qy, Qs, Q, Q1 Qp, Q,) = 1¥0.3*1*1*0.2*0.5 = 0.03

a,,=0.2
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Probability of agiven | and O: Pr(1 ¢ O)

observed output sequence: R, Y, B, B, R Y, R
State: QO! Ql! QB! QO! Ql! Ql! QZ

Note that:

3
pr(1 ¢ 0) = Pr(1)Pr(O]1) .
|
|
|
r
3
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Back to Example 1

output sequence: R, Y, B, B, R Y, R
State: QO! Ql! QB! QO! Ql! Ql! QZ

R B
Q @ o ¢ e ¢ ¢ ¢
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1 2 3 4 5 6=T-1 -
t .
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Example (cont.)

output sequence: R, Y, B, B, R Y, R
state:  Qp, Qy, Qs Qo Qq Q1 Q;

Pr(1 C O)=Pr(1)Pr(O|)

Pr( 1) =Pr(Qu Q Qs Qo Qp, Q1 Qy)

= 1*0.3*1*1*0.2*0.5 = 0.03
Pr(O|1)=Pr(RY,B,B,RY,R)
= 0.3*0.1*0.8*0.2*0.7*0.1*0.9 = 0.0003024

State, Q. |b(R) b(B) b(Y)
0 03 0.2 0.5
1 0.7 0.2 0.1
2 0.9 0 0.1
3 02 038 0
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